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Introduction

Exotic pairs — pairs of homeomorphic but not diffeomorphic manifolds

— in dimension four are controlled by certain contractible 4-manifolds

equipped with diffeomorphisms of their boundary known as corks. More

precisely, any exotic pair of four-dimensional manifolds are related by cut-

ting out a contractible submanifold and gluing it back in with a twist. The

proof of this result is dependent on the topological h-cobordism theorem

in dimension five due to Freedman1 together with the failure of its smooth 1 Freedman, “The topology of four-

dimensional manifolds”.counterpart. Our goal in these notes is to provide a relatively self contained

proof of this result.

The proof strategy we follow is due to Kirby,2 who reformulates and con- 2 Kirby, “Akbulut’s corks and h-
cobordisms of smooth, simply con-

nected 4-manifolds”.
solidates the original proofs of Curtis, Freedman, Hsiang, Stong,3 and,

3 Curtis, Freedman, Hsiang, and Stong,

“A decomposition theorem for h-

cobordant smooth simply-connected
compact 4-manifolds”.

separately, Matveyev,4 and Bižaca5. The purpose of these notes is mainly

4 Matveyev, “A decomposition of
smooth simply-connected h-cobordant

4-manifolds”.
5 Although Kirby’s paper and others in
the literature attribute a part of this re-

sult to him, I can’t find a published pa-

per attributed to Bižaca on this topic.

to clarify my own understanding of the ideas involved and to force myself

to learn Inkscape. The proofs presented are not original, although mistakes

therein may be.

We use ∼=
top

to denote homeomorphisms and ∼=
sm

to denote diffeomorphisms.

Freedmanomicon

Our starting point is the famous pair of results due to Freedman in the

topological category:

6 Freedman, “The topology of four-
dimensional manifolds”, Theorem 1.3

Theorem 2.1: Topological 5D h-Cobordism Theorem6

A compact 1-connected smooth 5-dimensional h-cobordism (W ;M,M ′)

(which is a product over the possibly empty boundary ∂M) is topo-

logically a product, i.e, W ∼=
top

M × [0, 1].

Freedman adds that, moreover, the product structure on W is smooth over

the complement of a flat 4-cell in M , i.e, any obstruction to W being
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diffeomorphic to a product can be localized to essentially a point.

Note that there is a version of the above theorem that omits the smoothness

requirement due to Quinn7 that relies on his (and Freedman’s) theory of 7 Quinn, “Ends of maps. III: Dimen-

sions 4 and 5”, Proposition 2.7.2.topological handle decompositions.

8 Freedman, “The topology of four-

dimensional manifolds”, Theorem 1.6
Theorem 2.2: Topological 4D Poincaré “Conjecture”8

If M is a topological 4-manifold homotopy equivalent to S4, then

M ∼=
top

S4.

For our discussion, we will need one more result due to Freedman, although

the proof strategy we use below is taken from a paper of Gompf.9 9 Gompf, “Infinite order corks via han-

dle diagrams”.

Lemma 2.3: Freedman

Let f : ∂X
∼−→ ∂X be a diffeomorphism with X a compact, con-

tractible 4-manifold. Then f extends to a homeomorphism F : X
∼−→

X of X (i.e F |∂X = f).

Proof : LetW denote the twisted double of X along f , that is, the closed 4-manifold

obtained by gluing X to itself along ∂X via f . π1(W ) = π1(X) ∗π1(∂X)

π1(X) = 1 by van Kampen’s theorem, and Hi(W ) = Hi−1(∂X) by Mayer-

Vietoris (except for i = 0), and the boundaries of compact contractible

n-manifolds are homology (n − 1)-spheres (see, e.g., Hatcher,10 or ap- 10 Hatcher, Algebraic Topology, Exer-

cise 3.3.33.ply Lefschetz duality together with the long exact sequence of a pair), so

H∗(W ) = H∗(S
4). Then, using a formulation of Whitehead’s theorem —

precisely, that, f : X → Y between simply-connected CW complexes is a

homotopy equivalence if f∗ : Hi(X) → Hi(Y ) is an isomorphism for all i

(see, e.g., Hatcher11) — we know that W is homotopy equivalent to S4. 11 Ibid., Corollary 4.33.

To produce a degree one map from

W to S4 in order to apply White-
head’s theorem, employ the standard

construction of picking a small ball B
in W and take the quotient map W →
W/(W \ intB) = S4. This construction
works in all dimensions.

Now, applying the topological Poincaré conjecture (see Corollary 2.2), we

have that W ∼=
top

S4 and therefore W bounds D5. We can decompose W as

W = X ∪∂X×{0} ∂X × [0, 1] ∪∂X×{1} X

by construction and thereby view D5 as a relative h-cobordism of pairs

from (X, ∂X) to itself (see Figure 1 below), which, restricted to ∂X × [0, 1]

is the mapping cylinder of the diffeomorphism f . By the rel-∂ version of

the topological h-cobordism theorem (see Theorem 2.1), we have a home-

omorphism Φ : D5 ∼−→ X × [0, 1]. The idea to produce F is to “project”

X × {0} to X × {1} along the h-cobordism: Figure 1: The h-cobordism induced by

gluing along f , once “straightened out”
by an application of the h-cobordism
theorem, gives us the desired extension

F .
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X

×
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]

X × [0, 1]∼=
Φ

By the construction of Φ as arising from an h-cobordism, it maps the top

copy of X to X ×{0} and the bottom copy to X ×{1}. Thus, to see where

the point x in the top copy ofX goes under the “flow” (scare quotes to avoid

making this more precise) of the h-cobordism, we map it over to (y, 0) =

Φ(x) ∈ X × {0}, whose image under the flow of the product h-cobordism

is (y, 1), and pull this back to the bottom copy of X as F (x) := Φ−1(y, 1).

This is a homeomorphism (since Φ is a homeomorphism) which extends f

by construction, so we are done. Note that we used the fact that f is a

diffeomorphism (as opposed to a homeomorphism) in order to guarantee a

smooth structure on W and therefore on the h-cobordism in order to apply

Theorem 2.1. ■

The key point is that the diffeomorphism f is only guaranteed to extend

as a homeomorphism over the larger manifold X, and it turns out that, in

general, an extension to a self-diffeomorphism of X is not possible.

Corks on the Cob

Depending on who your friends are,

corks as I’ve defined them may be
called loose or relative corks.

Definition 3.1: Corks

A cork is a contractible 4-manifold C together with a self diffeomor-

phism (sometimes taken to be an involution) τ of its boundary ∂C

which does not extend over C as a diffeomorphism.

Now, we are ready to state the main result discussed in this note:

12 Curtis, Freedman, Hsiang, and

Stong, “A decomposition theorem for
h-cobordant smooth simply-connected

compact 4-manifolds”; Matveyev,

“A decomposition of smooth simply-
connected h-cobordant 4-manifolds”

Theorem 3.2: CFHSM12

Let M5 be a smooth 5-dimensional h-cobordism between simply-

connected closed 4-manifolds, M0 and M1. Then there exists a

sub-h-cobordism A5 ⊆ M5 between A0 ⊆ M0 and A1 ⊆ M1 such
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that the Ai and A itself are compact contractible submanifolds and

such that M \ intA is diffeomorphic to a product, i.e, diffeomorphic

to (M0 \ intA0)× [0, 1].

The proof of this result follows by examining an arbitrary such h-cobordism

and judiciously manipulating its handle structure, and gives as a corollary

our main result:

Corollary 3.3: Cork Theorem

Let M0 and M1 be smooth, simply-connected, homeomorphic 4-

manifolds which are not diffeomorphic, i.e, an exotic pair. Then

there exists a cork C ⊆M0 such that M1 is diffeomorphic to (M0 \
intC) ∪τ C.

In other words, all exotic pairs are re-
lated by a cork twist, which is the op-

eration of cutting out and gluing back

in a cork along some automorphism of
its boundary.

The proof of this corollary requires a few addenda and is found after the

proof of the main theorem.

The proof of the main theorem will proceed as follows:

1. First, we pick a handle structure on the h-cobordism M and look at its

middle slice M 1
2
, where the 2-handle cocores and 3-handle cores meet to

witness the fact their algebraic cancellation

2. Using these cores and cocores we build up a handle structure on M 1
2

that reflects the topology of M

3. We slide handles and potentially introduce new cancelling 2/3 handle

pairs to M 1
2
in order to make the induced presentation of π1 into the

trivial presentation of the trivial group

4. Now, with our cleverly chosen handle structure on M 1
2
whose 2-handles

are neatly sorted by the role they play, we are able to identify a con-

tractible sub-h-cobordism of M which contains all of the handles of M ,

from which the result will follow

Proof : Pick a handle structure on M , induced by some Morse function f : M →
[0, 1], which, we can take to have no 0, 1, 4, or 5-handles.13 If the 2 13 Gompf and Stipsicz, 4-manifolds and

Kirby calculus, Proposition 9.2.3.

The 0-handles can be cancelled by 1-
handles since M is connected, and, sim-

ilarly, the 1-handles can be cancelled

by 2-handles essentially due to the fact
that M is simply-connected, though

there are some details to work out (and
the dimension being sufficiently large is
important). Turning M upside down

and repeating the argument eliminates
the 4 and 5-handles. All this is done at
the cost of new 2 and 3-handles.

and 3-handles cancel geometrically, then M is a trivial h-cobordism, i.e,

diffeomorphic to a cylinderM0× [0, 1]. In general, this is not true, however,

since nontrivial smooth h-cobordisms exist in dimension four,14 however,

14 Donaldson, “Irrationality and the h-
cobordism conjecture”.

we do know that the 2 and 3-handles cancel algebraically by the fact that

M is an h-cobordism (indeed, a non-cancelling (say) 2-handle in M would

generate nontrivial H2(M,M0) in the Morse complex). In particular, there

are an equal number of 2 and 3-handles by this condition.

Let M 1
2
:= f−1

(
1
2

)
denote the middle level of M , and assume that the

2-handles are attached below and the 3-handles above of M 1
2
. Since we can
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build M without use of any 1-handles, M 1
2
is simply-connected. The goal

is to produce a handle structure on M 1
2
that illuminates the structure of

M , and the contractible manifold A that we will eventually produce will

depend on the handle structure that we describe. For those more familiar with the lan-
guage of Morse theory, the cocore is

the same as the ascending disc, and the

core is the same as the descending disc.We may arrange for the cocores of our 2-handles and the cores of our 3-

handles to intersect M 1
2
in smoothly embedded 2-spheres (which we may

take to be the belt spheres and attaching spheres respectively of the 2 and

3-handles). Call the 2-handle spheres S0,i and the 3-handle spheres S1,i for

i ∈ {1, · · · , n}.

Begin by choosing a basepoint ∗ in M 1
2
, and basepoints ∗k,i for each sphere

Sk,i. Running disjoint arcs from ∗ to each ∗k,i we obtain a tree in M 1
2
,

a tubular neighborhood of which is a copy of D4, which we will take as a

0-handle.

∗1,i ∗0,j ∗1,j ∗0,i

∗
Figure 2: The neighborhood of a tree
is a ball.

Next, we run disjoint arcs from ∗k,i along Sk,i to each point of intersection

with the S1−k,j ; note that i is not necessarily equal to j, since there may

be algebraically cancelling but nonetheless essential intersections with other

spheres. These arcs connect at the points of intersection and therefore can

be paired up to form arcs that start and end on our 0-handle, and tubular

neighborhoods of these arcs will be 1-handles for our handle decomposition.

Lastly, each Sk,i minus a neighborhood of the tree of arcs along its surface

forms a copy of D2, which, when thickened up appropriately, becomes a

0-framed 2-handle labeled Hk,i attached to the 0 and 1-handles. The 0-

framing is due to the fact that the Sk,i come with a trivial normal bundle

S2 × D2 inside of M 1
2
(and there is only one framing of this bundle cor-

responding to π2(SO(2)) = 1) thought of as the attaching region for the

3-handles and viewing the 2-handles as upside down 3-handles. Puncturing

S2 ×D2 to D2 ×D2 then clearly results in a 0-framed 2-handle.
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∗1,i ∗0,j ∗1,j ∗0,i

∗
Figure 3: Arcs along the Sk,i running

from the ∗k,i to the points of intersec-
tion. Note that, for visual simplicity,

we have excluded from this cartoon in-

tersections between, say, S0,j and S1,i

for i ̸= j. We know that these intersec-

tions will algebraically cancel out, but

we cannot in general rule them out as
geometric data.

Figure 4: A sphere minus a tree of arcs
gives a disc.

We can draw a Kirby diagram for the handles we have so far. The 2-handle

attaching circles are all (0-framed) unknots by construction. We can show

this by exhibiting discs they bound along the boundary of the 1-handles;

for a given sphere, the disk is given by considering each arc in a given

tree individually, taking a small two-dimensional neighborhood of it along

the sphere (which sits in the three-dimensional boundary), and joining the

resulting discs along their common base.

At each geometric intersection point of S0,i with S1,i, the attaching circles

for H0,i and H1,i clasp one another, with the sign of the clasp depending

on the sign of the crossing (once the attaching circles are appropriately

oriented). To see this, note that, unlike in Figure 3, where we are limited

to a three-dimensional drawing, the spheres intersect transversely and the

neighborhood of such a transverse intersection (e.g. the neighborhood of

two D2s intersecting transversely in D4) is known to have boundary a Hopf

link (see, e.g., Behrens et al.15). Since Sk,i does not intersect Sk,j for i ̸= j, 15 Behrens, Kalmár, Kim, Powell, and
Ray, The disc embedding theorem, Fig-

ure 1.5.
the H0,i and H1,i are each attached along n-component unlinks.

By construction, the clasp region of each attaching circle is attached along

a 1-handle, hence the position of the dotted circles in the diagram. As

drawn, we may decide that the H0,i do not pass over any 1-handles, and

have the H1,i pass over and back resulting in a trivial relator xix
−1
i in the

fundamental group of the manifold we have built so far.
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H0,j

0

0 H1,j

H1,k

H1,l

Figure 5: Figure adapted from Kirby’s

notes. Note that it is not necessary
for j = k = l; while the only alge-

braic intersection is between S0,j and

S1,j , S0,j could have a cancelling pair
of intersections with S1,k. Note also

that S1,i and S1,j have empty geomet-

ric intersection since we can assume
that the 3-handles have disjoint attach-

ing spheres (with the same true for the

S0,i mutatis mutandis).

The next step of the proof requires us to extend what we have constructed

to a complete handlebody structure on M 1
2
. This entails adding more

1 and 2-handles along with some 3-handles. Our now complete handle

decomposition ofM 1
2
has 2-handles algebraically cancelling our 1-handles so

that we have π1(M 1
2
) = 1, as well as new 2-handles to potentially generate

H2(M 1
2
). Any 3-handles must of course be algebraically cancelled as well.

The point of the handles we have al-

ready chosen is to reflect in M 1
2

the

structure of M ; more specifically, to

preserve the Hk,i for a later step in

the construction, where they will be
thickened up to be algebraically can-

celled by the 2 and 3-handles of the h-

cobordism in order to form our desired
contractible sub-h-cobordism that con-

tains all of the handles of M . The 0

and 1-handles are necessary in order to
attach the Hk,i.

For any smooth manifold Mn we can

start with any random collection of

handles and extend this to a handle-
body structure on Mn by cancelling

all the existing handles and then start-
ing from scratch. In our case, our ini-

tial handlebody structure on M 1
2

has

1-handles that will need to be cancelled
since we know that it is simply con-

nected.

Since the Hk,i give trivial relators in π1, it follows that our new 2-handles

must homtopically kill the 1-handles, old and new. Note that homotopic

cancellation (meaning in π1) is stronger than what we have thus far re-

ferred to as algebraic (really homological) cancellation. The difference is

non-commutativity; for example, a 2-handle corresponding to the relator

x1x2x1x
−1
2 x−1

1 does not homotopically cancel the 1-handle corresponding

to x1, but it does algebraically cancel it in H1.

Our handle decomposition gives us a possibly complicated presentation of

the trivial group (where 1-handles correspond to generators and 2-handles

to relators); our goal is to turn this presentation into the trivial one (where

the relators are of the form xi for a 1-handle generator xi). The purpose of

doing so is to distinguish the three different types of 2-handle: those which

generate H2(M 1
2
), those that cancel the 1-handles, and those that cancel

the 3-handles. In practice, these handles do not automatically fall into such

neat disjoint classes, but we can try to arrange for them to do so.
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More specifically, in building our contractible manifold A, which will in-

clude some of the 1 and 2-handles of M 1
2
appropriately thickened, we will

need to be able to identify the 2-handles that cancel the 1-handles, and with

an arbitrary presentation of the trivial group given by our handle decom-

position, this would be difficult. If we just took all the 2-handles which run

over a 1-handle, we may end up with some which give rise to trivial relators

such as the H1,i, and which, therefore, are nontrivial in second homology

and obstruct the contractibility of A.

To the end of simplifying the interactions of our 1 and 2-handles, we will

use the following result:

16 Gompf and Stipsicz, 4-manifolds
and Kirby calculus, Lemma 9.2.17

Lemma 3.4: π1 Presentations = Handle Presentations16

Given a 4-dimensional relative handlebodyX4 with connected bound-

ary and π1(X) = 1, for every 1-handle h of this decomposition, one

can introduce a cancelling 2/3-handle pair such that the 2-handle

cancels h homotopically. Moreover, one can arrange the attaching

circles for the new 2-handles to represent the canonical basis for the

free group π1(X1) induced by the 1-handles (where X1 denotes the

union of 0 and 1-handles in X).

Note that the introduction of cancelling

2/3-handle pairs is how we avoid dif-

ficulties related to the Andrews-Curtis
conjecture in combinatorial group the-

ory, which, here, amounts to the claim

that we can arrange for our 1 and 2-
handles to (algebraically) cancel using

only handle slides (which, roughly, cor-

respond to the Andrews-Curtis moves
on a presentation of π1). The Andrews-

Curtis conjecture is widely believed to

be false.

The ability to introduce cancelling 2/3-

handle pairs enlarges our moveset on
π1 to the set of Tietze transformations,

and it is known that any two finite pre-

sentations of a given group are related
by a finite sequence of Tietze transfor-

mations.

Using this result, we can introduce new 2-handles that homotopically cancel

the 1-handles and therefore kill π1. Any other 2-handles which run over a

1-handle can be slid off of them along the new, cancelling 2-handles, so we

may assume all other 2-handles are disjoint from the 1-handles.

Now, we are nearly done. Let B 1
2
be the manifold formed by the 0-handle,

all of the 1-handles, and the 2-handles which kill the 1-handles. B 1
2
is

contractible since all of its algebraic invariants necessarily vanish (see the

statement of Whitehead’s theorem in the proof of Lemma 2.3). Define A 1
2

as B 1
2
together with the other 2-handles, the Hk,i (A 1

2
is not contractible),

and let A be A 1
2
thickened up by [ 12 − ϵ, 12 + ϵ] within the h-cobordism M ,

together with the 3-handles added below to the S0,i and above to the S1,i.

A is contractible since these 2 and 3-handles cancel the Hk,i geometrically

by construction — that is, the belt spheres of the Hk,i and the attaching

spheres of the 3-handles intersect transversely in a single point (this point

is (0, 0) in the 2-handle D2 × D3) — and the Ai are contractible since A

itself is an h-cobordism (as we will argue below). Having isolated all of the

2 and 3-handles of our h-cobordism M to a contractible sub-h-cobordism

A, we can conclude that M \ intA is a product.

Surgery on an embedded sphere Sk ↪→
Mn with trivial normal bundle first
cuts out the sphere, then glues in

Dk+1×Sn−k−1 along a tubular neigh-

borhood of Sk in such a way that the
factors are switched; explicitly, if we

have f : Sk × Dn−k ↪→ Mn, then
the gluing map identifies f(θ, rφ) with
(rθ, φ) with 0 ≤ r ≤ 1, and the surg-

ered manifold is (M \ f(Sk × {0})) ∪
Dk+1 × Sn−k−1.

Attaching a k-handle along an embed-

ded Sk−1 in the boundary of some Mn

gives a cobordism from Mn to the re-

sult of surgery on this Sk−1, and one

can show that two manifolds are cobor-
dant iff one can produce one from the

other via sequence of surgeries.

Note that attaching a five-dimensional 3-handle has the effect of surger-

ing the attaching sphere in the four-dimensional boundary, i.e, replacing

S2 × D2 with D3 × S1. Note also that attaching a 0-framed 2-handle to

a 4-manifold yields S2 × D2 and attaching a 1-handle yields S1 × D3, so

attaching a five-dimensional 3-handle to the S2 × D2 formed by the slice
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disk and core disk for the 0-framed 2-handle turns the attaching circle into

the dotted circle for a 1-handle. Thus, theMi have a handle decomposition

given by the constructed handle decomposition forM 1
2
with the Hk,i dotted

instead of 0-framed.

To see that A itself is an h-cobordism, we need to see that it is an H-

cobordism — a homology cobordism, i.e, the inclusion of the boundary

components induces an isomorphism on homology — and that the inclu-

sion preserves π1 (this suffices by Whitehead’s theorem as above). For the

former claim, which is equivalent via the long exact sequence for relative

homology to the claim that H∗(A,Ai) = 0. Since H∗(A) = H∗(•), this in

turn amounts to the claim that H∗(A0) = H∗(•), again by the long exact

sequence. Note that A 1
2
is by construction B 1

2
(which is contractible) to-

gether with the Hk,i and A0 is A 1
2
with the attaching circles for H0,i now

dotted. The Hk,i generate H2(A 1
2
) (with all of its other homology groups

trivial) but by construction the attaching circles for the H0,i have linking

number 1 with the attaching circles for the H1,i, so the new 1-handles are

homologically cancelled by existing 2-handles, and A0 has the homology of

a point, as claimed (with A1 handled symmetrically). Curtis et. al. show that A is an h-
cobordism by finding immersed Whit-

ney discs for the extra ± cancelling in-

tersections between S0,i and S1,i, and
these Whitney discs in turn give rise to

immersed geometric duals for the Sk,i.

They then use the fact that surgery on
spheres with immersed geometric duals

does not change π1.

This all relies on results of Casson

through techniques that are unrelated

to our discussion, so we choose instead
to perturb the initial construction, us-

ing an argument originally supplied by

Matveyev to prove that A0 × I ∼=
sm

B5.

To see that π1(A0) = π1(A 1
2
) = π1(A) = 1 (with A1 handled symmetrically

as above), we need to return to the start and modify our construction

slightly. Since A0 is the same as A 1
2
with dotted circles in place of the

H0,i we have n new generators x1, · · · , xn for π1(A0) and n new relators

r1, · · · , rn given by the H1,i. We want homotopic cancellation of these,

stronger than the homological cancellation that we used above. As noted

above, the archetypal obstruction to upgrading our homological cancellation

to homotopic cancellation is a 2-handle relator of the form x1x2x1x
−1
2 x−1

1

which does not cancel out to x1 (though it does in homology).

To remedy this, we return to our original construction and more carefully

consider the tree of arcs which gave rise to the Hk,i; to wit, we first run

arcs from S1,i to all points of intersection with S0,1, then S0,2, etc. up to

S0,n, and it follows that ri = w1w2 · · ·wn where wj is a word in xj and

x−1
j with exponent sum equal to 0 for j ̸= i and 1 for j = i. Thus, we

can arrange for ⟨x1, · · · , xn|r1, · · · , rn⟩ to be the trivial presentation of the

trivial group, and we have the desired homotopic cancellation of 1 and 2-

handles. Thus, π1(A0) = 1, and, consequently, A is an h-cobordism, and

the Ai are therefore contractible.

π1(A0)) has other generators and re-
lators of course, corresponding to the

1 and 2-handles of A 1
2
that were unaf-

fected by surgery on the H0,i, but these
should homotopically cancel each other

as they did in A 1
2
.

There is one slight cause for concern,

which is that some of these 2-handles

may have linked the H0,i (which are
now 1-handles) so the corresponding re-
lator is different in π1(A0) than it was

in π1(A 1
2
). I.e., a relator r = x in

A 1
2
might become r = xixjxx

−1
k in A0.

However the xi are homotopically triv-

ial (via ri) by our construction in this
proof so the other 1 and 2-handles inA0

still homotopically cancel as desired.

Improvements

There are a few other things we can say about A that follow either by

inspection or by slightly perturbing our construction (note that we made

no claim of uniqueness above):
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Addendum 3.5

A is diffeomorphic to B5 (though, of course, not preserving the

structure of the h-cobordism).

Proof : We have that A ∼=
sm

B 1
2
× I since the 3-handles of the h-cobordism cancel

the Hk,i geometrically as noted above, and, B 1
2
× I is diffeomorphic to

B5 since the 1 and 2-handles of B 1
2
homotopically cancel one another (see

Lemma 3.4), and with an extra dimension of room in B 1
2
× I, we can

promote this homotopy to isotopy17 and these handles are in geometric 17 Gompf and Stipsicz, 4-manifolds and
Kirby calculus, Example 4.1.3.cancellation. ■

Addendum 3.6

A0 × I and A1 × I are diffeomorphic to B5.
The idea of non-diffeomorphic man-

ifolds becoming diffeomorphic after

×I is not exclusively a high(er)-
dimensional phenomenon; note, for ex-

ample, that the punctured torus and

the pair of pants become diffeomorphic
after ×I (or more generally, the punc-

tured genus g surface and the disk with

2g punctures).

Proof : By construction, we know that that the 1-handles of A0 are homotopically

cancelled by its 2-handles, so since ri = w1w2 · · ·wn is homotopic to xi,

and homotopy implies isotopy in the now four-dimensional boundary, the

1 and 2-handles cancel and A0 × I has an empty handle decomposition. ■

Note that, to Curtis et. al., Ai × I ∼=
sm

B5 is not automatic but requires

special consideration in the construction of A 1
2
since they achieve simple-

connectedness of π1(Ai) in a different manner.

Addendum 3.7

We can construct A so that A0 and A1 are diffeomorphic by a map

that is an involution when restricted to the boundary.

Proof : Our ultimate goal is to replace A with A ∪ A−1 as in Figure 6, and the

diffeomorphism between the ends of of A∪A−1 will be given by the obvious

involution interchanging A0 and A1. We can achieve this by enlarging A,

as in the following figure (where we set N := M \ intA, N0 := M0 \ intA0

etc.):

A

A0

A1

A
1A
0

A

A
−
1

A
0
×

I

A0

A1A
0

N0 × I Ñ0 × I

(N
0
\
B

4 0
)
×
I

A
0

A
1

A

A
−
1

A0

A1A
0

Figure 6: Enlarging A to obtain an in-

volution on the boundary.
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First, we find a 4-ball B4
0 ⊂ M0 whose boundary meets ∂A0 in a 3-ball,

and which is otherwise contained in N0. Since N is a product cobordism,

there is a B5 = B4 × I above B4
0 .

By Addendum 3.5, A ∼=
sm

B5, hence ∂A = A0 ∪∂ A1
∼=
sm

S4, so removing

an open 4-ball from ∂A will give us a copy of B4. Specifically, we want

to remove an open 4-ball that meets ∂A0 = ∂A1 in an open three-ball,

and identify the remaining (closed) four-ball with B4
0 = (A0 ∪∂ A1)

◦ (see

Figure 7).

S3
A

A0

A1

N0 × I

in
tB

3

Figure 7: The effect of deleting an open
4-ball from ∂A (specifically, one which

meets ∂A0 = ∂A1 in an open three-

ball).

By Addendum 3.6, A0×I can also be identified with B5, so A0∪∂A0
∼=
sm
S4,

and we can similarly puncture this S4 to obtain a four-ball labeled B4
1 =

(A0 ∪∂ A0)
◦.

If we glue A0× I to A−1 appropriately, we can identify the resulting cobor-

dism as (B4 × I,B4
0 , B

4
1). Note that ∂A0

∼=
sm

∂A1; this is implicitly used

above to decompose ∂A = A0∪∂A1, and follows from Theorem 2.1 together

with the fact that there is no difference between ∼=
top

and ∼=
sm

for 3-manifolds.

Using this fact, we can glue A0 × I to A−1 along (∂A0 \ intB3) × I. The

bottom boundary of this cobordism is evidently (A0 ∪∂ A1)
◦ = B4

0 and the

top is (A0 ∪∂ A0)
◦ = B4

1 as claimed.

Then, as depicted in Figure 6, we may fold A0 × I into the product side of

the cobordism and the ends of the remaining contractible sub-h-cobordism

A ∪ A−1 has ends which are diffeomorphic, and this diffeomorphism is an

involution when restricted to the boundary. ■

Note that, despite appearances, it only
makes sense to call the restriction to

the boundary an involution since we

already know that the boundaries are
otherwise diffeomorphic, whereas this

constructed “swapping” map is the
only means we have of comparing the

ends of A to each other. Saying any-

thing about the order of a diffeomor-
phism between manifolds requires an

alternative method of identifying these

manifolds (something that serves the
role of the identity map).

With the addenda in hand, we are ready now to prove Corkollary 3.3:

Proof : M0 andM1 are evidently homotopy equivalent, so it follows by18 that there 18 Wall, “On simply-connected

4-manifolds”, Theorem 2.exists a smooth h-cobordism M between them. Theorem 3.2 then supplies

us with a contractible submanifold C := A0 ⊆ M0, which we claim is our

cork.

Our construction supplies us with two different (smooth) automorphisms

of ∂A0
∼=
sm

∂A1. The first is the restriction to the boundary of the dif-

feomorphism Φ : M0 \ intA0
∼−→ M1 \ intA1 given by the product half

of the h-cobordism, and the second is the restriction to the boundary of

Ψ : A0
∼−→ A1. Set φ := Φ|∂ and ψ := Ψ|∂ , and τ := φ−1 ◦ ψ : ∂A0 → ∂A0.

Then, we have the following sequence of diffeomorphisms:

M1 = (M1 \ intA1)∪idA1
A1

∼=
Φ−1

(M0 \ intA0)∪φ−1 A1
∼=
Ψ
(M0 \ intA0)∪τ A0

By Addendum 3.7, we can choose φ so that τ is an involution. If we can

show that M0 is not diffeomorphic to M1, then we know that τ does not

extend over Ai (this is frequently the hard part). ■
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Further Results and Improvements

There are a few more improvements we can make, which we will recount

but not prove. First, we can takeM \A (whereM is a general h-cobordism

as above) to be simply connected19 by even more carefully considering our 19 Kirby, “Akbulut’s corks and h-

cobordisms of smooth, simply con-

nected 4-manifolds”; Curtis, Freed-
man, Hsiang, and Stong, “A de-

composition theorem for h-cobordant

smooth simply-connected compact 4-
manifolds”.

handle decompositions when building A and carefully sliding 2-handles so

that the corresponding relators are modified by products of commutators.

Another improvement that can be made is due to Akbulut and Matveyev,20

20 Akbulut and Matveyev, A Con-

vex decomposition theorem for four-
manifolds.

who show that we can take the cork C to be a compact Stein domain (i.e

with boundary), which is also sometimes called a strictly pseudoconvex man-

ifold. Akbulut’s personal definition of a cork requires the Stein condition,

but it seems that most of the literature has moved away from this conven-

tion. C is strictly pseudoconvex if it admits a

strictly plurisubharmonic Morse func-
tion whose maximum points coincide

with ∂C. This term along with the

notion of Stein domains and manifolds
come from complex geometry, and it’s

never been clear to me why one should

care about Stein corks.

Akbulut’s Cork

The results we proved above are all classical, and proven with classical tech-

niques, but in order to actually prove that a given contractible 4-manifold

is a cork we need a way to obstruct diffeomorphism without obstructing

homeomorphism, which typically means using gauge-theoretic invariants.

An important early example, due to Akbulut, uses Donaldson invariants to

distinguish the smooth structures on either side of A. Here we will briefly

recount his construction apart from the application of Donaldson invariants.

0

0 0

0

=

Figure 8: Figure adapted from Kirby’s
notes.

Akbulut’s cork is one of the first explicit examples of a non-product h-

cobordism, the construction of which is based on the above Kirby diagram.

This diagram represents a manifold A 1
2
which is a homology (S2 × S2)◦

since the algebraic linking number of the two components is one — even

though, crucially, the disk bounded by one of the components of the link

of unknots intersects the other component three times geometrically. This “excess linking” exhibits the first

required characteristic of corks. The
linking number one is required for us to

extract a contractible from our setup,

and the extra geometric linking is re-
quired for the resulting contractible to

be nontrivial, i.e, not ∼=
sm

B4.

Because this link has a symmetric presentation as above right, there is a
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natural involution τ : ∂A 1
2
→ ∂A 1

2
induced by the 180◦ rotation about the

z-axis that interchanges the two components of the link. To extend this to

a diffeomorphism τ : A 1
2
→ A 1

2
that switches the 2-handles we need only

extend the initial automorphism of S3 over our 0-handle B4; note that the

rotation is clearly smoothly isotopic to the identity, so we may smoothly

extend over B4 by taking the isotopy from the identity ft : S3 × I → S3

as the “outer shell” of the extension, and fill in the rest with the identity

map. This diffeomorphism τ should evoke Addendum 3.7. Explicitly, if f : S3 → S3 is our initial
rotation (or any diffeomorphism iso-

topic to the identity), then our exten-
sion to B4 is given by

F (r, θ) =

{
(r, f2r−1(θ))

1
2
< r ≤ 1

(r, θ) 0 ≤ r ≤ 1
2

where f0 = idS3 and f1 = f .

Both components of the given link are unknots, so it is possible to replace

either of the 0-framed unknots with a dotted circle, i.e, an orientable 1-

handle, obtaining A0 and A1 depending on which component is dotted.

This operation does not affect the boundary 3-manifold since 0-surgery on

the unknot in S3 results in S2 × S1, and attaching an orientable 1-handle

to B4 gives S1 × B3 whose boundary is S1 × S2, so ∂A0 = ∂A 1
2
= ∂A1.

The main result of Akbulut using the Donaldson polynomials is that the

identity map ∂A0
∼−→ ∂A1 does not extend to a diffeomorphism between

A0 and A1 (even though A0 is clearly diffeomorphic to A1).

The operation of turning a 0-framed unknot into a dotted circle can be

performed by attaching a five-dimensional 3-handle as noted above, and we

can therefore realize A0 and A1 as the ends of an h-cobordism. Explicitly,

each unknotted component of our unlink determines a 2-sphere given by

the union of its slice disk with its core disk (called S0 and S1 resp.), and

we build our h-cobordism between A0 and A1 by first thickening A 1
2
and

attaching a 3-handle to to S1 and an upside down 3-handle to S0. Akbulut

then proves that this h-cobordism is nontrivial by showing that ∂A0
∼−→ ∂A1

does not extend over A0; this suffices because A is a product above ∂A0

(the mapping cylinder of the diffeomorphism), and if ∂A0
∼=
sm
∂A1 extended

over A0, then A would be a mapping cylinder for this extension.

One key insight from this construction is that the handles of A (for any

such contractible sub-h-cobordism A as in Theorem 3.2) have the effect of

dotting some of the 0-framed unknots in the middle layer. This is a general

feature we can therefore expect of corks, for there to be a link of unknots

where some components are 0-framed and others are dotted, and the cork

diffeomorphism interchanges some of the dots and 0s. For involutory corks,

we can perhaps expect the link we start with to even be symmetric as in

Akbulut’s example.

Complexity of Corks

To be continued.
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