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The group structure of elliptic curves

We begin by defining elliptic curves and their group law in

affine space.

Definition (Elliptic curves in affine space). An elliptic curve

E ⊂ A2
C is the set of points (x, y) satisfying

y2 = x3 + ax+ b

for some a, b ∈ C, and

∆ = −16(4a3 + 27b2) ̸= 0

where ∆ is the discriminant.1

For the discussion that follows, we will use the elliptic curve

given by

y2 = x3 − x+ 1

Given such a curve E, and a point O lying on it, we can

define a group structure. For any pair of points P,Q in

E, draw the line that joins them and find the third point

of intersection of this line with E (which exists since we

can substitute y = ax + b into the defining equation for E

and then invoke the fundamental theorem of algebra for the

resulting univariate cubic). Call this point P ⋆ Q.

P Q

O P ⋆ Q

P +Q

Figure 1: The group structure on elliptic curves in affine
space

The operation ⋆ clearly does not give a group structure on

E, as there is no identity element, but we can then form the

line between P ⋆Q and O as seen in Figure 1, and the point

of intersection of that line we will call P +Q.

1There are of course more general ways to define elliptic curves, be-
ginning with a general smooth genus 1 curve, and picking coordinates
and applying rational transformations until the defining equation is in
the above form.

This operation gives E the structure of an abelian group: O
is the identity element, commutativity inherits from com-

mutativity of ⋆, and associativity can be verified through

laborious calculations or by Bézout’s Theorem. To find in-

verses, let S = O ⋆O. Then P ⋆ S = −P for any P ∈ E.

One issue with this construction is the slightly ugly fact that

a distinguished point O must be given in order to define the

group structure, though all such groups are equivalent: if

GO and GO′ are two group structures on E, then an isomor-

phism between them is given by P 7→ P + (O′ −O). More-

over, the intersection multiplicity of a line and our curve is

nonconstant; take any vertical line, for example, which has

two intersections. To resolve this, and other issues, we may

homogenize the curve and view it as a subset of P2
C.

Definition (Elliptic curves in projective space). An elliptic

curve E ⊂ P2
C is the set of points [x, y, z] satisfying

zy2 = x3 + axz2 + bz3

for some a, b ∈ C, and

∆ = −16(4a3 + 27b2) ̸= 0

One advantage of this formulation is that every projective

elliptic curve contains the point [0, 1, 0], so we can take this

to be O for all curves, and the group law simplifies to the

following:

P Q

P ⋆ Q

O

P +Q

Figure 2: The group structure on elliptic curves in projective
space

Since the point O is “at ∞,” to go from P ⋆Q to P +Q we

reflect about the x-axis. Similarly, since O is a multiplicity

3 point of this curve, O ⋆ O = O, so −P = P ⋆ O for any
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point P , that is, the inverse of a point is its reflection about

the x-axis, which is also a cleaner situation than in the affine

case. Additionally, we can now apply Bézout’s Theorem in

generality and not worry about missing intersections as in

the affine case; moreover, nothing is lost by passing to the

projective plane, as we only gain one extra point along the

curve, so we can “forget” this point at infinity to recover

the affine points.

By abuse of notation, we will henceforth refer to both the

curve and its group structure of C-points as E. We will

not show, but will give some informal discussion of the fact

that E ∼= C/Λ where Λ = ω1Z ⊕ ω2Z is a lattice in C,
and ω1, ω2 form an R-basis of C. There is a straightforward

way to view C/Λ as a torus; the generators ω1, ω2 give us a

parallelogram in C with vertices 0, ω1, ω2, ω1 +ω2 which we

can regard as a fundamental domain of C/Λ. This region

has a natural interpretation as a torus in the sense of gluing

edges of a square: a point leaving the right edge enters at

the same height on the left edge, and a point leaving the top

edge enters at the same x-coordinate from the bottom edge.

If one begins with the construction of an elliptic curve as an

embedding of a torus into P2, this is a more natural way to

view the group structure.

The Picard group of an elliptic curve

Definition (Picard group). LetX be a scheme, then Pic(X)

is the abelian group of line bundles up to isomorphism on

X under ⊗.

Definition (Divisors). Let X be a smooth projective curve,

then a Weil divisor D of X is given by

D =
∑

closed points
x∈X

nx(x)

with nx ∈ Z and where all but finitely many of the nx

are 0. The divisors form the group Div(X) under addition.

The subgroup of principal divisors PrDiv(X) is given by

divisors D of the form

D = div f =
∑

closed points
x∈X

ordx(f)(x)

where f is a rational section and ordx(f) is the (possibly

negative) order of vanishing of f at x.

Note that PrDiv(X) is in fact a subgroup since div f +

div g = div fg, and −div f = div 1
f .

Definition (Degree of a divisor). Let D be a divisor on a

smooth projective curve X, then

degD =
∑

closed points
x∈X

nx

It is easy to see that deg induces a homomorphism Div(X)→
Z.

Theorem 1. Let X be a smooth projective curve. Then

Pic(X) ∼= Div(X)/PrDiv(X), with the isomorphism origi-

nating from the natural map OX(D)← [ D =
∑

nxx, where

O(D) is the locally free rank 1 quasicoherent sheaf of ratio-

nal sections f such that

ordx(f) + nx ≥ 0

for all closed points x ∈ X (we will sometimes write the

above condition compactly as div f +D ≥ 0).

Note that there exists a subgroup Div0(X) ⊆ Div(X) of

degree 0 divisors, and under this isomorphism, there ex-

ists a subgroup Pic0(X) ⊆ Pic(X) of degree 0 line bundles

(Pic0 is well-defined as PrDiv(X) is a subgroup of Div0(X),

deg div f = 0 for all rational sections f ; for this claim to

hold, the projective hypothesis on X is key). Note that

Pic0(P1) is trivial: if D =
∑

P∈P1 nPP is a degree 0 divisor

of P1, writing P = [xp, yp], the function

f(x, y) =
∏
P∈P1

(xpy − ypx)
nP

is a rational function such that div f = D. However, Pic0 is

not trivial in general; in fact, we will show that E ∼= Pic0(E)

for any elliptic curve E.

Theorem 2 (Riemann-Roch and Serre Duality). Let X be

a smooth projective curve, L→ X a line bundle. Then

h0(X,L)−h1(X,L) = 1−g+degL = h0(X,L)−h0(X,L∗⊗κX)

where κX = detT ∗X is the canonical line bundle and in the

second equality above we have invoked Serre duality, that

H1(X,L) ∼= H0(X,L∗,⊗κX)∗

First note that there is a natural map E → Pic(E) given by

P 7→ OE(P −O)

where O is the identity of the group structure on E. This is

a homomorphism, since O 7→ OE(0) which is the trivial line

bundle, the identity of Pic(E). Note that we can restrict

the codomain to Pic0(E) since the degree of the image is 0.

• φ : E → Pic0(E) is surjective: for any degree 0 divisor
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D, there exists a unique point P ∈ E such that D =

(P ) − (O) up to a principal divisor. To see that this

holds, note that by Riemann-Roch, dimOE(D+O) =
deg(D + O) = 1, so let f be a nonzero element (and

therefore a basis) of OE(D+O). Since div f ≥ −(D)−
(O), deg div f = 0, and deg(−D−O) = −1, it follows
that there exists a point P such that div f = −D −
(O)+(P ), so, up to a principal divisor, D = (P )−(O).
Surjectivity follows immediately from this result.

• φ is a homomorphism: note that

φ(P ) + φ(Q) ̸= φ(P +Q)

if and only if the divisor (P )+ (Q)− (P +Q)− (O) is
non principal; let f(x, y, z) = 0 be the line through P

and Q, f ′(x, y, z) the line through P ⋆Q and O. Then

div(f/z) = (P ) + (Q) + (P ⋆ Q)− 3(O)

and

div(f ′/z) = (P ⋆ Q) + (P +Q)− 2(O)

Therefore,

div(f/f ′) = (P ) + (Q)− (P +Q)− (O)

which is principal as desired, so φ is a homomorphism.

• φ is injective: suppose that OE(P − O) = OE(0).

This can hold iff there exists a rational section f such

that div f = (P ) − (O). Then f ∈ OE(O) where

O is regarded as a divisor, and by Riemann-Roch,

dimOE(O) = 1, and OE(O) ⊇ C so f must in fact be

a constant function, and P = O.

Thus, without any drawings or visualizations, one can see

that the points of an elliptic curve have a group structure

using the Riemann-Roch Theorem alone.

Singular elliptic curves

If we drop the restriction that ∆ ̸= 0, we introduce the

possibility of nodal or cuspidal cubics:

When the discriminant is 0, our curve E will contain sin-

gularities (in fact, precisely 1 singularity), e.g points (x, y)

such that

f(x, y) =
∂f

∂x
(x, y) =

∂f

∂y
(x, y) = 0

where f = 0 defines E. To see that an elliptic curve has at

most one singularity, it suffices to write the defining equa-

Figure 3: The curves y2 = x3 (left) and y2 = x3 − 3x + 2
(right), examples of cuspidal and nodal elliptic curves re-
spectively

tion as

y2 = (x− e1)(x− e2)(x− e3)

and note that singularities occur precisely when y = 0 and

ei = ej for some i ̸= j. For there to be more than one

singularity, the univariate cubic on the right hand side above

would need to have at least four zeros.

Our geometric understanding of the group structure breaks

near singularities, as a line through a singularity and any

other point of the elliptic curve will have no third inter-

section, since singularities are multiplicity 2 points of the

curve. Moreover, for nodal curves, there are two tangent

lines at the node rather than one. However, away from such

singularities, the group structure is still well-defined as in

the non-singular case (since we cannot reach a singularity S

by adding nonsingular points P,Q, as the line from P ⋆ Q

through O and S would intersect E with multiplicity 4 in vi-

olation of Bézout’s Theorem). It is in fact easier to describe

explicitly the group structure on the nonsingular points of

a singular elliptic curve E than in the nonsingular case.

First, note that if E is singular, we can assume without loss

of generality that the singularity is at (0, 0) by choice of

coordinates, and it turns out that the equation for such a

curve takes the form

y2z + axyz − x3 = 0

with a node when a ̸= 0, and a cusp when a = 0.

• Let E be a nodal elliptic curve, with singularity S,

Ens the group of nonsingular points. Let y = a1x+ b1
and y = a2x+ b2 be the two tangent lines at S, then
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the map

(x, y) 7→ y − a1x− b1
y − a2x− b2

is an isomorphism from Ens to C∗.

• Let E be a cuspidal elliptic curve, with singularity

S = (x0, y0), Ens the group of nonsingular points. Let

y = ax+ b be the tangent line at S, then the map

(x, y) 7→ x− x0

y − ax− b

is an isomorphism from Ens to C

So, for example, by the above simplification, all cuspidal

elliptic curves can be written as y2z = x3, which has tangent

line y = 0 at its singularity, so we have the map

[x, y, z] 7→ x

y

Since y = 0 only at the singularity, we can dehomogenize

by setting y = 1 and get the map

(x, z) 7→ x

with inverse map t 7→ (t, t3) which gives an isomorphism

Ens
∼= C.

As in our discussion of non-singular elliptic curves, Ens
∼=

Pic0(E) by the same map, and for the same reasons; the

version of Riemann-Roch we used holds on singular curves

provided that the support of the given divisor is on the

nonsingular points of the given curve. Since Riemann-Roch

is the only place where we required smoothness, the result

follows.

To see that χ(D) = degD + 1 − g for divisors supported

on non-singular points, note that the result holds trivially

when D = 0 is the trivial divisor, and then induct by adding

a point to a given divisor D.

Higher genus curves

In general, a smooth projective curve X of genus g > 1 will

not itself be a group; to see this, suppose X is a group vari-

ety. Then we know that TX is trivial, since we can construct

global sections by picking basis elements at the identity el-

ement and move them around via the group structure. But

deg TX = −deg κX = 2− 2g < 0

for curves with g > 1 so nonconstant rational sections can-

not be well-defined everywhere, hence X cannot be a group

variety.

An intuitive (but possibly false) reason for this failure is

due to Bézout’s Theorem, that the line through two points

of a genus g = (d−1)(d−2)
2 irreducible curve will intersect the

curve at d points, and for g > 1, d > 3 so there is no general

recipe for picking a unique point from a pair of points as

there is with elliptic curves, where pairs P,Q gave rise to

the point P ⋆ Q.

However, for a curve X of genus g there is an abelian va-

riety J(X) of dimension g with the property that J(X) ∼=
Pic0(X) called the Jacobian of the curve. As above, given

a point O ∈ X, there is an embedding X → J(X) given by

P 7→ (P ) − (O) (by the arguments made above, this is an

embedding of varieties, and not of groups).

4


