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Lie Groups Fall 2024

Overview

Professor Tim Perutz Abhishek Shivkumar

Lie Groups

Lecture 1: August 26th

This is the third Fall in a row I’m at-

tempting to take notes for a Tim Perutz
class, which I always give up on because

Tim posts his own notes and they are

both more correct and more complete
than mine. Let’s see if I’m capable of

change or if I’m doomed to repeat the

same patterns forever.

To motivate our discussion, we want to think about groups which parametrize

the continuous symmetries of geometric objects (for starters, vector spaces),

e.g., SLn(R), SLn(C), SO(n), and SU(n). We will also consider groups of

affine transformations, e.g., the isometries of Rn of the form x 7→ AX + L

(i.e. the group Rn ⋊ SO(n)), the torus group Rn/Γ for Γ a lattice, etc.

These are to be contrasted with discrete groups such as all finite groups

and e.g. SLn(Z). We want the correct framework to think about groups

which act continuously in a way that exploits this extra data.

The first such idea is that of a topological group:

Definition 1.1.1: Topological Groups

A topological group G is a group equipped with a topology such that

the multiplication (m : G×G→ G) and inversion (i : G→ G) maps

are both continuous.

This is a perfectly fine definition, but it turns out that it will give rise to

a quite varied category of objects. For example, all of GLn(R), GLn(Qp),

GLn(Fp) (with the Zariski topology) are topological groups, although only

the first has the structure of a smooth manifold, and the second is totally

disconnected. It turns out (and this is nontrivial) that the relatively mild

restrictions of requiring G to be path-connected and a topological manifold

will give rise to the “right” notion that we are interested in studying anyway.

It is useful in the definition to assume

a smooth structure on G (for the pur-

poses of doing calculus) even though
one can prove from the above assump-

tions that such a smooth structure ex-

ists.

Definition 1.1.2: Lie Groups

A Lie group G is a group together with a smooth manifold structure

on G such that m and i as above are smooth maps. This defines

a category, whose arrows are Lie group homomorphisms, which are

just smooth group homomorphisms.
Recall that C∞ means infinitely differ-

entiable and Cω means that all func-

tions have convergent local Taylor se-
ries expansions; functions of the form

f(x) = e
− 1

x2 are what separate these
classes, as all of the derivatives of f at

0 are 0 so f is infinitely differentiable

but is not equal to its Taylor expansion
on any neighborhood of x = 0.

There are two sensible meanings of smooth in this context, C∞ and Cω

(real analytic). By default we will assume C∞ in this course, as we will

largely be thinking about finite dimensional Lie groups in this course, and

there is no essential difference between the C∞ and Cω theories in finite
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dimension.

Example 1.1.3

Let

SU(2) = {U ∈ SL2(C) : UU† = I = U†U} =

{
U =

(
α −β
β α

)
: ∥α∥2 + ∥β∥2 = 1

}
= S3

where † denotes the conjugate transpose. The evident homeomorphism with S3 gives SU(2) the structure

of a smooth manifold.

Lie Algebras

The most important fact about Lie groups G is that the vector space g =

TeG has the structure of a Lie algebra over R.

Definition 1.2.1: Lie Algebras

A Lie algebra g is a vector space with a bilinear map [−,−] : g×g →
g such that

• [x, x] = 0 (skew symmetry)

• [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity)

[−,−] should be thought of as an infinitesimal form of the commutator

(g, h) = g−1h−1gh. For matrix Lie groups G ⊆ GLn(R), the Lie bracket

reduces to [A,B] = AB − BA. The notion of Lie algebras is so important

for this subject because much of the complexity of the manifold is contained

in this vector space (which is a priori a simpler object to study). In fact,

up to a small but well-understood deficit, g knows everything about G

(modulo, e.g., a Lie group (such as SO(3) = RP3) and its universal cover

(SU(2) = S3) have the same Lie algebra). Moreover, if we expand the

multiplication map m in local coordinates centered on e ∈ G we have

m(x, y) = x+ y +
1

2
[x, y] + · · ·

Complex Lie Groups

Lecture 2: August 28th

Definition 1.3.1: Holomorphic

Let U ⊆ Cn, V ⊆ Cm and F : U → V . F is holomorphic if it is

complex differentiable i.e. F (z+h) = F (z)+ (DzF )h+ ϵz(h) where



lie groups 3

DzF is a C-linear map Cn → Cm and ϵz(h) = o(|h|). One can show

that F is holomorphic iff it is C∞ and DzF is C-linear.

Using this, one can define a complex manifold analogously to a smooth

manifold, but with charts valued in open sets of Cn and with holomorphic

transition functions. It is then evident how to define a complex Lie group

by analogy, where the underlying space is a complex manifold and the

multiplication and inversion maps are holomorphic. This “analogous” definition can be

made precise using the categorical
definition of a group object, where

real/complex Lie groups are simply the

group objects in the category of smooth
manifolds/complex manifolds respec-

tively.

The standard examples of complex Lie groups are GLn(C), SLn(C), SOn(C)
etc. Another important example is a complex torus (i.e. an elliptic curve):

given a lattice Λ ⊆ C, Λ = Ze1 ⊕ Ze2 with e1, e2 ∈ C linearly independent

over R, C/Λ is topologically a torus and has the structure of an abelian

group.

C/Λ is isomorphic to a real Lie group (as a real Lie group) S1×S1; if e1, e2

generate Λ, then we have an explicit map given by

C/Λ ∋ [xe1 + ye2] 7→ (x, y) ∈ S1 × S1

However, C/Λ ∼= C/Λ′ as complex manifolds iff Λ and Λ′ are homothetic,

i.e, Λ′ = cΛ for some c ∈ C×, so different tori as described are not even

isomorphic as complex manifolds, let alone as complex Lie groups, so for-

getting the complex Lie group structure can in general destroy nontrivial

data. There is an analogous story for alge-

braic groups, i.e. group objects in the
category of algebraic varieties over a

field k, although there is some more

complexity there. Tim says something
about these in his notes but we will not

discuss them in class.

Compact Lie groups and Classification

Any countable discrete group (e.g. any finite group) is trivially a Lie group,

so it is unwise to try to classify all Lie groups (as this would include a

classification of all finite groups, which is notably quite hard). To avoid

such pathologies, we can begin by assuming connectedness, though this

also removes some important examples such as O(n) and GLn(R). For the
purposes of this overview, we will assume that our Lie groups are simply

connected and compact; later in the course we will try to broaden the scope

of our story to study the non-simply-connected case (which is not too hard)

and perhaps the noncompact case (which is harder).

We define the following groups:

• An = SU(n+ 1)

• Bn = Spin(2n+1) where Spin(k) is the universal (double) cover of SO(k)

• Cn = Sp(n), the compact symplectic group, or the group of norm-
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preserving H-linear automorphisms of Hn (where H denotes the quater-

nions)

• Dn = Spin(2n)

Then, we have the following:

Theorem 1.4.1: Classification of compact Lie Groups

Let G be a compact, simply connected Lie group, then G ∼= G1 ×
· · ·×Gk where the factors Gi are isomorphic to one of the following:

• An for n ≥ 1

• Bn for n ≥ 2

• Cn for n ≥ 3

• Dn for n ≥ 4

• one of E6, E7, E8, F4, or G2 (the exceptional compact Lie groups)

Moreover, the factorization is unique up to reordering.
The omitted indices are largely to guar-
antee uniqueness e.g. B1 = Spin(3) =

SU(2) = A1.One of the main themes of this course will be proving this result. There is

a very similar classification for a class of complex Lie groups, the semisim-

ple complex Lie groups. The Lie algebra of G is crucial to proving this

classification, as g determines G once we have set the above adjectives. For the rest of this section we just list

some facts that are important towards
the classification result.Definition 1.4.2: Tori

A torus in a Lie group G is a closed, connected, compact abelian

subgroup.

Any compact Lie group G contains a maximal torus T ∼= (S1)n for some

n, called the rank of G (this n is the subscript in the An, Bn etc.). A

maximal torus T is unique up to conjugacy. Every element of G lies in

some conjugate of T . In SU(n), the maximal torus consists of the diagonal

matrices, and this is in general how we think about maximal tori.

To recognize T as a diagonal matrix in general, note that G acts linearly

on g via Ad : G→ GL(g), which when restricted to T becomes Ad |T : T →
GL(g), and we can realize eigenvalues of Ad |T as homomorphisms T → S1.

These homomorphisms are called the roots of G. Unclear to me why this gives us a map

from Te(T ) to C and not R. Tim says
there’s something subtle about this but

doesn’t elaborate further (for now).After taking the log of T → S1 ∋ eiθ, the roots give a distinguished subset of

Hom(Te(T ),C), and this subset has various properties that are abstracted

in the notion of a root system. A step in the classification will be the

classification of abstract root systems, which is combinatorial via Dynkin



lie groups 5

diagrams:

An :

Bn :

Cn :

Dn :

One then proves that the root system determines the complex Lie algebra

g ⊗ C and then the existence and uniqueness of compact real forms of

complex Lie algebras.
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Lie Groups Fall 2024

Basics of Lie Groups

Professor Tim Perutz Abhishek Shivkumar

Matrix Lie Groups

Lecture 3: August 30th

The first and most basic example of a (matrix) Lie group is GL(V ) which

denotes the set of linear invertible maps α : V → V where V is a finite di-

mensional real vector space. This is a manifold because it’s open in End(V ),

and a Lie group because matrix multiplication/composition is smooth (since

matrix multiplication is a polynomial in each entry) and inversion is smooth

(because A−1 = (detA)−1(adjA) where adjA is the adjugate of A and its

entries are polynomials in the entries of A). dimGL(V ) = n2 since it is

open in Rn2

= End(V ), and TI GL(V ) = End(V ) since I + ϵM for any

matrix M will be invertible for ϵ sufficiently small.

We also have GL+(V ) which is the kernel of det
∥ det ∥ : GL(V ) → {±1} con-

sisting of the positive determinant matrices, which is an open and closed

normal subgroup of GL(V ) (and therefore GL(V ) is not connected). A

linear isomorphism α : U
∼−→ V induces an isomorphism of Lie groups

GL(U)
∼−→ GL(V ) given by A 7→ αAα−1. By picking a basis and identify-

ing V with Rn, we have GL(V ) = GL(Rn) = GLn(R).

We can also run all of these constructions starting with a complex vector

space E, with the one difference (in what we have said so far) that GL(E)

is path-connected.

Lemma 2.1.1

GLn(C) is path-connected.
GL+(Rn) is path-connected as well but

this argument will not work in that

case.Proof : If V is a complex vector space, f : V → C holomorphic, set

Sk(f) = {v ∈ V : D(j)
v f = 0 for all j = 0, · · · , k and D(k+1)

v f ̸= 0}

This is a complex submanifold of V by the complex inverse function theo-

rem. Then consider End(Cn)
det−−→ C, and note that

End(Cn) \GLn(C) = S1(det) ∪ S2(det) ∪ · · ·

a finite union of complex submanifolds of End(Cn) (since det as a polyno-

mial has degree n), each of positive codimension. Take A ∈ GLn(C), and
connect it to I by a path in End(Cn) (which is just Cn2

), and perturb the
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path to be transverse to all the Sk (rel. endpoints) via general transver-

sality theory. Then since the real codimension of Sk is at least two since

its complex codimension is at least one, the transverse intersection with a

path is generically empty, so the path is in GLn(C). ■

Embedded Lie Subgroups

Given G a Lie group, an embedded Lie subgroup is a subgroup H ⊆ G that

is also an embedded submanifold. Explicitly, for all h ∈ H there exists a

neighborhood U ∋ h in G, a diffeomorphism ϕ : (U, h) → (U ′, 0) for U ′

open in Rd, and a vector subspace L ⊆ Rd s.t ϕ(U ∩H) = U ′ ∩ L.

Recall that for M a manifold, f : M → N a smooth map, then c ∈ N is

a regular value if f(x) = c implies that Dxf : TxM → TcN is surjective.

Then, the implicit function theorem tells us that f−1(c) is a submanifold

of M .

Definition 2.2.1: Special Linear Group

SL(V ) is defined as ker(det : GL(V ) → R×) and analogously for C.

We want to see that SL(V ) is an embedded Lie subgroup of GL(V ), so it

will be helpful to consider a slightly different definition; set V ∼= Rn (i.e.

pick a basis) and consider the exterior powers ∧dV of dimension
(
n
d

)
, where

α : U → V induces ∧dα : ∧dU → ∧dV given by

u1 ∧ · · ·ud 7→ α(v1) ∧ · · · ∧ α(vd)

Then we have detV := ∧nV and for any α : V → V we have the in-

duced map ∧nα(x) = detαx for x ∈ detV (since detV is one-dimensional,

∧nα = detα is a scalar). Thus, we may realize SL(V ) as the subset of

GL(V ) consisting of α such that the action of α is trivial on detV (this is a

convoluted way to say detα = 1). Then, to see that SL(V ) is an embedded

Lie subgroup of GL(V ), we have the following steps: Allegedly this argument is a model for
how to show that something is a Lie

subgroup in general.

1. I is a regular point of det, i.e, DI det ̸= 0. To see this, note that

I + tX =


1 + tx11 · · · tx1n

...
. . .

...

txn1 · · · 1 + txnn


for an arbitrary perturbation X, so to prove that DI det ̸= 0, we want

to compute det(I + tX) up to O(t2). The main diagonal contributes the

term

(1 + tx11) · · · (1 + txnn) = 1 + tTr(X) +O(t2)
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and any other (non-identity) permutation will contribute a term that

has at least two off-diagonal elements as factors, and thus is O(t2), so

det(I + tX) = 1 + tTr(X) +O(t2)

Since there exist matrices with nonzero trace, (DI det)(X) = Tr(X) is The geometric interpretation of this is

that the first order change to the vol-

ume of a parallelopiped is the trace.
not the zero map, so I is a regular point for det. Therefore, elements of

SL(V ) near I are also regular points for det.

This shows that, near I, SL(V ) is a submanifold of GL(V ) with

TI SL(V ) = kerTr = {X ∈ EndV : TrX = 0}

More generally, if we have f : X → Y
with y ∈ Y a regular value of f , and

x ∈ M = f−1(y),

TxM = ker dfx

2. Now, we can slide our regular neighborhood of SL(V ) around using the

group structure. Explicitly, for A ∈ SL(V ) there is the left multiplication

automorphism LA given by x 7→ Ax. LA is a linear endomorphism of

End(V ) and a diffeomorphism of GL(V ) that preserves SL(V ). Since

SL(V ) is an embedded submanifold near I, applying LA shows that

SL(V ) is an embedded submanifold near A with

TA SL(V ) = DI(LA)TI SL(V ) = {X ∈ EndV : Tr
(
A−1X

)
= 0}

Thus SL(V ) is an embedded Lie subgroup of GL(V ) of dimension n2 − 1.

Flags

Let B denote the subgroup of upper triangular matrices in GL(V ) (i.e, hav-

ing nonzero entries on the diagonal and above), called the Borel subgroup.

Let U ⊂ B be the subgroup of unipotent matrices, whose diagonal entries

are all 1. By counting entries, we have that

dimB =
1

2
n(n+ 1) dimU =

1

2
n(n− 1)

We can describe B and U in a coordinate-free manner.

Definition 2.3.1: Flags

In a vector space V , a flag is a nested sequence 0 = F0 ⊂ F1 ⊂
· · · ⊂ Fk = V of linear subspaces. In the case that k = dimV , the

Fi together form a complete flag (where dimFi = i).
I suppose the utility of this is probably
that we can define Borel subgroups in

other (perhaps non-matrix) Lie groups,

but in this case the the auxiliary data of
a complete flag is not too far from just

picking a basis in which case we can
just say “upper triangular matrices”.

If we have a complete flag V = Fn ⊃ Fn−1 ⊃ · · · ⊃ F1 ⊃ F0 = 0 note

that we can build a basis for V by first picking a basis for F1, then F2/F1,

etc., adding one vector at a time. Set BF = {α ∈ GL(V ) : α(Fi) = Fi};
in our chosen basis, BF clearly corresponds to the set of upper triangular

matrices, so one can also define the Borel subgroup in terms of preservation
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of a complete flag. We also get interesting subgroups (called parabolic sub-

groups) by considering the analogous construction using incomplete flags,

which correspond to subgroups of block upper triangular matrices in the

GLn picture.

Orthogonal and Unitary Groups

Lecture 4: September 4th

Let V be a finite dimensional vector space over R, with a norm ∥− ∥, then

O(V, ∥ − ∥) = {α : V → V linear : ∥α(v)∥ = ∥v∥}

is the orthogonal group with respect to this norm. We assume this norm

comes from an inner product ⟨−,−⟩ so we can equivalently define

O(V, ⟨−,−⟩) = {α : V → linear : ⟨α(u), α(v)⟩ = ⟨u, v⟩}
There’s some discussion about norms
not coming from inner products e.g.

the ℓ∞ norm which takes the maximum

norm of entries in a vector. This norm
generates the same topology as the ℓ2

norm but does not satisfy the parallel-

ogram law and therefore does not come
from an inner product.

Of course, (V, ⟨−,−⟩) is isomorphic to (Rn, ·) so we write O(V, ⟨−,−⟩) =

O(n). As matrices we can express the norm or inner product preserving

condition compactly as ATA = AAT = I, so, explicitly, we have

O(n) = {A ∈ Rn×n : AAT = ATA = I}

Unlike other Lie groups we have discussed so far, O(n) is compact since it

is a closed subspace of (Sn−1)n (since the columns of a matrix have norm

one by AAT = I and therefore lie in Sn−1).

Proposition 2.4.1

O(n) ⊂ GLn(R) is an embedded Lie subgroup.

Proof : The idea is to consider the map ϕ given by A 7→ AAT where O(n) = ϕ−1(I).

There are two steps: show that I is a regular point of ϕ, and show that I

is a regular value of ϕ (using the group structure, as above with SLn(R)).

For the first step, note that AAT is a symmetric matrix, so ϕ :Mn×n(R) →
Sym2(Rn). To see that I is a regular point of ϕ, we expand

ϕ(I + tX) = (I + tX)(I + tXT ) = I + t(X +XT ) +O(t2)

so (DIϕ)(X) = X+XT . Thus, surjectivity is clear since if X is symmetric,

(DIϕ)(X) = 2X (if we do not know that ϕ is valued in symmetric matrices

arguing surjectivity is impossible).

Thus, O(n) is an embedded Lie subgroup near I with Lie algebra

TI O(n) = kerDIϕ = {X : X +XT = 0}
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consisting of skew-symmetric matrices. To see that O(n) is an embedded Lie

subgroup everywhere, we can argue as before, translating a neighborhood of

the identity around via the left multiplication automorphism, which shows

that I is a regular value of Φ. ■

We can also define SO(n) = O(n) ∩ SLn(R), but for A ∈ O(n), detA = ±1

since det
(
AAT

)
= det(A)

2
= det(I) = 1, so O(n) has two components,

of which SO(n) is the identity component. Thus, TI SO(n) = TI O(n).

dimO(n) = dimSO(n) = 1
2n(n− 1) since orthonormality of the columns of

a matrix amounts to enforcing n+
(
n
2

)
= 1

2n(n+1) linear conditions (n for

norm one, and
(
n
2

)
for orthogonality), and n2 − 1

2n(n+ 1) = 1
2n(n− 1). The philosophically correct way to cal-

culate dimO(n) is to instead calculate
dimR o(n) which, as noted above, con-

sists of skew-symmetric matrices, and
a skew-symmetric n × n matrix has 0s

on the diagonal and is determined by

either its strictly upper or lower diag-
onal elements, of which there are pre-

cisely 1
2
n(n − 1). I frequently forget

that I can/should do these calculations
in the Lie algebra instead of the group

itself.

Over C, we can repeat all of this discussion with U(n), the group of matrices

preserving the standard Hermitian inner product, which will similarly be

an embedded Lie subgroup of GLn(C) with

TIU(n) = {X ∈ Cn×n : X +X† = 0}

where X† := X
T
.

We can show that dimU(n) = n2; note that any complex n×nmatrix can be

written uniquely as X = H+S where H is equal to its conjugate transpose

(Hermitian) and S is equal to the negative of its conjugate transpose (skew-

Hermitian), and the set of Hermitian and skew-Hermitian matrices are in

bijection by multiplication by i. Setting u(n) = TIU(n), we have

Cn×n = u(n)⊕ iu(n) = u(n)⊗R C

from which we see that dimC Cn×n = dimR U(n) = n2. Writing X = H + S uses the standard

trick of

H =
1

2
(X +X†) S =

1

2
(X −X†)

which also works for writing a real ma-

trix as the sum of symmetric and anti-
symmetric matrices.

As with O(n), we can define SU(n) = U(n) ∩ SLn(C). Unlike with O(n),

U(n) is connected and dimSU(n) = n2−1 ̸= dimU(n). The reason for this

is that going from detA = ±1 to detA = 1 amounts to picking one of two

components, whereas, in U(n), going from ∥detX∥ = 1 to detX = 1 is a

codimension one condition.

SU(2) and SO(3)

Recall that SU(2) = {A =
(

α −β
β α

)
: ∥α∥2 + ∥β∥2 = 1} is diffeomorphic to

S3 via A 7→ (α, β). Also, we have that SO(3) consists of rotations of R3

around some axis, so one might expect these groups to be closely related.

Proposition 2.4.2

SU(2)/(±I) ∼−→
ρ

SO(3)

That is, SU(2) = S3 is the double cover of SO(3) so SO(3) ∼= RP3. The standard proof of this fact is slick

and uses the identification of S3 with
the unit quaternions but the one we

present here is perhaps more geomet-

ric in nature.
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Proof : Consider

su(2) = TI SU(2) =

{(
a −b
b −a

)
: a ∈ iR, b ∈ C

}

Then, there is a homomorphism ρ : SU(2) → GL(su(2)) given by ρ(U) =

[A 7→ UAU−1] (one has to check that UAU−1 still lies in su(2)). We will

show that this ρ determines the isomorphism claimed above. Note that we haven’t pulled this map
out of a hat, this is the Adjoint repre-

sentation which is an important con-

struction in the study of Lie groups
that we will see many more times

throughout this course. The inner
product below, similarly, is (I think) es-

sentially the Killing form, which also

has wider significance.

We define an inner product on su(2) by (A,B) = − 1
2 Tr(AB); it is evidently

symmetric bilinear and satisfies

(ρ(U)A, ρ(U)B) = (A,B)

This inner product is a priori complex valued, but we can show that it is in

fact real and positive definite; note that A ∈ su(2) is skew-Hermitian and

therefore has has imaginary eigenvalues ia,−ia so (A,A) = − 1
2 Tr

(
A2
)
=

a2 ≥ 0 so ρ : SU(2) → O(su(2), (−,−)) ∼= O(3) is well-defined. Since SU(2)

is connected, ρ(SU(2)) is as well so ρ lands in SO(3).

We can make this very explicit using the basis of Pauli matrices for su(2):

σ1 =

(
i 0

0 −i

)
σ2 =

(
0 1

−1 0

)
σ3 =

(
0 i

i 0

)

which satisfy σ2
j = −I, σ1σ2 = σ3 = −σ2σ1 and cyclic permutations

thereof. Thus σ1, σ2, σ3 form an orthonormal basis for su(2) ∼= R3.

Recall the matrix exponential which is defined as follows and is well-defined

for all A:

expA =
∑
n≥0

An

n!
= I +A+

A2

2
+ · · ·

Applying exp to the Pauli matrices, we have

exp(tσk) = (cos t)I + (sin t)σk

since the σk square to −I. We want to consider the action of these matrices

via ρ on su(2):

ρ(exp(tσ1))σ1 = σ1 ρ(exp(tσ1))σ2 = (cos t)σ2+(sin t)σ3 ρ(exp(tσ1))σ3 = (− sin t)σ2+(cos t)σ3

i.e ρ(exp(tσ1)) acts by rotations of R3 about the σ1 axis by angle t, and

similarly for ρ(exp(tσk)).

Since every element of SO(3) is a rotation about some axis, and we can effect

an arbitrary rotation via a combination of rotations through the major axes,

we see that ρ is surjective, and we may finish by noting that ker ρ = ±I.
Clearly, ±I ∈ ker ρ, and note that if U ∈ ker ρ, then U commutes with all

A ∈ su(2), hence can be simultaneously diagonalized with any such A, from

which we can quickly conclude that U = ±I. ■
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Lie Subgroups and Quotients

Lecture 5: September 9th

I slept through this lecture, so this sec-
tion of notes, transcribed from Tim’s,

is even more quixotic than usual.

In order to make sense of quotients of Lie groups, we need to formalize which

subgroups of Lie groups are themselves Lie groups (or Lie subgroups). For

example Z/n ⊆ S1 = SO(2) clearly should not be considered a Lie group.

However, a subgroup itself having a Lie group structure is not sufficient for

our purposes; consider for example the irrational line on the torus R ⊆ T 2

given by x 7→ (eix, eiαx) for some irrational number α. R is evidently a Lie

group but T 2/R would not be a Lie group since (for example) the quotient

topology is the trivial topology on a set of uncountably many orbits. Thus

we need to be more careful about our notion of subobjects in order to get

a “nice” category of Lie groups (e.g. having quotients).

There turns out to be a relatively straightforward “correct” condition to

impose on subgroups as we will discover shortly.

Lemma 2.5.1

If H is a subgroup of a topological group G then the closure H is

also a subgroup. Moreover, if H is locally closed, then H is closed.

Proof : To see that H is a subgroup, e ∈ H is immediate, so we need only show that

for x, y ∈ H, xy−1 ∈ H. It will suffice to show that any open neighborhood

U of xy−1 intersects H (and thus xy−1 ∈ H by the definition of closure).

Consider the map

θ = m ◦ (idG ×i) : G×G→ G

which is evidently continuous, so θ−1(U) is an open neighborhood of (x, y) ∈
G × G, so there is a product neighborhood X × Y ⊆ θ−1(U) with x ∈ X

and y ∈ Y (by the definition of the product topology). X and Y then both

intersect H, since any open neighborhood of x or y must intersect H, so let

x′ ∈ X ∩H and y′ ∈ Y ∩H. Thus, x′y′−1 ∈ U ∩H, from which the claim

follows. If H is locally closed, then there is a neighborhood N of e ∈ G s.t Could not be more unclear to me why

we did xy−1 here instead of xy.N ∩H = N ∩H. We want to show that H = H. Note that H is open in

H; for any h ∈ H, we can take hN to be an open neighborhood of h and

note that

hN ∩H = h(N ∩H) = h(N ∩H) = hN ∩H ⊆ H

Thus H is an open, dense subgroup of H.

To finish, note that for any x ∈ H, the coset xH is also open and dense in

xHH, so it follows that H ∩ xH is nonempty (since, otherwise, H would

be an open subset of H disjoint from the dense subset xH) so there exists

h ∈ H with x−1h ∈ H. Likewise, h−1x ∈ H as well, so x = hh−1x ∈ H, so

H = H. ■
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This gives the following corollary:

Corollary 2.5.2

An embedded Lie subgroup H ⊆ G is closed in G.

Since embedded submanifolds are locally closed, this is immediate. To see

that such an H is a Lie group we need the following lemma:

Proposition 2.5.3

The multiplication and inversion maps of an embedded Lie subgroup

are smooth, hence it itself is a Lie group.
The proof is omitted.

It turns out that closedness is the essential property we want for our sub-

groups:

Theorem 2.5.4: Closed Subgroup Theorem

Suppose G is a Lie group and H a closed subgroup. Then H is also

a submanifold of G, and is therefore an embedded Lie subgroup.

We will postpone our proof of this fact until we have set up the exponential

map. This theorem simplifies our lives considerably, as we can now take any

subgroup defined as the level set of a continuous map as (closed, hence) Lie

subgroup (i.e. det = 1), without any calculations of derivatives to guarantee

regular values. In order to identify the Lie algebra TeG for groups cut out

in such a way, we have the following:

Corollary 2.5.5

Suppose that G ⊆ GLn(R) is cut out by a set of algebraic equations

fk(A) = 0 for k ∈ {1, · · · , r} where fk : Rn×n → R is polynomial in

the entries of A. Then G is an embedded Lie subgroup of GLn(R)
of dimension at least n2 − r and

TeG ⊆ {ξ ∈ gln(R) : ∀k, fk(I + tξ) = O(t2)}
The usual TeG = ker dF (where F :

Rn×n → Rr is the tuple of the fk) fact
doesn’t work here since we don’t en-
force that 0 is a regular value of F .

Proof : That G is an embedded Lie subgroup follows immediately by the preceding

discussion.

For TeG, given ξ ∈ TeG we can take a path γ : (−ϵ, ϵ) → G with γ(0) = I

and γ̇(0) = ξ. Then fk ◦ γ = 0 so (DIfk)(ξ) = 0 which is the same as

fk(I + tξ) = O(t2). ■
Tim notes that one can treat the t vari-

able here as formal with t2 = 0 whence
the criterion becomes that fk(I+ tξ) =
0.

The same argument applies for subgroups of GLn(C) mutatis mutandis.

Note that the above cannot be improved to an equality for TeG: let G ⊆ R2

be the lower triangular subgroup of matrices of the form ( a 0
c d ); we can

define this via polynomial f(A) = 0 where f(
(
a b
c d

)
) = b2. Then DIf = 0

so kerDIf is strictly larger than TIG.
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Discrete Normal Subgroups

Lemma 2.5.6

Let G be a connected topological group. Then any discrete normal

subgroup is central.

Recall that a subgroup is central if it is contained in the center of the group

Z(G).

Proof : Suppose N ⊆ G is a discrete normal subgroup. G acts on N by conjugation

resulting in an action map G × N → N . Since this is continuous, the

resulting homomorphism G → AutN is locally constant hence constant

(since AutN too must be discrete). Thus all conjugates of N are equal to

N itself and N is central. ■

Quotients

Lemma 2.5.7

For a discrete normal subgroup N of a Lie group G, the quotient

G/N is again a Lie group and the projection G → G/N a covering

map.

Proof : Because N is discrete, there is an open set U containing e in G such that

N ∩U = {e}. We may assume that the translates gU are disjoint for g ∈ N

after perhaps shrinking U .

The quotient map q : G → G/N is open by the definition of the quotient

topology, so q|U is a homeomorphism onto its image U ′ (since the translates

of U are disjoint), with q−1(U ′) =
∐

g∈N gU . Thus, q : q−1(U ′) → U ′ is

a trivial covering map, and for h ∈ G with image h′ ∈ G/N , q−1(h′U ′) =∐
g∈N ghU so the projection map is a covering map locally everywhere. One

can verify that G/N is Hausdorff, and then verify the consistency of the

smooth structure on G/N which makes q : hU → h′U ′ a diffeomorphism

for any h ∈ G. ■
Not sure what is meant here by trivial

covering map, it’s clearly not just the
identity map which is what I would call
a trivial covering map. Didn’t really
follow this proof.

Example 2.5.8

The quotient PU(n) := SU(n)/Z(SU(n)) is a Lie group, and is cen-

terless.
Z(SU(n)) is equal to Z/n generated
by the diagonal matrix with entries a
primitive nth root of unity.Note that the projection q : G→ G/Z induces a linear isomorphism TeG→

Te(G/Z) i.e. an isomorphism of Lie algebras. For any connected Lie group

G with discrete center Z (such as SU(n) as above and SO(n)) we can pass

to the (centerless) quotient G′ = G/Z, which is sometimes referred to as

the adjoint form of the group. In fact, there is a converse to this:



lie groups 15

Lemma 2.5.9: Covering Criterion

A Lie group homomorphism ρ : G → G′ with connected target G′

such that DIρ : TIG→ TIG
′ is an isomorphism, is a covering map.

Proof : ρ is a diffeomorphism on a sufficiently small neighborhood of the identity

by the inverse function theorem, ρ|U : U → U ′. Since ρ is a homomorphism

(i.e. it is left translation equivariant), it must be a local diffeomorphism

everywhere, and therefore an open map. Let K = ker ρ which is necessarily

discrete since DIρ is an isomorphism, then ρ−1(U ′) = K · U , and the map

K×U → K ·U given by (k, u) 7→ ku is a diffeomorphism, so ρ : K ·U → U ′

is a trivial covering. Translating this around shows that ρ is a covering of

its image, and since ρ is closed and open, and G′ is connected, its image is

all of G′ and we are done. ■
A bunch of weird proofs today, very

point-set-y in an uncomfortable way.

Covering Groups

Since some of our classification theorems will be concerned with simply

connected Lie groups, we will want to consider covers (and in particular

the universal cover) of Lie groups. It turns out that for G a Lie group,

G̃→ G a covering space, G̃ inherits a Lie group structure. Towards a proof

of this fact, we need the following:

Proposition 2.6.1

LetG be a topological group, a, b : (S1, 0) → (G, e). There is a based

homotopy between ab (meaning concatenation) and a · b (meaning

multiplication in G).
We give a proof based on explicit ho-

motopies but in fact this follows by
a very general argument known as an

Eckmann-Hilton argument, which ap-

plies when there are two operations on
a set that satisfy certain natural identi-

ties. The argument shows that the two

operations must agree and are in fact
commutative.

Proof : Note that the loop ab is defined as

ab(t) =

a(2t) 0 ≤ t ≤ 1
2

b(2t− 1) 1
2 ≤ t ≤ 1

which we can rewrite as ab(t) = α 1
2
(t) · β 1

2
(t) where αs(t) is defined as

αs(t) =

a( ts ) 0 ≤ t ≤ s

e s ≤ t ≤ 1

with βs defined similarly but starting with the identity until time s when

it does the loop b in the remaining time. Then we may define a homotopy

γs(t) = α s+1
2
(t)·β 1−s

2
(t) with endpoints γ0 = α 1

2
·β 1

2
= ab and γ1 = α1 ·β0 =

a · b. ■
Lecture 6: September 11th

Then, we have:
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Lemma 2.6.2

Let G be a topological group, path-connected and locally simply

connected, q : G̃ → G a covering space. Choose ẽ ∈ q−1(e), then G̃

has a unique group structure with identity element ẽ covering the

group structure in G. This makes G̃ a topological group and q a

continuous homomorphism.

Proof : The hypotheses on G mean that the lifting criteria from covering-space

theory apply:

G̃× G̃ G̃

G×G G

m̃

q×q µ q

m

We want a map m̃ making the diagram commute. The only obstruction to

lifting µ to m̃ is the requirement that µ∗π1(G̃× G̃) ⊆ q∗π1(G̃) in π1(G). If

so, m̃ exists, sending (ẽ, ẽ) to ẽ and is unique. For a reference, see Proposition 1.33 in

Hatcher’s Algebraic Topology.

To see that this holds, take based loops α̃, β̃ in G̃ (with α, β = q(α̃), q(β̃)).

We want µ(α̃, β̃) to lift to a loop in G̃, where µ(α̃, β̃) = m(α, β). But by the

above lemma, m(α, β) is homotopic to αβ which lifts to α̃β̃, so the lifting

criterion is satisfied. We omit the checks of associativity, inverses, etc (the

idea is to apply uniqueness of the lift relentlessly). ■

For Lie groups, we also have that the covering group is itself a Lie group:

Proposition 2.6.3

Let G be a connected Lie group, q : G̃ → G a covering space. Pick

ẽ ∈ q−1(e), then there exists a unique Lie group structure on G̃ with

identity ẽ such that q is a Lie group homomorphism and a smooth

covering map.

Proof : The group structure is constructed above and the smooth manifold struc-

ture comes from the fact that a covering space of a manifold is always

uniquely a manifold. ■

Universal Covering Groups

A connected Lie group G has a universal covering group G̃.

Example 2.6.4

SL2(R) has fundamental group Z and has S̃L2(R) as a universal

cover (this is an early example of a non-matrix Lie group).
Another ubiquitous example that we

have seen before is S̃O(3) = SU(2).
In order to work with such groups, we recall the standard construction of

the universal cover; let PG be the set of continuous paths γ : [0, 1] → G in
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G such that γ(0) = e with the compact open topology. There is a natural

map ev : PG → G given by γ 7→ γ(1), and we set G̃ = PG/ ∼ where

the equivalence relation is given by homotopy relative to endpoints, and ev

descends to a map G̃→ G.

There is an evident group structure on PG given by pointwise multiplication

of paths which descends to G̃. This is a general construction, which can

lead to some unpleasantness since PG is infinite dimensional, so in special

cases we may choose alternate constructions when one is evident:

Example 2.6.5

Let PSL2(C) = Aut(S2) be the set of Möbius maps z 7→ az+b
cz+d , which

contains PSL2(R) = Aut(H2) ∼= PU(1, 1) = Aut(D). Aut(D) acts

on S1 by diffeomorphisms, and the universal cover Ãut(D) is the

group of pairs (µ, γ) with µ ∈ Aut(D) and γ : R → R lifting the

action of µ on the boundary.

S̃O(3) = SU(2) also has a natural con-

struction without appeal to the path

space via either our explicit construc-
tion far above or via the quaternions.

π1(G) and Fiber Bundles

It turns out that a useful way to study the fundamental groups of Lie groups

is via the construction of a natural associated fiber bundle. Consider SU(n)

with its natural (and transitive) action on S2n−1 ⊂ Cn. Transitivity implies

that any unit vector can appear in the first column of A ∈ SU(n) i.e. Ae1

can be any unit vector. The stabilizer of e1 is evidently given by matrices

of the form 
1 0 · · · 0
0

B
...
0


i.e. the stabilizer is isomorphic to SU(n− 1). Then we have an orbit map

q : SU(n) → S2n−1 given by A 7→ Ae1 which gives rise to a fiber bundle:

SU(n− 1) SU(n)

S2n−1

q

The technical result we are using to
assume that this is a fiber bundle is

Ehresmann’s theorem, that proper sub-
mersions give rise to fiber bundles. To
see that q is a submersion, note that q is

a surjection and is of constant rank by
equivariance, so we only need to check
that q is a submersion at a point.

To study π1(SU(n)) via this fiber bundle, we need to review homotopy

groups and the long exact sequence of homotopy groups associated to a

fiber bundle.
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Homotopy Groups

Let (X,x) be a based topological space, then πn(X,x) = [(Sn, ∗), (X,x)]
the set of based homotopy classes of maps from Sn. π0(X,x) is just the

set of path-components of X with a distinguished point corresponding to

the component containing the basepoint. For n ≥ 1, πn(X,x) has a group

structure, which is abelian for n ≥ 2. The group operation for πn, n ≥ 2, is One can show that πn is abelian for
n ≥ 2 using an Eckmann-Hilton argu-

ment or geometrically via the definition

of the group operation.

based on the collapsing map Sn c−→ Sn∨Sn which maps the upper and lower

hemispheres to separate spheres and the entire equator to the wedge point.

Then, given f, g : (Sn, ∗) → (X,x), we have Sn c−→ Sn∨Sn f∨g−−→ (X,x) and

this gives a group operation on πn.

c

Figure 2.1: The collapse map.

A fiber bundle F
i
↪−→ E

q
−−−↠ B gives rise to a long exact sequence of

homotopy groups

· · · ∂−→ πn(F )
i∗−→ πn(E)

q∗−→ πn(B)
∂−→ πn−1(F ) → · · ·

terminating in

· · · → π1(B) → π0(F ) → π0(E) → π0(B) → 0

The final entries in this sequence are no longer groups but pointed set, and

we can make sense of exactness (in particular, we can make sense of kernels

and cokernels) for pointed sets. Lecture 7: September 13th

And now, a somewhat out of place

proposition that we forgot to cover last
time, before returning to the discussion

of higher homotopy groups.
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Proposition 2.7.1

Let G be a connected Lie group, G̃
q−→ G its universal covering group.

Then

π1(G) ∼= Aut(G̃/G) ∼= ker(q) ↪→ Z(G̃)
This gives another proof of the fact that

π1(G) is abelian.

We omit the proof, but the first isomorphism is from elementary covering

space theory, and the second isomorphism follows by noting that π1(G) ↷
ker(q) and ker(q) has a distinguished point (the identity ẽ ∈ G̃). The

injection follows by noting that ker(q) is discrete and normal and therefore

central by Lemma 2.5.6.

The other fact that we need from homotopy theory is the Hurewicz theorem,

which gives the fundamental relationship between πn and Hn.

Theorem 2.7.2: Hurewicz

There is a map hn : πn(X,x) → Hn(X) given by [f : Sn → X] 7→
f∗[S

n]. If πk(X,x) = 0 for k = 0, · · · , n − 1, with n ≥ 2, then

hn is an isomorphism. Moreover, hn+1 is an epimorphism. In the

simply-connected case, this amounts to the statement that the first

nontrivial homotopy and homology groups coincide. In the non-

simply-connected case, h1 is the abelianization map.
Note that Hurewicz gives us an almost

certainly circular proof of the fact that

πk(S
n) = 0 for k < n and πn(Sn) = Z.Special Unitary Groups

Returning to our fibration SU(n− 1)
i
↪−→ SU(n)

q
−−−↠ S2n−1, we inspect the

corresponding long exact sequence at the end:

· · · → π1(S
2n−1) → π0(SU(n− 1)) → π0(SU(n)) → π0(S

2n−1)

Since π0(SU(1)) = 0, we inductively prove that π0(SU(n)) = 0 for all n.

Now looking at π1, the relevant section is

· · · → π2(S
2n−1) → π1(SU(n− 1)) → π1(SU(n)) → π1(S

2n−1) → · · ·

Since π1(S
2n−1) = 0 and π2(S

2n−1) = 0 for n ≥ 2 so π1(SU(n)) =

π1(SU(2)) = 0 inductively for n ≥ 2. One can also use this exact sequence

to show that π2(SU(n)) = 0 for all n.

Special Orthogonal Groups

There is a similar construction for the special orthogonal groups, via the

natural action SO(n) ↷ Sn−1 given by A 7→ (x 7→ Ax) which similarly

gives rise to a fibration SO(n− 1)
i
↪−→ SO(n)

q
−−−↠ Sn−1. Arguing similarly

via the long exact sequence, we find that π0(SO(n)) = 0 for all n, and

π1(SO(n)) = π1(SO(3)) = Z/2 for all n ≥ 3. π1(SO(2)) = Z since SO(2) ∼=
S1. As with SU(n), we find that π2(SO(n)) = 0 for all n.

In fact, for all Lie groups G, π2(G) = 0.

The proof follows by reducing to the
connected case (since π2 only sees the

connected component of the identity)

and then to the compact case (by show-
ing that Lie groups all deformation re-

tract to a compact subgroup). There
is also a proof via Morse theory on the

path space PG.

I ask what can be said about π3 be-
cause Tim said you could say “some-

thing,” and now I have derailed

the class slightly. We have that
π3(SU(n)) ∼= π3(SU(2)) for all n ≥ 2

and π3(SU(2)) = π3(S3) = Z. The
generator for π3(SU(n)) is given by the

inclusion of SU(2) into SU(n).

For the orthogonal groups,
π3(SO(n)) ∼= π3(SO(5)) for n ≥ 5

which is also Z, and π3(SO(4)) = Z⊕Z
which apparently is due to the isomor-
phism SO(4) ∼= SU(2)×SU(2)/±(I, I).
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Since π1(SO(n)) = Z/2 for n ≥ 3, there is an interesting double cover

Z/2 ↪→ Spin(n) ↠ SO(n) for all n, which is the universal cover in the n ≥ 3

case. This is a somewhat unsatisfying definition for Spin(n) since it does

not give us much to work with, so we can ask for more concrete models for

Spin(n), which we can construct directly at least for small n.

Spin(3) ∼= SU(2) since SU(2) is the universal (double) cover of SO(3), and

Spin(4) ∼= SU(2)× SU(2). In fact, we can construct a “spinorial” represen-

tation of SO(n) given a complex vector space S and a Lie group homomor-

phism σ : SO(n) → GL(S)/ ± I, take a generator γ of π1(SO(n)) and lift

σ(γ) to a path σ̃(γ) in GL(S), then σ̃ ◦ γ(1) = −I.

If n = 2m or 2m+1, there is an essentially unique spinorial representation

S with dimC 2m called spinors, involving Clifford algebras. Consider

Γ = {(g, g̃) : g ∈ SO(n), g̃ ∈ GL(S) a lift of σ(g)}

This then gives a Lie group Γ equipped with an evident 2 : 1 map to SO(n)

which gives a concrete model for Spin(n).

The Classical Groups

Complex Classical Groups
Lecture 8: September 16th

We have seen many of the examples we will discuss today already, but we

will write them down here somewhat systematically in order to have our

standard set of examples going forward. There is a sense in which these

lists will be exhaustive, but we won’t be proving that.

GC symmetries of TeGC ⊂ EndCn dimCGC

GLn(C) Cn gln(C): no condition n2

SLn(C) Cn, e1 ∧ · · · ∧ en ∈ detCn, sln(C): trace-free n2 − 1

SOn(C) Cn, e1 ∧ · · · ∧ en, quadratic form son(C): skew-symmetric 1
2n(n− 1)

Sp2m(C), C2m, symplectic form ω sp2m(C): ξJ + JξT = 0 1
2n(n+ 1)

By e1 ∧ · · · ∧ en ∈ detCn in the second
column, we mean that this form is pre-

served by the action of the correspond-

ing group in the first column. Note that
all these groups are noncompact.

The last of these is new, the symplectic group Spn(F) (distinguished from

the compact symplectic group Sp(n) discussed below) and warrants some

discussion: on C2 the standard skew form is ω(x, y) = x1y2 − x2y1, so on

C2m we take the direct sum of copies of this, i.e.,

ω(x, y) = (x1y2 − x2y1) + (x3y4 − x4y3) + · · ·

and A ∈ Sp2m(C) if ω(Ax,Ay) = ω(x, y).
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There is a matrix version of this; set J2 =
(
0 −1
1 0

)
, J2m = J2 ⊕ · · · ⊕ J2 the

block diagonal matrix built of such blocks. Note that ω(ei, ej) = (J2m)ij ,

then the above condition for A ∈ Sp2m(C) can be rewritten as AJ2mA
T =

J2m. Linearizing this condition produces the above defining condition on

X ∈ sp2m(C), which is equivalent to JX being symmetric.

Real Classical Groups
The classification of real classical

groups listed here is due to Cartan.
Definition 2.8.1: Real Structures

Let GC be a complex Lie group, then a real structure on G is a map

Θ : GC → GC that is anti-holomorphic (meaning Dgθ ◦ (iv) = −i ◦
Dgθ(v), derivative is C-anti-linear), involutive (meaning Θ2 = id),

and a real Lie group homomorphism.

Set GΘ to be the fixed point set of Θ, which is a closed subgroup of GC, and

therefore an embedded Lie subgroup. Set gC = TIGC with g := gθC ⊆ gC,

where θ = DIΘ : gC → gC. It is automatic that TIG ⊆ g by Corollary 2.5.5,

and in fact, TIG = g (the proof will be easy once we have the exponential

map).

With this technology in place, we can construct an analogous table of real

classical groups by picking real structures on the complex classical groups

defined above, and defining G as the connected component of the identity

in Gθ.

We get our first batch of real classical groups using the obvious involution

A 7→ A:

G GC involution G as symmetry group TeG dimG G compact?

GL+
n (R) GLn(C) A 7→ A Rn, orientation gln(R) = EndRn n2 no

SLn(R) SLn(C) A 7→ A Rn, e1 ∧ · · · ∧ en ∈ detRn sln(R): trace-free n2 − 1 no

SO(n) SOn(C) A 7→ A Rn, e1 ∧ · · · ∧ en, so(n): skew-symmetric 1
2n(n− 1) yes

pos.-def. quadratic form

Sp2m(R), Sp2m(C) A 7→ A R2m, symplectic form ω sp2m(R): ξJ + JξT = 0 1
2n(n+ 1) no

To build the next example, we need to consider indefinite quadratic forms;

consider the quadratic form

z 7→ (z21 + · · ·+ z2p)− (z2p+1 + · · ·+ z2n)

This quadratic form is called Qp,q where p+ q = n and with matrix

Ip,q =

(
Ip 0

0 −Iq

)
The symmetry group SO(Cn, Qp,q) ∼= SOn(C) as Qp,q = Qn,0 over C. How-

ever, over R, we have SO(p, q) = SO(Rn, Qp,q) which is the fixed locus of
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A 7→ A on SO(Cn, Qp,q). Note that SO(p, q) = SO(q, p), so we may assume

p ≥ q. By Sylvester’s law of inertia, all non-

degenerate quadratic forms on Rn are

of the form Qp,q .

G GC involution G as symmetry group TeG dimG G compact?

SO(p, n− p)0 SOp,n−p(C) A 7→ Ā Rn, e1 ∧ · · · ∧ en, so(p, n− p): 1
2n(n− 1) no

(1 ≤ p ≤ n− 1) (∼= SOn(C)) quadratic form Qp,n−p ξIp,n−p + Ip,n−pξ
T = 0

We write SO(p, n−p)0 to denote the identity component, since SO(p, n−p)
has two components for 0 < p < n. As with SO(n), SO(p, q) is not

simply connected and has interesting covering groups; the idea is that

S(O(p) × O(q)) ↪→ SO(p, q) is a maximal compact subgroup of SO(p, q)

and (therefore) a deformation retract, so the fundamental group can be

understood in terms of the fundamental group of SO(p). For p, q > 2 we

have π1 SO(p, q) = Z/2 × Z/2. There is also a double cover of SO(p, q)

called Spin(p, q), but, in general, it is itself no longer simply connected.

Next, we have the unitary and special unitary groups which arise from the

involution A 7→ (A†)−1:

G GC involution G as symmetry group TeG dimG G compact?

U(n) GLn(C) A 7→ (A†)−1 Cn, pos.-def. hermitian form u(n): ξ + ξ† = 0 n2 yes

SU(n) SLn(C) A 7→ (A†)−1 Cn, pos.-def. hermitian form, su(n): ξ + ξ† = 0 n2 − 1 yes

e1 ∧ · · · ∧ en trace-free

As we know, U(n) ⊆ GLn(C) consists of unitary matrices which satisfy

AA† = A†A = I. Linearizing this condition gives us that the Lie algebra

consists of skew-hermitian matrices, analogously for O(n).

Since U(n) is essentially the correct analogue of O(n) for complex vector

spaces (even though O(n,C) exists), we can consider an analogous “skew”

construction as above with SO(p, q); note that the correct analogue for a bi-

linear inner product over C is a Hermitian inner product, which is sesquilin-

ear (⟨iu, v⟩ = i⟨u, v⟩ = −⟨u, iv⟩) and conjugate-symmetric (⟨u, v⟩ = ⟨v, u⟩).
Such a form determines and is determined by its Hermitian form v 7→ ⟨v, v⟩.
The standard Hermitian form on Cn is given by v 7→ ∥v1∥2 + · · · + ∥vn∥2,
but we can instead consider the form

Hp,q(v) = (∥v1∥2 + · · ·+ ∥vp∥2)− (∥vp+1∥2 + · · ·+ ∥vn∥2)

where p+ q = n as above. This form gives us two more classical groups:

G GC involution G as symmetry group TeG dimG G compact?

U(p, q) GLn(C) A 7→ Ip,q(A
†)−1Ip,q Cn, Hp,q u(p, q): Ip,qξ = −ξ†Ip,q n2 no

SU(p, q) SLn(C) A 7→ Ip,q(A
†)−1Ip,q Cn, Hp,q, su(p, q): Ip,qξ = −ξ†Ip,q, n2 − 1 no

e1 ∧ · · · ∧ en trace-free
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I imagine that U(p) × U(q) embeds

into U(p, q) as a maximal compact so
π1 U(p, q) should be Z2. Hard to find a

reference for this though.

Another direction to generalize is to consider the matrix groups for the

quaternions H which naturally lie in GL2n(C) since we can identify C2n

with Hn. GLn(H) is the subgroup of GL2n(C) of those A which commute

with the quaternion j, which leads to the involution A 7→ −jAj and the

following two families of groups:

G GC involution G as symmetry group TeG dimG G compact?

GLm(H) GL2m(C) A 7→ −jAj Hm glm(H): jA = Aj 4m2 no

SLm(H) SL2m(C) A 7→ −jAj Hm, e1 ∧C · · · ∧C e2m slm(H): jA = Aj, trace-free 4m2 − 1 no

Note that, unlike for previous special versions of groups, SLm(H) is not

defined via det = 1, but, rather, is defined as the intersection of SL2n(C)
with GLn(H) inside of GL2n(C). It is possible to define a real-valued quater-

nionic determinant such that SLn(H) is its kernel, but this takes some work

and we will not discuss it here. One source of difficulty in extending the

definition from R or C is that expanding along different rows or columns

result in different orderings of the terms of the products in the sum, and H
is not commutative.

Applying this involution to the complex orthogonal and symplectic groups

yields two new families:

G GC involution G as symmetry group TeG dimG G compact?

SO∗
2m SO2m(C) A 7→ −jAj Hn, C-quadratic form so∗2m: jA = Aj, AT = −AT m(2m− 1) no

Sp(m) Sp2m(C) A 7→ −jAj Hn, symp. form ω spm: jA = Aj, AJ + JAT = 0 m(2m+ 1) yes

The latter group is the compact symplectic group, mentioned above. To see

that Sp(m) is compact, note that the Hermitian, symplectic, and quater-

nionic structures on C2n are related by

⟨u, v⟩ = ω(u, jv)

which leads to a two-out-of-three principle (as one encounters with almost

complex, Riemannian, and symplectic structures in symplectic topology):

a symmetry of two out of three of these structures is automatically a sym-

metry of the third. In terms of the symmetry groups, this implies that

Sp(m) := Sp2m(C) ∩GLm(H) = Sp2m(C) ∩U(2m) = U(2m) ∩GLm(H)

Since Sp(m) is a closed subgroup of U(2m) (which is compact), it is itself

compact.

Since Sp(m) = Sp2m(C) ∩ U(2m), we can also realize Sp(m) as the fixed

point set of the involution A 7→ (A†)−1 acting on Sp2m(C); consequently,
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we can also consider the indefinite versions of this involution used above

for U(p, q):

G GC involution G as symmetry group TeG dimG G compact?

Sp(p, q) Sp2m(C) A 7→ I2p,2q(A
†)−1I2p,2q C2m, ω, H2p,2q sp(p, q): AJ + JAT = 0, m(2m+ 1) no

p+ q = m, I2p,2qA+A†I2p,2q = 0

I’m not sure what the definition of clas-

sical groups is that makes this list ex-
haustive since (for example) we don’t

say anything about Spin groups or cov-

ers of any of the new groups we’ve dis-
covered, many of which are non-simply-

connected.

This completes the classification of real classical groups due to Cartan. For

reference, we include here a complete and contiguous version of the table

we have built above:

G GC involution G as symmetry group TeG dimG G compact?

GL+
n (R) GLn(C) A 7→ A Rn, orientation gln(R) = EndRn n2 no

SLn(R) SLn(C) A 7→ A Rn, e1 ∧ · · · ∧ en ∈ detRn sln(R): trace-free n2 − 1 no

SO(n) SOn(C) A 7→ A Rn, e1 ∧ · · · ∧ en, so(n): skew-symmetric 1
2
n(n− 1) yes

pos.-def. quadratic form

Sp2m(R), Sp2m(C) A 7→ A R2m, symplectic form ω sp2m(R): ξJ + JξT = 0 1
2
n(n+ 1) no

SO(p, n− p)0 SOp,n−p(C) A 7→ Ā Rn, e1 ∧ · · · ∧ en, so(p, n− p): 1
2
n(n− 1) no

(1 ≤ p ≤ n− 1) (∼= SOn(C)) quadratic form Qp,n−p ξIp,n−p + Ip,n−pξT = 0

U(n) GLn(C) A 7→ (A†)−1 Cn, pos.-def. hermitian form u(n): ξ + ξ† = 0 n2 yes

SU(n) SLn(C) A 7→ (A†)−1 Cn, pos.-def. hermitian form, su(n): ξ + ξ† = 0 n2 − 1 yes
e1 ∧ · · · ∧ en trace-free

U(p, q) GLn(C) A 7→ Ip,q(A†)−1Ip,q Cn, Hp,q u(p, q): Ip,qξ = −ξ†Ip,q n2 no

p+ q = n,
SU(p, q) SLn(C) A 7→ Ip,q(A†)−1Ip,q Cn, Hp,q , su(p, q): Ip,qξ = −ξ†Ip,q , n2 − 1 no

e1 ∧ · · · ∧ en trace-free
GLm(H) GL2m(C) A 7→ −jAj Hm glm(H): jA = Aj 4m2 no
SLm(H) SL2m(C) A 7→ −jAj Hm, e1 ∧C · · · ∧C e2m slm(H): jA = Aj, trace-free 4m2 − 1 no

SO∗
2m SO2m(C) A 7→ −jAj Hn, C-quadratic form so∗2m: jA = Aj, AT = −AT m(2m− 1) no

Sp(m) Sp2m(C) A 7→ −jAj Hn, symp. form ω spm: jA = Aj, AJ + JAT = 0 m(2m+ 1) yes

Sp(p, q) Sp2m(C) A 7→ I2p,2q(A†)−1I2p,2q C2m, ω, H2p,2q sp(p, q): AJ + JAT = 0, m(2m+ 1) no

p+ q = m, I2p,2qA+A†I2p,2q = 0

Left-Invariant {Vector Fields, Differential Forms, · · · }

Lecture 9: September 18th

One of the handy features of Lie groups is that they are equipped with

an obvious transitive left action by themselves; this gives rise to a certain

type of theorem or principle: a “structure” at e ∈ G is equivalent to a left-

invariant structure on all of G, usually given by translating the structure

around using the aforementioned left action.

Smooth Actions on OM and Vect(M)

Let M be any manifold, Diff(M) its group of diffeomorphisms, and OM =

C∞(M) the R-algebra of functions from M to R. Diff(M) ↷ OM via

ϕ · f := (ϕ−1)∗f = f ◦ϕ−1 where the inverse is required to get a left action.

Let Vect(M) denote the OM -module of vector fields on M , which we can
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think of in the following equivalent ways:

Derivations: A derivation of OM is an R-linear map v : OM → OM satisfying a

Leibniz rule as follows:

v(fg) = fv(g) + gv(f)

In this picture, Diff(M) ↷ Vect(M) by

(ϕ · v)f = (v(f ◦ ϕ−1)) ◦ ϕ

Sections of TM : Let v be a global section of OM , then the action of Diff(M) is given by

(ϕ · v)x = Dϕ−1(vϕ(x))

If G acts on M via a homomorphism a : G→ Diff(M) which then induces

an action of G on Vect(M); our preferred such homomorphism will be

g 7→ Lg where Lg : G→ G is given by h 7→ gh. Whenever G acts on M , we

get a subspace Vect(M)G of invariant vector fields ξ satisfying g · ξ = ξ, so,

in particular, we have Vect(G)G the subspace of left-invariant vector fields.

Lemma 2.9.1

Let ev : Vect(G)G → TeG be given by ξ 7→ ξe. Then ev is an

isomorphism of vector spaces.

Proof : To construct the inverse, fix ξe ∈ TeG. We want to extend this to a vector

field on G; set ξg = DLg(ξe) the pushforward of ξe by left translation. ξ is

then left-invariant by construction. ■

Thus elements of the Lie algebra g are naturally in bijection with left-

invariant vector fields onG. Say thatG ⊆ GLn(R), so TeG ⊆ gln(R) = Rn2

.

Then X ∈ TeG corresponds to a left invariant vector field on G given by

G ∋ A 7→ AX where A on the right hand side is equal to DILA (this follows

from a quick calculation).

We may take a basis (ξ1e , · · · , ξne ) for TeG and extend these to left-invariant

vector fields (ξ1, · · · , ξn) which then form a basis for TgG for all g ∈ G.

Thus we have a trivialization of TG, i.e., all Lie groups G are parallelizable.

The tangent bundle being trivializable
gives one relatively easy obstruction to
a given manifold having a Lie group

structure. In the compact setting,
by Poincaré-Hopf, if χ(M) is nonzero,

then M does not even have one non-
vanishing vector field so M certainly

cannot be parallelizable.

Left-Invariant Integration

Let Mn be a smooth manifold, Ωn
M the space of n-forms. Diff(M) ↷ Ωn

M

by ϕ · ω = (ϕ−1)∗ω so when G acts on M , we have a space of G-invariant

forms (Ωn
M )G ⊆ Ωn

M . In particular, when G = M and with our favorite

action of left translation, we have (Ωn
G)

G ⊆ Ωn
G. Then (as above) there is

a linear isomorphism (Ωn
G)

G ev−→ ∧n(TeG)
∗ given by restricting to the fiber
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above the identity of ∧nT ∗G. Thus, given ωe ̸= 0 ∈ ∧n(TeG)
∗ we get a left-

invariant volume form (a nowhere vanishing top degree form) ω ∈ (Ωn
G)

G,

hence we can integrate compactly supported functions f ∈ OG,c f 7→
∫
G
fω.

If G is itself compact, then we can normalize so that
∫
G
ω = 1. Recall that a measure being Borel just

means that the σ-algebra is generated

by open sets.
We can think of this as coming from a left-invariant Borel measure µG on

G. In fact, on any locally compact topological group G, there is a left-

invariant Borel measure on G called the Haar measure, which is unique up

to scale after the imposition of some additional regularity criteria. In particular, Haar’s theorem states
that there is a unique (up to a constant)

additive measure on G that is left-

invariant, assigns finite values to every
compact set, is outer regular, meaning

that for a Borel set S ⊆ G

µ(S) = inf
U open

µ(U)

and inner regular, meaning that for an

open set U ⊆ G

µ(U) = sup
K compact

µ(K)

One Parameter Subgroups

Definition 2.10.1: Immersed Lie subgroups

A immersed Lie subgroup H in a Lie group G is a pair (H,ϕ) of a

Lie group H and an immersive Lie homomorphism ϕ : H → G.

Recall that a smooth map is an immer-
sion if its derivative is everywhere in-

jective. For this case, it suffices that

Deϕ is injective.

Example 2.10.2: Irrational Line on a Torus

Let Tn = Rn/Zn, 0 ̸= v ∈ Rn, and consider the map R → Tn

given by t 7→ tv. If all entries of v are rational, then the image will

eventually wrap around and repeat itself periodically (i.e. the image

is a circle). If there is an irrational slope (e.g. v = (1, π) ∈ R2) then

the image will have no self intersections and will have instead have

a dense image in Tn (this is nonobvious and will be shown later).

Problem Session
Isaac and I are running the problem
session this week, so I’ve written up

my solution for the problem I’m talk-
ing about.

Exercise 2.10.3

Let G be a compact Lie group with a linear representation on a

finite-dimensional complex vector space V giving rise to a Lie group

homomorphism ρ : G→ GL(V ).

1. Prove that there exists a Hermitian inner product on V such that

ρ(G) ∈ U(V ) for all g ∈ G.

2. Prove that if U ⊆ V is a G-invariant vector subspace of V then

there is a complementary G-invariant subspace U ′. Deduce that

V decomposes as a direct sum of irreducible representations Vi

(where a representation is irreducible if the only G-invariant sub-

spaces are 0 and V itself).

3. If G is abelian, show that the irreducible summands Vi are lines.

Proof : 1. Recall that ρ(g) ∈ U(V ) if ⟨ρ(g)u, ρ(g)v⟩ = ⟨u, v⟩ for all g ∈ G, all u, v.
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The idea is to pick a random Hermitian inner product ⟨−,−⟩old on V and

construct a new one ⟨−,−⟩ by averaging using the left-invariant volume

form on G. In particular, we have

⟨u, v⟩ =
∫
G

⟨ρ(g)u, ρ(g)v⟩old volG(g)

Then, we have that

⟨ρ(h)u, ρ(h)v⟩ =
∫
G

⟨ρ(gh)u, ρ(gh)v⟩old volG(g) =
∫
G

⟨ρ(g)u, ρ(g)v⟩old volG(gh−1) =

∫
G

⟨ρ(g)u, ρ(g)v⟩old volG(g) = ⟨u, v⟩

I called this Weyl’s Unitary Trick and
Tim disagrees; it seems that people

commonly (almost universally) call this

Weyl’s unitary trick but Weyl’s actual
trick is replacing a noncompact group

with a compact one, using Hurwitz’s

averaging trick.

2. Let U ⊆ V be G-invariant, and let U ′ be the orthogonal subspace to U

with respect to ⟨−,−⟩. V = U ⊕ U ′ as a vector space; to extend this to

a direct sum of representations we need only show that G sends U ′ to

itself. Since U ′ is defined as 0 ̸= u′ ∈ U ⇐⇒ ⟨u′, u⟩ = 0 for all u ∈ U ,

it follows that for all g ∈ G,

⟨ρ(g)u′, ρ(g)u⟩ = ⟨u′, u⟩ = 0

so ρ(g)u′ is orthogonal to ρ(g)u ∈ U and therefore ρ(g)u′ ∈ U ′. It fol-

lows that one can keep peeling off subrepresentations until the remaining

factors are irreducible. In fact it is true that A and B (uni-

tary) are simultaneously diagonalizable

iff they commute. To see the forward
direction, note that diagonal matrices

commute so

AB = (PDAP−1)(PDBP−1) =

PDADBP−1 = PDBDAP−1 = BA

For the other direction, note that uni-

tary matrices are diagonalizable so di-

agonalize A; then for any of its eigen-
vectors v we have

A(Bv) = BAv = λBv

i.e Bv is also an eigenvector of A with
eigenvalue λ. If we assume that A has

distinct eigenvalues (and therefore one-

dimensional eigenspaces), then Bv =
λ′v and we are done. The general case

is somewhat more involved, see these
notes by Keith Conrad for the details.

3. Here we use a key fact from linear algebra: commuting matrices are

simultaneously diagonalizable. Since the ρ(g) for g ∈ G are obviously

commuting they have a common eigenbasis v1, · · · , vn such that ρ(g)vi =

λgi vi. Then it is clear that each Cvi is an irreducible subrepresentation

of G. ■

https://kconrad.math.uconn.edu/blurbs/linmultialg/simulcomm.pdf
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One Parameter Subgroups and the Exponential Map

Lecture 10: September 23rd

Definition 2.11.1: One Parameter Subgroups

A one parameter subgroup of a Lie group G is a Lie homomorphism

θ : R → G.

θ will be an immersed Lie subgroup if and only if dθ
dt |t=0 ̸= 0.

Example 2.11.2

For a vector space V , t 7→ tv for any v ∈ V is a one parameter

subgroup as above. The same is true in the quotient of V by a

lattice, also as above.

Example 2.11.3

In GL(V ), t 7→ exp(tA) is a one parameter subgroup for all A ∈
End(V ) where exp is the matrix exponential. This is a homomor-

phism since exp(tA) exp(sA) = exp((t+ s)A).

Note that if θ is a one parameter subgroup, ξe = dθ
dt |t=0 ∈ TeG, then

Tθ(t)G ∋ θ̇(t) = ξθ(t) where ξ is the unique left-invariant vector field ex-

tending ξe with ξg = (DeLg)ξe. The idea of the proof is that, since θ is a

homomorphism, θ(s+ t) = θ(s)θ(t), so

θ̇(t) =
∂

∂s

∣∣∣∣
s=0

θ(s+ t) =
∂

∂s

∣∣∣∣
s=0

θ(s)θ(t) = “θ̇(0)θ(t)”

The scare quotes are to indicate that

one has to find the correct interpreta-

tion to make the terminal expression
meaningful.Conversely, given ξe ∈ TeG, there exists a solution θ to θ̇(t) = ξθ(t) which

is a one parameter subgroup. To see this, note that this is the equation for

the flow of a vector field ξ on G which automatically has short-time exis-

tence (and full existence for G compact), and uniqueness for any connected

interval containing 0. The initial conditions are θ(0) = e and θ̇(0) = ξ, so

given ξ, we get a solution on an interval (−a, a) ⊆ R, and we can extend

it to (−2a, 2a) by setting θ(t) = θ( t2 )
2 so we can extend to a solution on

all of R. Thus, there is a bijective correspondence between one parameter

subgroups of G and TeG by θ 7→ θ̇(0).

If G ⊆ GL(V ) is an embedded Lie subgroup, ξ ∈ TeG ⊆ End(V ), then the

inverse to this bijection is given by the matrix exponential since

d

dt
exp(tξ) = ξ exp(tξ)

clearly exhibits a solution to θ̇(t) = ξθ(t). We need to show that exp(tξ) ∈ G;

the idea is to use the fact that ξ exp(tξ) ∈ (TeG) · exp(tξ) which we can use

to check that the path t 7→ exp(tξ) remains tangent to G.
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The Exponential Map

Collectively, the one parameter subgroups of G form a map Θ : TeG×R →
G characterized by

∂

∂t
Θ(ξe, t) = ξΘ(ξe,t) Θ(ξe, 0) = e =⇒ ∂

∂t

∣∣∣∣
t=0

Θ(ξe, t) = ξe

Note that we are thinking of flows not
as diffeomorphisms of the underlying

manifold but as flows of a specific point.Flows of vector fields on a manifold vary smoothly as the initial data is

perturbed (the vector field itself and the starting point) so Θ is smooth.

Definition 2.11.4: The Exponential Map

The exponential map of G is the map expG : TeG → G given by

ξ 7→ Θ(ξ, 1) the time one flow of the vector field induced by ξ.

Evidently, the exponential map is smooth since Θ is. Note that if ρ : G→ H

is a Lie homomorphism, then ρ ◦ expG = expH(Deρ), i.e, the exponential

construction is natural with respect to Lie homomorphisms. t 7→ expG(tξe)

is the unique one parameter subgroup with derivative ξe characterized by
d
dt |t=0 expG(tξ) = ξ.

Moreover, D0 expG : TeG→ TeG is equal to the identity, so by the inverse

function theorem, expG is a local diffeomorphism i.e. expG restricts to a

diffeomorphism from some neighborhood of 0 ∈ TeG to a neighborhood of

e ∈ G. Thus, G comes with a distinguished choice of chart near the identity

and therefore distinguished charts everywhere.

Note that expG is usually not injective; for example we may consider Tn =

Rn/Zn as above, and exp−1(0) = Zn. However, expG is surjective when

certain adjectives are available for G: G connected and compact suffices for

expG to be surjective, but there are
other sufficient conditions as well.

expGLn(C) is surjective so compact-

ness is not necessary, but connected-
ness clearly is necessary.

Example 2.11.5

For SO(3), consider exp : so(3) → SO(3). so(3) consists of traceless

skew-symmetric matrices and SO(3) consists of rotations of angle α

around an axis defined by some unit vector v denoted Rv,α. Pick

A ∈ SO(3) with Ae3 = v, so we can write

Rv,θ = A

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

A−1 = exp
(
A · θL ·A−1

)
= A exp(θL)A−1

where L =
(

0 −1 0
1 0 0
0 0 0

)
and therefore exp(θL) = Re3,θ. Thus expSO(3)

is surjective.
Lecture 11: September 25th

Missed this lecture as well. Animals
living in my walls prevented me from
getting sleep.

Note however that exp is not surjective for SL2(R) or SL2(C):



30 abhishek shivkumar

Example 2.11.6

sl2(C) consists of traceless 2 × 2 complex matrices, and any such

matrix is conjugate to either a diagonal matrix (with eigenvalues a

and −a) or the Jordan block ( 0 1
0 0 ) (this is just the Jordan canonical

form theorem). Thus, expA for A ∈ sl2(C) is conjugate to one of

the two following forms:(
e−a 0

0 ea

) (
1 1

0 1

)

Thus all diagonalizable matrices are in the image of exp, and it turns

out that there are only two other conjugacy classes of matrices in

SL2(C): (
1 1

0 1

)
and

(
−1 1

0 −1

)
The latter type is not in the image of exp so exp is not surjective.

Naturality of exp

The naturality (i.e. equivariance with respect to Lie group homomor-

phisms) of exp is enormously consequential:

Theorem 2.11.7

The functor Te (which acts on maps via De) from the category of

connected Lie groups to the category of real vector spaces is faithful,

i.e., if ρ, ρ′ : G → H have the same derivative at the identity, they

are equal.

Proof : By naturality, ρ ◦ expG = expH(Deρ) : TeG → H and since Deρ = Deρ
′,

ρ ◦ expG = ρ′ ◦ expG. Therefore, ρ = ρ′ on the subgroup generated by the

image of expG, but the image of expG is a neighborhood of e and therefore

generates G, so ρ = ρ′. ■
Note that we are not claiming that
expG is surjective.

Corollary 2.11.8

If two embedded Lie subgroups H,H ′ ⊆ G share the same tangent

space, then their identity components coincide.

The relevant maps here are the two inclusion maps which agree on Te by

assumption. Note that Te is not full, i.e, surjective on Hom spaces; it will

turn out that a subspace V ⊆ Te GLn(R) is realized as the tangent space

of some Lie immersion iff V is closed under conjugation by GLn(R). More

importantly, Te as described is not full due to omitting some important

structure in the target category, the Lie bracket. We will later augment Te

with this data in order to get an equivalence of categories (if we assume

our Lie groups are 1-connected).
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Another consequence of naturality is the following:

Lemma 2.11.9: Surjectivity Criterion

Suppose dimG = dimH, with H connected, and suppose there

exists a Lie group homomorphism ρ : G → H with discrete kernel.

Then ρ is surjective, and so induces an isomorphism G/ ker ρ→ H.

Proof : It suffices by Lemma 2.5.9 to show that Deρ is an isomorphism. Since

dimG = dimH, it then suffices to show that kerDeρ = 0. Since ρ ◦ exp =

exp ◦Deρ, if v ∈ kerDeρ, exp(v) ∈ ker ρ, and the one-parameter subgroup

generated by v also lies in ker ρ; but ker ρ is discrete, so the 1-parameter

subgroup must be the trivial one, and v = 0. ■

The Closed Subgroup Theorem

We are now ready to prove the closed subgroup theorem:

Theorem 2.12.1: Closed Subgroup Theorem

Let H be a closed subgroup of G. Then H is an embedded Lie

subgroup.

Set g = TeG; the strategy will be to identify the subspace h ⊆ g which

will become TeH. One guess might be h = exp−1(H) but for example

for G = S1 × S1, exp−1(e) is a lattice in g when we should expect it to

be a point. The non-origin lattice points in exp−1(e) are therefore to be

avoided, and one way to tell them apart from (0, 0) is by the fact that the

one-parameter subgroup generated by any of them is nontrivial. Thus, the

correct notion to consider is

h = {v ∈ g : exp(Rv) ⊆ H}

This definition will end up working, but we will have to massage it a little

first:

Definition 2.12.2

A unit vector v ∈ S(g) (i.e. of norm one for some randomly selected

norm) is called a limited H-direction if there exists a subsequence

(vn) in g with exp vn ∈ H, vn → 0, and vn
∥vn∥ → v. The limiting

H-directions will form a subspace LH ⊆ S(g).
I’m following the notes here but I as-
sume that LH is meant to be a subset
rather than a subspace.
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Lemma 2.12.3

For v ∈ S(g), v is a limiting H-direction iff exp(tv) ∈ H for all t ∈ R
(so h = R · LH).

Proof : If exp(tv) ∈ H for all t, then v is the limiting direction of the sequence
v
n → 0 so v ∈ S(g). Conversely, for t ∈ R and v ∈ LH , and a sequence

(xn) of positive reals converging to 0, there exists a sequence (mn) such

that mnxn → t (e.g. mn = ⌊t/xn⌋). Thus, we may pick mn so that

mn∥vn∥ → t and therefore mnvn → tv, so exp(mnvn) → exp(tv). Since

exp(mnvn) = exp(vn)
mn ∈ H, and H is closed, exp(tv) also lies in H. ■

Lemma 2.12.4

h is a vector subspace of g.

Proof : Above, we established that h = R ·LH , so h is closed under scalar multipli-

cation. It remains only to show that h is closed under addition.

To that end, consider a chart ϕ : (U, e) → (U ′, 0) based around the identity

e ∈ G where V is a normed vector space. Group multiplication extends to

this chart (provided U is sufficiently small as to be closed under multiplica-

tion) as m : U ′ × U ′ → U ′ with m(0, 0) = 0, m(x, 0) = x, and m(0, y) = y.

One can show (by considering D0m) that m(x, y) = x+ y + o(∥x∥+ ∥y∥),
so, applying this principle to an exponential chart (i.e, U ′ = exp−1(U)) we

have

log(exp tu · exp tv) = t(u+ v) + o(t)

Suppose we have limiting H-direction u, v whose sum is nonzero, and set

w := u+v
∥u+v∥ . We want w to be a limiting H-direction as well. TO that end,

set γ(t) = log(exp(tu) exp(tv)) ∈ g for small t, then exp γ(t) ∈ H, while
γ(t)
t → u + v as t → 0 by the above. Finally, ∥γ(t)∥ = ∥t∥∥u + v∥ + η(t)

where η(t) = o(t) so

γ(t)

∥γ(t)∥
=

γ(t)

t∥u+ v∥+ η
=

γ(t)

t∥u+ v∥
+ o(t) =⇒ γ(t)

∥γ(t)∥
→ w

as t→ 0+. Thus, setting wn = γ( 1n ),
wn

∥wn∥ → w and expwn ∈ H, so w is a

limiting H-direction as well. ■

Lemma 2.12.5

Set Ur := {x ∈ g : ∥x∥ < r}. For any r > 0, the subset exp(Ur ∩ h) ⊆
H is a neighborhood of e.

Proof : Fix r and a splitting g = h⊕V with elements x ∈ g written as x = u+v, u ∈
h, v ∈ V . Consider the map ϕ : g → G given by ϕ(u + v) = exp(u) exp(v)

with Deϕ = id. By the inverse function theorem, for small r > 0, ϕ : Ur →
U ′
r := ϕ(Ur) is a diffeomorphism.
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Assuming the lemma is false, there is some sequence xn = un + vn with

xn ∈ U 1
n
and vn not converging to 0 such that exp(xn) ∈ H (i.e. there is

a sequence xn ∈ U 1
n
not inside the intersection with h whose exponential

lands in H, contradicting the fact that exp(Ur ∩ h) ⊆ H is a neighborhood

of e). But then exp(un) exp(vn) ∈ H and exp(un) ∈ H hence exp(vn) ∈ H,

so, passing to a subsequence, we may assume that vn
∥vn∥ has a limit v ∈ S(g).

Then v ∈ LH ∩ S(V ) = ∅ which is a contradiction. ■

This is enough to give us the closed subgroup theorem:

Proof : Choose r sufficiently small such that exp : Ur → U ′
r is a diffeomorphism,

and thus exp(Ur ∩ h) ⊆ U ′
r ∩H. By the above, there exists a neighborhood

U ′′ of e ∈ G s.t U ′′ ⊆ U ′
r, and exp(Ur ∩ h) contains U ′′ ∩ H. We can

set W = exp−1(U ′′) so that exp |W carries W ∩ h diffeomorphically onto

U ′′ ∩H, and therefore exp is a submanifold chart centered on e ∈ H. For

any other h ∈ H, Lh(W ) is an open subset admitting the submanifold chart

exp ◦L−1
h . ■

There is an analogous result for complex Lie groups:

Corollary 2.12.6

If H is a closed subgroup of the complex Lie group G, and h con-

structed as above is a complex subspace of g, then H is an embedded

complex Lie subgroup.
I’m not sure what particular result is
being referenced when stating that a

submanifold is a complex submanifold
iff its tangent spaces are complex sub-

spaces.

Proof : We constructed H as a submanifold above using submanifold charts, so it

remains only to show that H ⊆ G is a complex submanifold. By complex

geometry, it in fact suffices to show that for all h ∈ H, ThH ⊆ ThG is a

complex subspace, but since ThH = (DeLh)(TeH), and Lh : G → G is

holomorphic, DeLh is C-linear so ThH is a complex subspace of ThG. ■

Abelian Lie Groups
Lecture 12: September 27th

Missed this class because I was sick. I

will probably attend another lecture for

this class one day.

As a sort of capstone to our study of the basic objects and results about Lie

groups, we will use the exponential map to give a classification of abelian

Lie groups.

Theorem 2.12.7

Let A be a connected, abelian Lie group; then exp : TeA → A is a

covering homomorphism.

Corollary 2.12.8

A connected abelian Lie group is isomorphic to a product Rm × Tn

where T = S1 = R/Z; in particular, a connected and compact
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abelian Lie group is a torus.

This follows immediately by the above since exp induces an isomorphism

TeA/ ker exp ∼= A where ker exp is a discrete additive subgroup of TeA (dis-

crete since it is a covering map). A discrete subgroup D of a d-dimensional

vector space V is of the form D = Zv1 ⊕ · · · ⊕ Zvn for some n ≤ d and

Z-linearly independent vectors vi. D ⊗Z R is some vector subspace V ′ and

V ′/D ∼= Tn; fixing V ′′ s.t V = V ′ ⊕ V ′′ we then have that

V/D = V ′/D ⊕ V ′′/D = V ′/D ⊕ V ′′ = RD−n × Tn

The proof of the theorem itself is omitted, but requires only the fact that

exp a exp b = exp(a+ b) for a, b ∈ TeA, via the identity exp a exp b =

(exp a
n )

n(exp b
n )

n. This also gives us the following:

Theorem 2.12.9

Let G be a compact Lie group, A an abelian Lie subgroup. The

identity component of the closure, A0, is then an embedded torus,

and we can then conclude that every compact Lie group contains

non-trivial torus subgroups.
The maximal torus in a compact Lie

group will become important later

when we discuss classification results.The proof of this theorem is also omitted.
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Lie Groups Fall 2024

Lie Algebras

Professor Tim Perutz Abhishek Shivkumar

We will now discuss more formally and abstractly the properties of the Lie

algebra TeG of a Lie group G. Lie algebras and their correspondence with

Lie groups once sufficient adjectives are enforced are the key to proving the

famous classification result for semisimple Lie groups via Dynkin diagrams.

Let k denote either R or C.

Definition 3.0.1: Representations

A k-linear representation of a Lie group G is a k-vector space V and

a Lie homomorphism ρ : G → GL(V ) that acts by g · v := ρ(g)v.

A map of representations is a natural transformation, or a map

λ : V1 → V2 such that the following diagram commutes:

V1 V1

V2 V2

ρ1

λ λ

ρ2

A representation (V, ρ) (often we will abusively refer to the representation

as V ) has a dual, V ∗ := Homk(V, k) with g ∈ G acting by

g · λ := λ(g−1 · −)

where the inverse is required to make this a left action. We can also form

the direct sum of representations (V1, ρ1) and (V2, ρ2) with the action given

by

(ρ1 ⊕ ρ2)(g)(=

(
ρ1(g) 0

0 ρ2(g)

)

We can also form the tensor product of representations (V1 ⊗k V2, ρ1 ⊗ ρ2)

in the obvious way, and thus (using tensors and duals) Homk(V1, V2) has a

natural G-action given by g ·λ = ρ2◦λ◦ρ−1
1 . The subspace of Homk(V1, V2)

on which G acts trivially consists of precisely those λ : V1 → V2 which are

maps of representations (V1, ρ1)
λ−→ (V2, ρ2). Finally, for a representation

V , G acts on ∧k(V ) as in the case of tensor products. I suppose Symn(V ) also carries a nat-
ural G-representation but I don’t think
it will come up here.Definition 3.0.2: Decomposable and Reducible

A representation V is called decomposable if V = V1⊕V2 with Vi ̸= 0.

V is reducible if there exists U ⊂ V a proper nonzero subspace s.t.

ρ(G)(U) ⊆ U for all g ∈ G. V is irreducible if there are no such
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subspaces.
For finite-dimensional representations
(all we’re going to care about) of finite

groups, there is no difference between

irreducible and indecomposable essen-
tially because we can simultaneously

diagonalize all of the matrices. The ex-

istence of nontrivial Jordan blocks ob-
structs an indecomposable representa-

tion from being irreducible: let G = R
and V = R2 acting by

ρ(λ) =

(
1 λ

0 1

)
ρ is indecomposable since for V to be

a direct sum of representations, ρ(λ)
must diagonalize (or break up into

block diagonal matrices in general), but

this is clearly impossible. On the other
hand, ρ is clearly reducible since g·e1 =

e1 for all g ∈ G.

We need not have a Lie group in order

to run into this trouble; an infinite dis-

crete group such as Z mapping a gen-
erator to some Jordan block as above

would suffice.

Note that irreducible implies indecomposable.

Lemma 3.0.3: Schur’s Lemma

If (V1, ρ1) and (V2, ρ2) are irreducible representations of G, then

a G-map λ : V1 → V2 is either zero or an isomorphism. Thus if

(V, ρ) is irreducible, then any G-map µ : V → V is in the center of

GL(V ) (by equivariance) and hence scalar (a multiple of the identity

matrix).

Tim’s notes advise us to prove that µ is

scalar by extending scalars to the alge-
braic closure and considering µ − xI;

perhaps this is useful to prove that

Z(GLn) consists of scalars?

Proof : Let λ : V1 → V2 be as above and consider kerλ; since λ is G-equivariant

(by the definition of a map of representations), for any v ∈ kerλ, λ(g · v) =
g · λ(v) = 0 so kerλ is a (possibly trivial) subrepresentation. Since V1 is

irreducible, either kerλ = 0 or kerλ = V1. ■

As noted in Exercise 2.10.3, we can use a hermitian inner product to take

break up a representation V into the direct sum of a subrepresentation and

its orthogonal complement with respect to the inner product; the same is

true for a real inner product over R.

Also noted in the discussion following Exercise 2.10.3, we may find an inner

product on which G acts by isometries by averaging:

⟨v1, v2⟩ =
∫
G

(ρ(g)v1, ρ(g)v2)dµG

where dµG is the left-invariant volume form, and (−,−) is some randomly

chosen real or hermitian inner product. Hence, in the compact case, irre-

ducibility and indecomposability coincide. Again, this is basically just about
the ability to diagonalize our matri-

ces, which we can do for a unitary or

orthogonal representation, and we can
force our representations to be unitary

or orthogonal by building such an inner

product as above.

The Adjoint Representation

Suppose a Lie group G acts on a manifold M i.e. we have a smooth action

map α : G×M →M that satisfies α(g2g1, x) = α(g2, α(g1, x)) and α(e, x) =

x. Taking the “partial derivative” D2 of α with respect to x ∈ M , i.e.

computing Dα along {g} ×M , we get a linear map

δg(x) := (D2α)(g,x) = (Dα|{g}×M )x : TxM → Tα(g,x)M

Linearizing näıvely, in a coordinate chart near x we have α(g, x + tv) =

α(g, x) + tδg(x)(v) + O(t2); the properties of the action together with the

chain rule then imply that

δg2g1(x) = δg2(α(g1, x)) ◦ δg1(x)
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The case we will be interested in is when G acts on itself by conjugation

with action map c : G × G → G given by c(g, h) = ghg−1 and c(g2g1) =

c(g2) ◦ c(g1). Fixing g, the derivative with respect to h is

δg(h) = (D2c)(g,h) : ThG→ Tghg−1G

Definition 3.1.1: The Adjoint Representation

We define

Ad(g) = δg(e) : TeG→ TeG

to be the adjoint representation of G on its Lie algebra.

By the above definition, Ad(g2g1) = Ad(g2) ◦ Ad(g1), and Ad(e) = id, so

Ad : G→ GL(TeG) is a homomorphism, i.e., a linear representation of G.

Example 3.1.2

For G abelian, conjugation is the trivial action, so Ad(g) = id is also

trivial.
There’s some mildly confusing usage of
o(t) here and above where I think O(t2)

is more appropriate; perhaps I am in-
troducing mistakes into Tim’s correct

notes but so it goes. Since t is a small

deformation parameter here o(t) and
O(t2) are conveying the same informa-

tion but I still find O(t2) easier to parse

since only one of these is still true when
t is large.

For matrix Lie groups, the adjoint representation has a simple explicit

formula, which we can derive as follows: viewing tangent vectors at a point

x ∈ M as tangency-classes of paths γ : (−ϵ, ϵ) → M mapping 0 to x, and

the derivative of a map Φ at a point x as DxΦ = d
dt |t=0Φ ◦ γ for some such

curve γ, note that we have a distinguished set of curves through e ∈ G given

by the one-parameter subgroups. In particular, for ξ ∈ TeG, t 7→ exp(tξ)

is a path through e whose derivative at t = 0 is precisely ξ, so we may

compute Ad(g)ξ as

Ad(g)ξ =
d

dt

∣∣∣∣
t=0

g exp(tξ)g−1

Since exp is locally invertible, we may pass to a log-chart (in order to

actually compute a derivative, we must do this) that maps a neighborhood

U ∋ e diffeomorphically to a neighborhood of 0 ∈ TeG:

Ad(g)ξ =
d

dt

∣∣∣∣
t=0

log
(
g exp(tξ)g−1

)
The operator norm ∥ · ∥op is defined as

∥g∥op = sup
∥v∥=1

∥gv∥
So we have that log

(
g exp(tξ)g−1

)
= Ad(g)ξ + O(t2). This is as much as

we can do for an abstract Lie group G, but if G ⊆ GL(V ), then

exp ξ = I+ξ+
ξ2

2!
+
ξ3

3!
+ · · · and log g = (g−I)− (g − I)2

2
+

(g − I)3

3
−· · ·

when ∥g∥op < 1, so, for ξ ∈ TeG ⊆ gl(V ) we have

Ad(g)ξ =
d

dt

∣∣∣∣
t=0

log
(
g exp(tξ)g−1

)
=

d

dt

∣∣∣∣
t=0

log
(
g(I + tξ +O(t2))g−1

)
=

d

dt

∣∣∣∣
t=0

tgξg−1 +O(t2) = gξg−1
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Thus, for matrix Lie groups, Ad(g) is simply conjugation by g.

Example 3.1.3

For SO(n), Ad(g)ξ = gξg−1. As a sanity check, we want to make

sure that gξg−1 is skew-symmetric when g is orthogonal:

(gξg−1)T = (g−1)T ξT gT = g(−ξ)g−1 = −gξg−1

using the fact that g ∈ SO(n).

The Lie Bracket

Lecture 13: September 30th

Out sick again. Last time, I promise.Another piece of structure on the Lie algebra TeG comes from examining

the commutator map C : G × G → G given by C(g, h) = ghg−1h−1 in a

neighborhood of (e, e).

Lemma 3.2.1

The multiplication mapm : G×G→ G has derivative at the identity

(D(e,e)m)(ξ, η) = ξ+η for ξ, η ∈ TeG. The inversion map i : G→ G

has derivative at the identity Dei(ξ) = −ξ.

Proof : Since m(g, e) = g, (D(e,e)m)(ξ, 0) = ξ and similarly (D(e,e)m)(0, η) = η

and the first assertion follows by linearity. For inversion, note that m ◦
(idG ×i) : G → G is the constant function g 7→ e, so, by the chain rule,

D(e,e)m◦(idTeG ×Dei) = 0; using the above, this implies that ξ+Dei(ξ) = 0

from which the result follows. ■

Note that C is just the following composite:

C : G×G
(m,m◦(i×i))−−−−−−−−→ G×G

m−→ G

where, explicitly, we have (g, h) 7→ (gh, g−1h−1) 7→ ghg−1h−1 as desired.

Therefore, we may compute D(e,e)C using the above result:

D(e,e)C : TeG× TeG
(ξ,η)7→(ξ+η,−η−ξ)−−−−−−−−−−−−→ TeG× TeG

(α,β)7→α+β−−−−−−−−→ TeG

whence it is easily seen that this composite is the zero map. Lecture 14: October 2nd

Apparently there was some trouble
with the proofs on the 30th, so we did

a lot of recap/redos today. As such,
not really clear what the demarcating

line is for each lecture, so I’m sticking

it here.

Setting c to be the composite

c : TeG× TeG
exp× exp−−−−−−→ G×G

C−→ G
log−−→ TeG

which is well-defined on some small neighborhood of (0, 0), we may Taylor

expand to second order:

c(tx, ty) = c(0, 0) + t(D(0,0)c)

(
x

y

)
+

1

2
t2(D2

(0,0)c)

((
x

y

)
,

(
x

y

))
+O(t3)
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By the above, c(0, 0) = 0 (since log(I) = 0) and D(0,0)c = 0, so only

the quadratic term survives, and we therefore want to inspect the term
1
2 t

2(D2
(0,0)c) ((

x
y ), (

x
y )). By linearity, we have

(D2
(0,0)c)

((
x

y

)
,

(
x

y

))
= (D2

(0,0)c)

((
x

0

)
,

(
x

0

))
+

2(D2
(0,0)c)

((
x

0

)
,

(
0

y

))
+ (D2

(0,0)c)

((
0

y

)
,

(
0

y

))

Since c(x, 0) = 0 and c(0, y) = 0, the first and third terms above both

vanish (since traveling along, say, y while fixing x = 0 yields no change), so

c(tx, ty) = t2(D2
(0,0)c)

((
x

0

)
,

(
0

y

))
+O(t3)

We can then define: I think the preceding calculation was

the source of contention in the lecture
I missed on the 30th, some minor de-

tails missing or incorrect that ruined

the calculation. This does not seem to
be a particularly natural way to come

up with the Lie bracket.

Definition 3.2.2: Lie Bracket

The Lie bracket on TeG is defined as the map

[−.−] : TeG×TeG→ TeG given by [x, y] = (D2
(e,e)c)

((
x

0

)
,

(
0

y

))

When we want to consider TeG together with its bracket operation,

we write it as g.

Note that the Taylor expansion of c is now

c(tx, ty) = t2[x, y] +O(t3)

The bracket is bilinear by construction since it arises as a derivative. The

symmetry of mixed partial derivatives tells us that (D2
(e,e)c) is invariant

under interchange of ( x0 ) and
(
0
y

)
. Since c(x, 0) = 0, [x, x] = 0, so by

bilinearity, [−,−] is skew-symmetric, i.e.,

[x, y] + [y, x] = 0

In terms of c, this means that (D2
(e,e)c) picks up a sign if you replace its

arguments above with ( y0 ) and ( 0
x ).

Example 3.2.3

For an abelian Lie group G, the commutator map is constant, hence

the bracket on g is trivial.
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Example 3.2.4

For a matrix Lie group G ⊆ GL(V ) we can explicitly compute the

bracket using the Taylor expansions for exp and log as in our above

computation of Ad for matrix Lie groups:

c(tξ, tη) = log
(
etξetηe−tξe−tη

)
=

log
(
I + t2(ξη − ηξ) +O(t3)

)
= t2(ξη − ηξ) +O(t3)

hence

[ξ, η] = ξη − ηξ
In the problem session, Isaac proved

that AffG(V ) = V ⋊ G which has

an evident Lie group structure via an
embedding into GL(V × R), and that

Te AffG(V ) = TeG × V for G a closed

subgroup of GL(V ).

Example 3.2.5

Let Aff(V ) denote the set of affine transformations of a vector space

V i.e. self maps of the form g(x) = Ax + v, which are constructed

as semidirect products born from the short exact sequence

1 → V → Aff(V ) → GL(V ) → 1

with the splitting section given by the inclusion GL(V ) ↪→ Aff(V ),

and with the corresponding short exact sequence of vector space

0 → T0V → Te Aff(V ) → gl(V ) → 0

split by the inclusion gl(V ) ↪→ Te Aff(V ). Since V ⊆ Aff(V ) is

evidently abelian, its bracket is trivial. The bracket of A coincides

with the bracket on gl(V ) i.e. the commutator. It remains, then to

compute the bracket of v ∈ V with A ∈ gl(V ).

Fix v ∈ V = T0V and A ∈ gl(V ) and consider

C(v,A)(x) = e−tA(etAx+ tv)− tv = x− t2Av +O(t3)

hence [v,A] = −Av.

Another interpretation/definition of the Lie bracket comes from Taylor ex-

panding the multiplication of near-identity elements in a Lie group G:

Proposition 3.2.6

log(exp(tξ) exp(sη)) = tξ + sη +
1

2
st[ξ, η] +O(3)]

where O(3) denotes all third order and higher terms in both vari-

ables.

Proof : Taking a Taylor expansion to second order, we have

log(exp(tξ) exp(sη)) = tξ + sη +As2 +Bst+ Ct2 +O(3)

where the constants A,B,C absorb the 1
2! Taylor coefficients, and depend
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on ξ and η but not t and s, so

log(exp(−tξ) exp(−sη)) = −tξ +−sη +As2 +Bst+ Ct2 +O(3)

and therefore

log(exp(tξ) exp(sη) exp(−tξ) exp(−sη)) = 2As2 + 2Bst+ 2Ct2 +O(3)

Comparing with the above quadratic Taylor expansion for the commutator,

A = C = 0 and 2B = [ξ, η]. ■

There is one other important (and defining) fact about the Lie bracket:

Proposition 3.2.7

The Lie bracket satisfies the Jacobi identity :

[[α, β], γ] + [[β, γ], α] + [[γ, α], β] = 0

In the case of matrix Lie groups, this is a straightforward calculation using

the fact that the bracket is a commutator. We will (over the coming weeks

and months) give three proofs of this result, the first of which is as follows:

I am omitting the proof because it
amounts to “write it out and you can

see that it is true.” In search of the

actual meaning of this identity I found
this blog post by Danny Calegari with

some geometric motivation that I don’t

yet find particularly convincing.

Lemma 3.2.8: Hall-Witt Identity

For a group G, let (x, y) = xyx−1y−1 and xy = yxy−1. Then we

have

((x, y), zy)((y, z), xz)((x, z, yx)) = e

The Jacobi identity for [−,−] then follows by applying the Hall-Witt iden-

tity to the triple (x, y, z) = (exp tα, exp tβ, exp tγ) and taking the leading

(cubic) term in the Taylor expansion. Then, we are finally ready to define:

Definition 3.2.9: Lie Algebras

A Lie algebra over a base commutative ring k is a k-module V

together with a k-bilinear map V × V → V (x, y) 7→ [x, y] that

is skew-symmetric and satisfies the Jacobi identity. A map of Lie

algebras is a linear map respecting the bracket.

Evidently, by the above discussion, g = (TeG, [−,−]) is a Lie algebra. Note

that the bracket is natural, in the sense that it commutes with Deρ for Lie

group homomorphisms ρ : G→ H:

Deρ[ξ, η] = [Deρ(ξ), Deρ(η)]

Here Tim recounts an anecdote from
an interview with Deligne where he

(Deligne) recounts learning group the-

ory from Jacques Tits, who starts to
prove that the center of a group is

normal (which is a trivial calculation),

stops himself, and says something to
the effect of “A normal subgroup is

one that is stable under inner automor-

phisms. Since I have been able to de-
fine the center, it is invariant under all
automorphisms of the data, including
inner ones.”

The point being that there’s nothing

really to say about naturality of the
bracket; since it is well-defined without

any arbitrary choices, it has no choice
but to be natural. Tim says “nothing
can happen!”

Deligne follows this anecdote by say-
ing that “That Tits did not need to

go through a step-by-step proof, but

instead could just say that symmetry
makes the result obvious, has influ-

enced me a lot. I have a very big
respect for symmetry, and in almost
every one of my papers there is a

symmetry-based argument.”

To conclude, we have a functor L : LieGroups → LieAlgebrasR. This

functor is the central feature of Lie theory, and with mild adjectives is an

equivalence of categories.

https://lamington.wordpress.com/2011/11/20/the-hall-witt-identity/
https://www.ams.org/notices/201402/rnoti-p177.pdf
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Adjoint Representation Redux

We now have two ways of thinking about [−,−] on g:

• it is the leading (quadratic) term in the Taylor expansion of the commu-

tator map for G, in logarithmic coordinates

• it is (twice) the quadratic term in the expansion of group multiplication

near the identity, in logarithmic coordinates

There is another perspective on the Lie bracket coming from the adjoint

representation: differentiate the map g 7→ Ad(g) : G→ GL(g) defining

ad = De Ad : g → TI GL(g) = End(g)

Since Ad is a Lie group homomorphism, its derivative is a map of Lie

algebras (by naturality), so

ad ξ ◦ ad η − ad η ◦ ad ξ = ad[ξ, η]
Lecture 15: October 7th

My first guess for how to calculate

ad(η)ξ was to set g = I + tη which
would give you the same answer (agrees

with exp to first order), but does not

actually define a path in G. Would
have to mess around with coordinates

probably. This means I have not really

internalized the exponential map.

As always, ad will take a special form for matrix groups G ⊆ GL(V ); we

already know that Ad(g)ξ = gξg−1 so we may compute ad(η)ξ by expanding

etηξe−tη to first order in t:

etηξe−tη = (I+tη)ξ(I−tη)+O(t2) = ξ+t(ηξ−ξη)+O(t2) =⇒ ad(η)ξ = ηξ−ξη

Thus ad η = [η,−], and in fact, this holds in general:

Proposition 3.3.1

For all Lie groups G, the adjoint representation of g is given by

ad(η) = [η,−]

where [−,−] is the Lie bracket on g.

Proof : We may realize ad(η) as a mixed partial derivative using the definition of

Ad:

ad(η)ξ =
∂2

∂s∂t

∣∣∣∣
(0,0)

log(exp(sη) exp(tξ) exp(−sη))

in logarithmic coordinates. On the other hand, we have

[η, ξ] =
∂2

∂s∂t

∣∣∣∣
(0,0)

log(exp(sη) exp(tξ) exp(−sη) exp(−tξ))

and we may expand

exp(sη) exp(tξ) exp(−sη) exp(−tξ) = exp
(
st[η, ξ] + o(t2, s2)

)
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so

exp(sη) exp(tξ) exp(−sη) = exp
(
st[η, ξ] + o(s2, t2)

)
exp(tξ)

and the two expressions have the same st term in their expansion. ■

This definition of [−,−] gives another proof of the Jacobi identity:

[[ξ, η], ζ] = [ξ, [, η, ζ]]− [η, [ξ, ζ]]

via ad ξ ◦ ad η − ad η ◦ ad ξ = ad[ξ, η], and then apply skew-symmetry.

Differential Geometry Perspectives

Yet another perspective on the Lie bracket comes from differential geome-

try; in particular, it arises as a specialization of the Lie derivative, which

has a very general definition which we will explore in some specific cases.

Let M be a manifold, OM the RR-algebra of smooth functions M → R.
Let X be a vector field on M , then X generates a (short-time, at least)

flow ϕXt ∈ Diff(M) via the ODE

d

dt
ϕXt (x) = X(ϕXt (x))

where x 7→ ϕXt (x) is an integral curve for X through the point x. Short time depends on your definition

of small (and on M , obviously). When

M is compact (without boundary?) we
have flows for all time. Tim refers to

“small-time” as “weasel words.”

Diff(M) then acts on OM by pullbacks (today, a right action):

f · ϕ = ϕ∗f = f ◦ ϕ

where ϕ ∈ Diff(M) and f ∈ OM . Then, the Lie derivative along the vector

field X of the function f is given by

LXf =
d

dt

∣∣∣∣
t=0

f · ϕXt

which one can check is well-defined and natural with respect to diffeomor-

phisms.

In fact, one can show that LXf = df(X) (where the previous, abstract

definition is a special case of the broader notion of a Lie derivative). To

see this, we work in coordinates at 0 ∈ U ⊆ Rn so that we can write

X : U → Rn and ϕXt (0) = 0 + tX0 + O(t2) where X0 is the value of X at

the point 0, from which the result follows after some calculation. Tim asks us here if we want to see the
calculation, but no one speaks up. I did

want to see it but I was a coward.
Diff(M) also acts on Vect(M) on the right via

(X · ϕ)x = Dϕ−1(Xϕ(x))
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so we have a Lie derivative on vector fields Y is given by

LXY =
d

dt

∣∣∣∣
t=0

Y · ϕtX

On the other hand, we have the bracket of vector fields; thinking of vector

fields X,Y as derivations of OM (i.e., locally partial differential operators

or directional derivatives) we may define

[X,Y ]f = X(Y (f))− Y (X(f))

In a coordinate chart with coordinates xi, X and Y are R-linear combina-

tions of the ∂
∂xi , and by a similar calculation to the above, one can show

that LXY = [X,Y ]. Tim offers an abstract perspective on
this; for k a commutative ring, A

an associative k-algebra, we may de-

fine Derk(A) to be the vector space of
derivations, i.e., k-linear maps δ : A →
A satisfying the Leibniz rule

δ(ab) = δ(a)b+ aδ(b)

The commutator of derivations is itself

a derivation, so Derk(A) is a Lie al-

gebra. When k = R and A = OM ,
DerR(OM ) = Vect(M).

I guess the punchline of this is that the
fact that our derivations happen to cor-

respond to vector fields is not the fun-

damental reason why they come with
a bracket operation? Abstract deriva-

tions form a Lie algebra.

Lecture 16: October 9th

There is a nice geometric interpretation of the Lie bracket of vector fields:

Theorem 3.4.1

[X,Y ] =
1

2

d2

dt2

∣∣∣∣
t=0

ΦX
t ◦ ΦY

t ◦ ΦX
−t ◦ ΦY

−t

In other words, [X,Y ] measures the failure of the local flows of X and Y to

commute. If X and Y are coordinate vector fields locally at some point i.e.

X = ∂
∂x and Y = ∂

∂y for x, y coordinates in a local chart, then [X,Y ] = 0

by equality of mixed partial derivatives. In general however, flowing along

X for some small time t, then Y , then −X, and finally −Y , we obtain some

small nonzero vector which is exactly the value of the vector field [X,Y ] at

the given starting point.

Note that d
dt

∣∣∣∣
t=0

of the above expression vanishes; this is evident alge-

braically but can be seen geometrically since taking a single time derivative

does not give you the latitude to flow along X then Y , there are only

terms corresponding to flowing along X then −X (or Y and −Y ) and this

obviously cancels.

Sketch : In a chart centered at 0 ∈ Rn, we may set ϕt := ΦX
t and ψt := ΦY

t , and

define

A(t) := ψ−t(0) B(t) := ϕ−t(A(t)) C(t) := ψt(B(t)) E(t) := ϕt(C(t)) = ΦX
t ΦY

t Φ
X
−tΦ

Y
−t(0)

Evaluating the second time derivative of this final expression obtains our

result. ■

Specializing to the case M = G a Lie group, we have Vect(G)G ⊆ Vect(G)

the space of G-invariant vector fields, which is closed under the bracket

[−,−], so we get another bracket on g = Vect(G)G which coincides with

the others by the above theorem. Since exp describes the flow associated
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to some left-invariant vector fields ξ, η, we have

ξ ◦ η − η ◦ ξ = 1

2

d2

dt2

∣∣∣∣
t=0

exp(tξ) exp(tη) exp(−tξ) exp(−tη)

which matches the above expression of the bracket and the previous de-

scription of [−,−] as the quadratic approximation to the commutator in

logarithmic coordinates.

Thus, we now have five different points of view on the Lie bracket:

• it is the leading (quadratic) term in the Taylor expansion of the commu-

tator map for G, in logarithmic coordinates

• it is (twice) the quadratic term in the expansion of group multiplication

near the identity, in logarithmic coordinates

• it is related to ad the derivative of the adjoint action via naturality

• it is the bracket (commutator) of left-invariant vector fields on G

• it is the Lie derivative of one vector field along another
Associated to these different points of

view, we also have three proofs of the
Jacobi identity; from the Hall-Witt

identity, from the naturality of ad, and

from the fact that the bracket of vec-
tor fields automatically satisfies the Ja-

cobi identity and it turns out that all of

our Lie algebras can be identified with
spaces of vector fields.

Invariant Bilinear Forms

Set g := LG = (TeG, [−,−]).

Definition 3.5.1: Invariant Bilinear Forms

A bilinear form (−,−) : g× g → R is called G-invariant if

(Ad(g)x,Ad(g)y) = (x, y)

and is called g-invariant if

(ad(ξ)x, y) + (x, ad(ξ)y) = 0

Note that G invariance implies g-invariance by differentiating the first equa-

tion. If G is connected, the converse is true.

Example 3.5.2: The (Cartan-)Killing Form

The Cartan-Killing or (more commonly) Killing form is a g-invariant

form on any finite dimensional Lie algebra g given by

κg(x, y) = Tr(ad(x) ◦ ad(y)) = Tr(z 7→ [x, [y, z]])

κg is evidently bilinear and symmetric since TrAB = TrBA. κg is

also natural with respect to Lie algebra isomorphisms.
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In the case where g = LG and our Lie algebra isomorphism θ =

Ad(g) : g
∼−→ g, we see that naturality implies that κg is G-invariant.

Example 3.5.3: su(2) Killing Form

su(2) has a classical basis given by the Pauli matrices σ1, σ2, σ3

which satisfy commutation relations

[σi, σj ] =
∑
k

εijkσk

for εijk the Levi-Civita symbol that gives the sign of the permutation

ijk; note that the sum on the right hand side contains only one

term when i ̸= j. A quick calculation in these coordinates (using

symmetry of the indices) gives us that

Tr(adσi ◦ adσj) = −2δij

so

κsu(2)

∑
i

aiσi,
∑
j

bjσj

 = −2a · b

which is negative definite.

We used a slightly modified version of

κsu(2) in our proof of Proposition ??

where the coefficient of Tr(AB) is − 1
2

rather than −2 in order to make the
Pauli matrices orthonormal with re-

spect to the form.

One definition of a nilpotent Lie algebra is that adx is nilpotent endomor-

phism for all x ∈ g, so κ(x, x) = 0 for all x in a nilpotent Lie algebra, so

κ = 0. Moreover, If G is compact with discrete center then κg is negative

definite. Thus, the Killing form reflects some interesting properties of g. Lecture 17: October 11th

Example 3.5.4: sl2(R) Killing Form

We give the following basis for sl2(R):

e =

(
0 1

0 0

)
f =

(
0 0

1 0

)
h =

(
1 0

0 −1

)

In this basis, we may check that κsl2(R) has matrix

κsl2(R) = 4

0 1 0

1 0 0

0 0 2


which is non-degenerate and indefinite (note that SL2(R) is non-

compact).

Generalizing these examples, we have the following:
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Theorem 3.5.5

For G a compact Lie group with Lie algebra g with Z(g) = 0 (where

Z(g) := {x ∈ g : adx = 0}), κg is negative definite.
There is a moderate converse to this

theorem that we will develop.Proof : G acts on g via Ad, and since G is compact, we can find a G-invariant

positive definite inner product (−,−) on g (by averaging, as in the unitary

trick). Let e1, · · · , en be an orthonormal basis with respect to this inner

product. We want to show that for 0 ̸= x ∈ g, Tr ad(x)2 < 0:

Tr ad(x)2 =
∑
i

(ad(x)2ei, ei) =
∑
i

(ad(x)ei, ad
∗(x)ei) = −

∑
i

(ad(x)ei, ad(x)ei) = −
∑
i

∥ ad(x)ei∥2

where we use the fact that, since (−,−) is Ad-invariant, it is ad-invariant

i.e. (ad(x)e, e′) + (e, ad(x)e′) = 0 by definition, so ad∗ = − ad.

The final term above is clearly negative if ad(x) ̸= 0, but Z(g) = 0 so

x ̸= 0 =⇒ ad(x) ̸= 0, so we are done. ■

Normal Embedded Subgroups

Given an embedded Lie subgroupH ⊆ G we have h ⊆ g a Lie subalgebra i.e.

one which is closed under the bracket, [h, h] ⊆ h. If H is normal in G, then

conjugation by g ∈ G preserves H, i.e., Ad(G) preserves h. Differentiating

this action we find that ad(g) also preserves h, so [g, h] ⊆ h. This motivates

the following definition:

Definition 3.6.1: Ideals

Let g be a k-Lie algebra, then an ideal a ⊆ g is a k-submodule a

such that [g, a] ⊆ a.
Tim remarks that something with no

ideals should be called perhaps amoral
or cynical rather than simple.Thus, if g has no nontrivial ideals then G has no normal subgroups of

positive dimension. A Lie algebra with no nontrivial ideals is called simple,

analogously to the adjective for groups.

For example, one can check that su(2) is simple so SU(2) has no positive

dimensional closed normal subgroups. Note that this does not imply that

SU(2) is simple (it is not) since the Lie algebra does not detect e.g. discrete

subgroups of SU(2).

By contrast, consider a composition series

⟨e⟩ = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G

for a solvable Lie group G where Gi ◁ Gi+1 and Gi+1/G is an abelian Lie

group. Then the corresponding series of Lie algebras

0 = g0 ⊆ g1 ⊆ · · · ⊆ gn = g
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with [gi+1, gi] ⊆ gi and gi+1/gi abelian (i.e. with trivial bracket). A Lie

algebra admitting such a chain is called solvable (as is a Lie group admitting

the corresponding chain). The notions of solvability, nilpotence,

along with the related notions of sim-
plicity and semisimplicity are key to the

study of Lie algebras, and will occupy

the next few lectures.
Nilpotent and Solvable Lie Algebras

Definition 3.7.1: Nilpotence

A Lie algebra g is nilpotent if there exists a natural number m such

that

ad(x1) ◦ · · · ◦ ad(xm) = 0

for any xi ∈ g. Setting C1g = g and Ck+1g = [g, Ckg] to be the

lower central series for g, a decreasing sequence of ideals, then an

equivalent formulation for nilpotence is that the lower central series

terminates.
Somehow, a flag here doesn’t seem
more elegant to me than a matrix

computation since the complete flag in

question is coming from an ordered ba-
sis.

Our basic model for a nilpotent Lie algebra will be the following:

Example 3.7.2

Let N ⊆ GLn(R) be the group of upper triangular matrices with

1s on the diagonal, whose Lie algebra n consists of strictly up-

per triangular matrices; n is evidently nilpotent either by explicit

matrix calculations or by consideration of the standard complete

flag in Rn associated to the ordered basis e1, · · · , en, where F i =

span(e1, · · · , en) and by noting that ad(n)F i ⊆ F i−1.

Note that the adjoint representation of n is here indecomposable —

not the direct sum of invariant subspaces — but not irreducible.

In fact, many of the features of a generic nilpotent algebra are present in

this basic example:

Theorem 3.7.3: Engel

The following are equivalent:

1. g is nilpotent

2. ad(x) is a nilpotent endomorphism for all x ∈ g

3. There exists a complete flag 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ Fn = g with

dimF i = i and ad(g)(F i) ⊆ F i−1.

Sketch : (1) =⇒ (2) is trivial, and (3) =⇒ (1) is clear since it shows that g has

nilpotence degree at most n. The difficult part is (2) =⇒ (3); one can
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easily find a filtration preserved by ad(x) once x is specified, but the point

is to find a filtration that works for all x. The complete proof can be found

in Serre’s Lie Algebras and Lie Groups, Chapter V. ■

Lecture 18: October 14th

Remark 3.7.4

Using the Baker-Campbell-Hausdorff formula

log(expx · exp y) = x+ y +
1

2
[x, y] +

1

12
([x, [x, y]] + [y, [y, x]]) + · · ·

one gets for g nilpotent, a polynomial formula for a Lie group law

on the Lie algebra g, i.e., we may realize a Lie group G with given

nilpotent Lie algebra by an explicit formula G ∼= g.

Definition 3.7.5: Solvability

Let D1g = g, Dk+1g = [Dkg, Dkg] be the derived series for g. Note

that Dkg ⊆ Ckg and the Dk+1g are ideals in Dkg. We say that g is

solvable if the derived series terminates.

Since Dkg ⊆ Ckg, nilpotence implies solvability. Just as Engel’s theorem

tells us that all nilpotent Lie algebras are not too far from our basic example

of upper triangular matrices, the standard example for a Lie algebra that is

solvable but not nilpotent is the Borel subalgebra b of gln(R) which consists

of all upper triangular matrices (with diagonal entries not necessarily 0).

Since [b, b] = u, b is evidently solvable.

An equivalent condition for solvability is the existence of a chain of subal-

gebras

g = a1 ⊇ a2 ⊇ · · · ⊇ an−1 ⊇ an = 0

where ai+1 is ideal in ai and ai/ai+1 is abelian (take ai = Dig); this gives

us our counterpart to Engel’s theorem for solvable Lie algebras:

Theorem 3.7.6: Lie’s Theorem on Solvability

Let g be a finite dimensional Lie algebra over k = k of characteristic

0. Then, g is solvable iff there exists a complete flag F i in g such

that ad(g)F i ⊆ F i.
Morally, this shows that solvable Lie
algebras are basically upper triangular

matrices as in our first example.The proof that g is solvable if such a flag exists is essentially the proof

that b is solvable, the hard direction is that if g is solvable, such a flag

exists. The idea is similar to the difficult step of Engel’s theorem, to find a

simultaneous eigenvector v ∈ g for ad(x) as x varies over g.

There is another criterion for solvability that is captured by the (Cartan-

)Killing form:
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Theorem 3.7.7: Cartan’s Criterion for Solvability

Let g be a finite dimensional Lie algebra over a field k of character-

istic 0; then g is solvable iff κg(x, [y, z]) = 0 for all x, y, z ∈ g.

Sketch : If g is solvable, it preserves some complete flag F i (over k) by Lie’s the-

orem, so ad induces an action of g on each line F i/F i−1 which is neces-

sarily an action by scalars, so ad[y, z] = ad y ad z − ad z ad y necessarily

annihilates each such line, i.e., ad[y, z](F i) ⊆ F i−1 which implies that

ad(x) ◦ ad[y, z](F i) ⊆ F i−1. Picking a basis v1, · · · , vn for g so that

F i/F i−1 = span(vi), we see that for an endomorphism A preserving the

flag, TrA is the sum of the scalars by which A acts on F i/F i−1, hence

Tr(ad(x) ◦ ad[y, z]) = 0 for all x, y, z.

The converse is trickier; suppose tr(adx ◦ ad[y, z]) is identically 0, then we

want to prove that ad[y, z] is always nilpotent in End g which implies that

[g, g] is nilpotent by Engel, hence g is solvable. The tricky point is to show

that ad[y, z] is nilpotent; a reference as above is Serre (op. cit.). ■
Allegedly the linear algebra lemma

used to prove the converse is the fol-

lowing:

Lemma 3.7.8

Let V be a finite dimensional
vector space over a field k of

characteristic 0, V ⊇ V ′ ⊇ V ′′

subspaces. Let g = EndV ,
h ⊆ g given by h = {X ∈ g :

X(V ′) ⊆ V ′′}. If X ∈ h and

Tr(XY ) = 0 for all Y ∈ h, then
X is nilpotent.

Simple, Semisimple, and Reductive Lie algebras

Note that if g = g1 ⊕ · · · ⊕ gk where the gi are ideals of g, then for i ̸= j

[gi, gj ] ⊆ gi ∩ gj = 0.

Definition 3.8.1: (Semi)Simplicity and Reductivity

Let g be a Lie algebra over a field k, then g is simple if its only

ideals are 0 and g and it is not abelian (i.e, the bracket does not

vanish identically). g is semisimple if it is the finite direct sum of

simple ideals. g is reductive if g = s ⊕ a where s is semisimple and

a is abelian.

Someone asks about reductive groups
(there is a running joke about the al-

gebraic geometers/Langlands theorists

being unwilling to define a reductive
group other than by giving various ex-

amples) and Tim says that if a Lie

group G is connected, any adjective of
its Lie algebra is an adjective of the

group, but consciously refuses to ex-

plain what happens when G is discon-
nected.

Thus an abelian Lie algebra is reductive but not semisimple.

Example 3.8.2

gln(k) = sln(k)⊕kI where kI refers to the scalar matrices, so gln(k)

is reductive, as it turns out that sln(k) is semisimple. Similarly,

u(n) = su(n)⊕ RI so u(n) is reductive, and su(n) is simple.
Lecture 19: October 16th

The notions of simplicity, semisimplicity and reductivity can be rephrased

in terms of representations; g is simple iff ad is a nontrivial irreducible

representation (recall that a Lie algebra representation is a map θ : g →
EndV that respects brackets). g is semisimple iff ad is completely reducible

(a direct sum of irreducibles) with no trivial summands. g is reductive iff
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ad is completely reducible (possibly with some trivial summands). Here we just list some basic and easy
results about these adjectives. I have

changed some of the lemmas to propo-

sitions to make the coloring more inter-
esting.

Proposition 3.8.3

If K is a compact connected Lie group, then K is reductive.

Proof : We showed in Exercise 2.10.3 that every representation of K is completely

reducible, so Ad is and therefore ad is, and we are done (the key point is

compactness). ■

Lemma 3.8.4

If g is semisimple, then [g, g] = g.

Proof : As noted above, if g = g1 ⊕ · · · ⊕ gk where the gi are ideals of g, then for

i ̸= j [gi, gj ] ⊆ gi ∩ gj = 0, so we may pass to the case where g is simple, in

which case [g, g] is an ideal, and thus equal to 0 or g. If [g, g] = 0 then g is

abelian, so [g, g] = g. ■

Proposition 3.8.5

For g semisimple, the decopmosition into simple ideals is unique.
The proof is omitted.

Lemma 3.8.6

If g admits and ad-invariant non-degenerate symmetric bilinear form

σ : g × g → k, then g is reductive (and remains reductive after

extension of scalars to a larger field).
The bit about extending scalars was
not in lecture, but added to the notes

after the fact as it became necessary

when we were discussing the semisim-
plicity of sln(C).

Proof : The key idea is that we may use σ to give us orthogonal complements

to decompose g into irreducible summands gi. Extend scalars to K/k; σ

remains non-degenerate and ad-invariant. Note that any ideal a in g has an

orthogonal complement from σ and non-degeneracy implies that g = a⊕a⊥,

so induction on the dimension of g gives the desired decomposition of g into

simple an abelian ideals. ■

We have a preferred ad-invariant form as above (κg) and, in fact, one can

show that its non-degeneracy gives us something stronger than reductivity:

Theorem 3.8.7: Cartan’s Criteria for Semisimplicity

Let k be a field of characteristic 0, g a Lie algebra over k. The

following are equivalent:

1. g is semisimple

2. The radical rad(g) is zero

3. The Cartan-Killing form κg is non-degenerate
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Proof : Note that rad(g) is defined as the (unique) largest solvable ideal in g (it is

an exercise to show that this is well-defined). In the step 1. =⇒ 2., we use the

fact that the unique decomposition of

a semisimple Lie algebra g = ⊕igi into
simple ideals implies that any ideal in

g is a sum of the gi and therefore itself

semisimple.

1. =⇒ 2. Suppose s ⊆ g is solvable; one can show that any ideal in a semisimple

Lie algebra is itself semisimple, so [s, s] = s by Lemma 3.8.4, so the

derived series cannot terminate unless s = 0.

Apparently the radical of a bilinear

form B is defined by {x : B(x,−) = 0}.

2. =⇒ 3. Assuming rad(g) = 0, set r = {x ∈ g : κg(x,−) = 0}, which is the

radical of the Cartan-Killing form. We want r = 0, which is equiva-

lent (over a field) to non-degeneracy of κg. First, we claim that r is an

ideal: if κg(x,−) = 0 (i.e. x ∈ r), y ∈ g, then we want [y, x] ∈ r. By

ad-invariance, κg(x, ad(y)z) + κg(ad(y)x, z) = 0 and the former term

vanishes by assumption so κg(ad(y)x, z) = κg([y, x], z) = 0 with z arbi-

trary, so r is an ideal.

Next, we use the fact (this is easy to check) that for any ideal h, κg|h = κh

so κg|r = κr. But κg|r = 0 by construction, so we may apply Cartan’s

criterion for solvability (Theorem 3.7.7) which implies that r is solvable

hence 0 since rad(g) = 0.

3. =⇒ 1. By the above lemma, non-degeneracy of κg implies that g is at least

reductive. If g has no nontrivial abelian ideals, then it is semisimple

and one can quickly check that the existence of non-trivial abelian ideal

makes κg degenerate. ■

The deep part of this theorem is that a semisimple Lie algebra always has

a non-degenerate Cartan-Killing form, since this result depends both on

Cartan’s criterion for solvability and the theorems of Engel and Lie. The

non-degeneracy of the Cartan-Killing form is essential to the classification

of semisimple complex Lie algebras.

Corollary 3.8.8

If K/k is a field extension of characteristic zero fields, and g is a Lie

algebra over k, then g is semisimple iff g⊗kK is semisimple over K.
We use the above fact that extension

of scalars preserves κ and its non-
degeneracy.Example 3.8.9

On sln(R) it is straightforward to check that there are no nontrivial

abelian ideals. Let σ(X,Y ) = Tr(XY ) (essentially the Killing form

up to a constant) which is Ad-invariant hence ad-invariant. We may

calculate that

σ(X,XT ) = Tr
(
XXT

)
=
∑
i,j

x2ij > 0

for X ̸= 0 so sln(R) is semisimple.

In fact sln(R) is simple for n ≥ 2.
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Example 3.8.10

sln(C) = sln(R)⊗C is semisimple over C since sln(R) is semisimple

over R.

Example 3.8.11

su(n) is semisimple since su(n)⊗ C = sln(C) is semisimple.

Compact Lie Groups

By Proposition 3.8.3, we know that a compact Lie group K has reductive

Lie algebra, k = s⊕ a and κ(a,−) = 0. In fact, we can say a little more:

Theorem 3.8.12

If k is the Lie algebra of a compact Lie group K, then k = s ⊕ a is

reductive and the Cartan-Killing form on s is negative-definite.
The proof is similar to that of Theo-

rem 3.5.5 and is omitted.

There is a converse to this as follows:

Theorem 3.8.13

If G is a connected Lie group whose Cartan-Killing form is defi-

nite, then Z(G) is discrete (and in fact finite), G is semisimple, and

G/Z(G) is compact (and therefore κg is in fact negative-definite).

I missed yet another lecture so I’m not
sure what that’s in the notes was actu-

ally covered in class.Sketch : We have a homomorphism Ad : G→ O(g, κg) whose kernel Z(G) is discrete

(since, otherwise ad would have non-trivial kernel and κg would therefore be

degenerate), and we may deduce semisimplicity of G from Cartan’s criteria.

The tricky part is to show that G/Z(G) = ImAd is compact.

Since O(g, κg) is compact, its closed subgroups are compact, so we need

to show that ImAd is closed. One shows this by identifying ImAd with

(Aut g)0 (which denotes the identity component of the automorphisms of

g) using derivations. ■

The Lie Group-Lie Algebra Correspondence

Lecture 20: October 21st

We are now finally ready to give the equivalence of categories between Lie

algebras and Lie groups, decorated with the right adjectives.

Local Lie Groups
This definition is cooked up to cap-

ture the structure of the “germ of a
Lie group” near the identity. I suppose

germ of a Lie group should just mean

the germs of the multiplicative and in-
vertible structures as maps.
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Definition 3.9.1: Local Lie Groups

A local Lie group is a finite-dimensional manifold Γ together with

a point e ∈ Γ, an open neighborhood U ∋ e and smooth maps

µ : U ×U → Γ (multiplication) and ι : U → U (inversion) such that

the following identities hold for some neighborhood V of e (with

µ(V × V ) ⊆ V ):

1. µ(x, e) = x = µ(e, x) for all x ∈ V (identity)

2. µ(x, ι(x)) = e = µ(ι(x), x) for all x ∈ V (inverses)

3. µ(x, µ(y, z)) = µ(µ(x, y), z) for all x, y, z ∈ V (associativity)

A homomorphism of local Lie groups f : Γ 99K Γ′ is a smooth map

defined on some open neighborhood of e ∈ Γ such that f(e) = e′ and

f(µ(x, y)) = µ′(f(x), f(y)) holds near e. Two such homomorphisms

are considered equivalent if they agree in some neighborhood of e.

A local isomorphism of local Lie groups is a homomorphism f : Γ →
Γ′ such that there exists a local homomorphism g : Γ′ → Γ so that

fg and gf are equivalent to the appropriate identity maps.

A lie groupG is evidently a local Lie group with no need to fuss about neigh-

borhoods. Local Lie groups form a category LieGroupsloc and we can evi-

dently still define the Lie algebra functor L : LieGroupsloc → LieAlgebrasR
where the target category is the category of finite-dimensional real Lie al-

gebras.

Categorical Interlude
An alternative characterization of an

equivalence of categories (which is tech-
nically a lemma, but is often given as a
definition) is that F is fully faithful (in-

jective and surjective, respectively, on
Hom-sets) and essentially surjective on

objects (for every object b ∈ B there

exists a ∈ A so that F (a) ∼= b).

Definition 3.9.2: Equivalence of Categories

A functor F : A → B is called an equivalence of categories if there

exists a functor G : B → A so that FG and GF are both naturally

isomorphic to the appropriate identity functors.

The Correspondence Theorems

We have three categories in play: LieGroupssc of simply connected Lie

groups, LieGroupsloc, and LieAlgebrasR (everything is finite dimensional).

Our main result is that all these categories are equivalent:

Theorem 3.9.3

The following functors are equivalences of categories:
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local The functor L : LieGroupsloc → LieAlgebrasR

local-global The forgetful functor LieGroupssc → LieGroupsloc

global The functor L : LieGroupssc → LieAlgebrasR
Since the third functor is the compos-
ite of the first two, if they are equiv-

alences, so is it (this is the reason to
introduce local Lie groups in the first

place, as a stepping stone in the proof

of the global correspondence, which is
the one we care about).

These assertions apply to real Lie groups and real Lie algebras, but the same

general principles will give an analogous result for complex Lie groups and

complex Lie algebras, mutatis mutandis.

The Baker-Campbell-Hausdorff Formula
We will vaguely invoke the BCH for-

mula below so we are introducing it
here, though it will receive a more full

treatment later in the course (hope-

fully).

Theorem 3.9.4: Baker-Campbell-Hausdorff

For any Lie group G there is an identity

logG(expG x · expG y) =
∑
n≥1

mn(x, y)

valid for x, y in a neighborhood of 0 ∈ g on which expG is a dif-

feomorphism onto its image and on which the series
∑

n≥1mn is

absolutely convergent with respect to a chosen norm on g. mn(x, y)

is a Q-linear combination of terms of the form

(adx)i1 ◦ (ad y)j1 ◦ · · · ◦ (adx)ik ◦ (ad y)jk(x)
or (adx)i1 ◦ (ad y)j1 ◦ · · · ◦ (adx)ik(y)

where k ≤ n, ia, ja ≥ 1 (except i1 can be 0), and
∑

a ia+
∑

a ja = n.

Moreover, the coefficients of mn are independent of the group G.

The first few terms for mn are as follows:

m1(x, y) = x+ y m2(x, y) =
1

2
[x, y] m3(x, y) =

1

12
([x, [x, y]] + [y, [y, x]])

Thus, to second order, expG x · expG y = expG(x + y + 1
2 [x, y]), so there

are correction terms for the näıve non-identity expx · exp y = exp(x+ y)

which holds for x, y ∈ C. There are explicit formulae for the mn, one of

which is called Dynkin’s formula (which we will cover in this course, time

permitting).

Sketching the Correspondences
Lecture 21: October 23rd

Proposition 3.9.5

The functor L : LieGroupsloc → LieAlgebrasR is full.

Sketch : I.e., every map of real Lie algebras is the derivative of a map of local Lie

groups. The idea is (as always) to use the exponential map: let θ : LΓ →
LΓ′ be any such map in the target category, and note that expΓ maps a
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neighborhood U of 0 ∈ g diffeomorphically onto a neighborhood of e ∈ Γ,

and set Θ = expΓ ◦ θ ◦ logΓ. This is a smooth map and its derivative at e is

precisely θ (it’s not entirely obvious that this is a homomorphism, but this

is where we use the BCH formula, as the terms mn in the BCH series are

preserved by Θ). ■

Note that for nilpotent Lie algebras,

the BCH series terminates i.e. is a
polynomial, and we get a global Lie

group structure via this construction,
not just a local one.

We can convert the “inverse” functor BCH : LieAlgebrasR → LieGroupsloc
using Dynkin’s explicit formula for the Baker-Campbell-Hausdorff expan-

sion by viewing the formula as the definition of a local Lie group structure

for a given Lie algebra. One shows the resulting structure is associative,

unital, and admits inverses. Proving absolute convergence of the series is

required for this, which requires Dynkin’s formula. The exponential map

for the resulting local Lie group is then precisely exp(x) =
∑

n≥0
xn

n! and

given a map θ of Lie algebras, we can define Θ a map of local Lie groups

by Θ(expx) = exp(θ(x)) as above.

Proposition 3.9.6

The forgetful functor LieGroupssc → LieGroupsloc is full.

Tim gives a sketch of the proof of this

result, but I have omitted it because I
honestly don’t care if we’re not going

to finish proving it.

There’s also some discussion about the

“flight recorder” method for establish-

ing an inverse to L : LieGroupssc →
LieAlgebrasR in which the Lie group is

constructed as a path space in the Lie

algebra modulo a certain equivalence
relation. We may see this later in the

semester, time permitting.

Corollary 3.9.7

The functor L : LieGroupssc → LieAlgebrasR is full.

For essential surjectivity, one strategy is the closed subgroup method; i.e.,

for g = LG, h a subalgebra, one wishes to prove that h is the Lie algebra of

a Lie immersion H → G (and indeed this is true). The first approximation

to H is exp h which is almost correct, but it may not be closed (as we

have seen, it could even be dense), so one has to construct H from exp h

in a slightly more complicated way (this is related to the way in which

one argues that the leaves of a foliation are immersed submanifolds). One

then applies a hard result known as Ado’s theorem which says that any Lie

algebra g embeds as a Lie subalgebra of a linear Lie algebra EndV .

For faithfulness, one of the cases is han-

dled by Theorem 2.11.7 by naturality of
exp, and the local version is more or less

the same since the derivative of a given

map only sees the germ of the Lie group
anyway. In any case, the functor we

are interested in is faithful so the local

versions are less important, as, again,
for us, the local Lie groups are only of

interest as they make proving the cor-
respondence easier.Exceptional Isomorphisms

Lecture 22: October 25th

We have the following 3-dimensional Lie groups: SO(3), SU(2), Sp(1)

(which are compact), and SL2(R), Sp2(R), SL1(H), SO(2, 1)0, and SU(1, 1)

(which are non-compact). Unsurprisingly, there are some redundancies in

this list (Sp(1) = SU(2) which double covers SO(3)), which will be the focus

of our discussion today. One can pursue the search for excep-

tional isomorphisms by starting with

dimension (as we do here), although
this is very coarse; one can do much

better using Dynkin diagrams (we

should see some of this later).
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Theorem 3.10.1

We have the following isomorphisms of complex classical groups:

• Spin3(C) ∼= SL2(C) ∼= Sp2(C)

• Spin4(C) ∼= Spin3(C)× Spin3(C)

• Spin5(C) ∼= Sp4(C)

• Spin6(C) ∼= SL4(C)

We have the following isomorphisms of compact classical groups:

• Spin(3) ∼= SU(2) ∼= Sp(1)

• Spin(4) ∼= Spin(3)× Spin(3)

• Spin(5) ∼= Sp(2)

• Spin(6) ∼= SU(3)

Recall that π1 SO(n) = Z/2 for n > 2 and Z for n = 2, and Spin(n) is

the unique double cover of SO(n). Recall also that SO(n) ↪→ SOn(C) is

a homotopy equivalence (i.e. SO(n) is a deformation retract of SOn(C))
by polar decopmosition, so π1 SO(n) = π1 SOn(C) and thus SOn(C) has a
unique double cover called Spinn(C). It will essentially suffice to prove Spin3(C) is the double cover of SO3(C),

which we can show is isomorphic to
SL2(C)/± I from which it follows that

Spin3(C) ∼= SL2(C). Most of the proofs
of these exceptional isomorphisms are

of this flavor.

the isomorphisms of the complex spin groups, and the latter list will follow

by arguing that isomorphic complex Lie groups have isomorphic real forms.

For the former list, it will in fact essentially suffice to show that Spin6(C) ∼=
SL4(C), and filter this isomorphism down to the lower Spin groups.

Theorem 3.10.2

The Lie algebras of the complex classical groups are all simple except

for SO4(C); moreover the simple Lie algebras sln(C) for n ≥ 2,

sp2n(C) for n ≥ 2, and son(C) for n ≥ 7 are all distinct.

Spin8(C) has an exceptional symme-
try; an outer automorphism of order

3 called “triality.” This is witnessed

in an evident order 3 symmetry of its
Dynkin diagram. Some googling tells
me that Spin(n) comes with two half-

spinor representations and a vector rep-
resentation (one which restricts to a

representation of SO(n)); triality per-
mutes these three for n = 8.

Therefore the above list of isomorphisms is essentially exhaustive.

Spin6(C) ∼= SL4(C)

We will not show the other isomor-
phisms in our list but they are gen-
erally variations on a theme. For ex-
ample, to show Spin5(C) ∼= Sp4(C),
we equip V a 4-dimensional C-vector
space with a symplectic form and there

is a similar calculation ultimately using

Lemma 2.5.9. Tim claims the remain-
ing isomorphisms are in fact restricted

versions of the one we prove here, but

I don’t see this.

Let V be a 4-dimensional C-vector space with volume form vol ∈ detV ;

fixing a basis e1, · · · , e4 we can take vol = e1 ∧ e2 ∧ e3 ∧ e4. SL4(C) has an
evident action on V , and from V we would like to produce a 6-dimensional

vector space on which Spin6(C) acts, namely, ∧2V which is spanned by

eij := ei ∧ ej for i < j. ∧2V carries a quadratic form q : ∧2V → C defined

by α ∧ α = q(α) vol. That SL4(C) respects this form is the content of the

claimed isomorphism.
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If A ∈ SL(V ), then

(∧2A)α ∧ (∧2A)α = (∧4A)(α ∧ α) = (detA)(α ∧ α) = α ∧ α

Thus, q((∧2A)α) vol = q(α) vol, so ∧2A preserves q and therefore we have

a homomorphism SL(V ) → SO(∧2V, q). We will show below that kerλ =

{±I}.

Inspecting ∧2V more closely, we have the following basis:

1√
2
(e12 ± e34)

1√
2
(e13 ± e24)

1√
2
(e41 ± e23)

Left to right, the elements corresponding to the + sign are labeled the αi

and the − sign are the βi, where one can check that the αi, βj are wedge-

orthogonal and that α2
i = 1, β2

i = −1. Note that, since q is non-degenerate,

restricting λ to the real form induces SL4(R) → SO(3, 3) (since the αi

square to 1 and the βi square to −1). Thus we have a homomorphism We didn’t say this in class but this im-

plies that Spin(3, 3) = SL4(R).λ : SL(V ) → SO(∧2V, q) given by λ(A) = ∧2A. Both Lie groups are

15-dimensional, so we should expect a discrete kernel:

Proposition 3.10.3

kerλ = {±I}.

Proof : Suppose A ∈ kerλ so ∧2A = id, so for any u, v, (∧2A)(u∧ v) = Au∧Av =

u ∧ v. Let P be the plane spanned by u, v, and note that u ∧ v fully

determines P (either by general geometric algebra or by setting P = {x ∈
V : x ∧ u ∧ v = 0}). Thus A ∈ kerλ preserves every plane P ⊆ V , so

it preserves all intersections of planes i.e. all lines, hence A is scalar, so

A = ±I. ■

Thus, by Lemma 2.5.9, we have that SL4(C)/{±I}
∼−→ SO6(C), and lifting

to universal covers gives the desired isomorphism.
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Lie Groups Fall 2024

Maximal Tori and Root Systems

Professor Tim Perutz Abhishek Shivkumar

Overview

Lecture 23: October 28th

LetG be a compact connected Lie group, thenG has an important subgroup

T , its maximal torus subgroup (as we will show).

Theorem 4.1.1

For T a maximal torus in G compact connected,

G =
⋃
g∈G

gTg−1

This generalizes e.g. the fact from linear algebra that unitary matrices

are diagonalizable by unitary matrices. This easily implies that any other

maximal torus T ′ is conjugate to T , so T is an invariant up to conjugacy

of G.

Towards these results we will examine the action of Ad |T : T → GL(g) (per-

haps after complexification) which will give us a decomposition g = t⊕j Pj

where the Pj are two-dimensional subspaces called the “root planes,” such

that for all t ∈ T , Ad(t)Pj = Pj and Ad(t) acts by rotation (with respect

to the Killing form) so we have homeomorphisms ρj : T → S1 s.t. Ad(t)|Pj

is rotation by ρj(t). Explicitly, there exists an oriented orthonormal (with

respect to the Killing form) basis u, v that is rotated by ρj (perhaps up to

sign).

The homomorphisms ±ρj : T → S1 = R/Z are called global roots of (G,T ),

and the computation of these roots for the compact classical groups will

be one of the major focuses for this chapter. We will introduce the Weyl

group of the pair (G,T ) which is the group of inner automorphisms of G

that preserve T . The following chapter will examine the geometry of roots

in further detail. We won’t get to any representation the-

ory this semester, unfortunately, but

Ben-Zvi and Mason-Brown are teach-
ing a two part course in representation

theory in the next academic year, which

is exciting.

There are four categories of interest in this chapter:

• compact simply-connected Lie groups K

• real negative-definite (referring to κ) Lie algebras k
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• simply connected semisimple complex Lie groups GC

• semisimple complex Lie algebras gC

We will have closely related classification results for all four of these cat-

egories, and these classifications are essentially all “the same.” The first

step to this classification is a product decomposition:

Proposition 4.1.2

If κk is negative-definite then k decomposes as a direct sum of its

simple ideals k = k1 ⊕ · · · ⊕ kn. The same is true for a complex

semisimple Lie algebra.
There’s some discussion about why we
don’t call real negative-definite Lie al-

gebras semisimple since they are di-

rect sums of simples. No clear an-
swer is given. The structure theory

seems to be worse in general over non-

algebraically-closed fields, perhaps this
is the reason.

Proposition 4.1.3

If K is a compact, simply connected Lie group, then there exist

subgroups K1, · · · ,Kn that are closed, simple, simply connected,

normal, and mutually commuting such that the mapK1×· · ·×Kn →
K is an isomorphism, and the Ki are unique up to ordering. The

same is true for a complex semisimple (simply connected) Lie group.

Sketch : The Lie algebra of Ki must be ki so we can realize ki as the Lie algebra of an

immersion ρi : K̃i → K with K̃i simply connected by our correspondence

theorems from the previous chapter. Then
∏

i ρi : K̃1 × · · · × K̃n → K is a

homomorphism since [ki, kj ] = 0 so the factors commute, and is in fact an

isomorphism of Lie groups via the correspondence theorem, and everything

else now follows for Ki = ρi(K̃i). ■

Theorem 4.1.4

The Lie algebra functors L on compact simply connected and com-

plex simply connected semisimple Lie groups are both equivalences

of categories; moreover, L respects product decompositions into sim-

ple factors.
Proof omitted since the only new fact

beyond our established correspondence
theorems is that a simply connected Lie

group is compact iff its Lie algebra has

negative-definite Killing form.

Lemma 4.1.5

There is a complexification functor − ⊗R C which takes negative-

definite real algebras to complex semisimple Lie algebras. This

functor respects product decompositions into simple factors, and

any complex semisimple Lie algebra g has a negative-definite real

Lie subalgebra k so that g = k⊕ ik so g = k⊗R C, and k is unique up

to (Aut g)0.
Proof omitted but only for the time be-

ing.
Theorem 4.1.6: Classification of simple Lie Algebras

Any complex simple Lie algebra g is isomorphic to one of the fol-

lowing:
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• An = sln+1(C) for n ≥ 1

• Bn = so2n+1(C) for n ≥ 2

• Cn = sp2n(C) for n ≥ 3

• Dn = so2n(C) for n ≥ 4

• one of E6, E7, E8, F4, or G2 (the exceptional Lie algebras)
Note that we have not yet constructed

the exceptional Lie algebras.

Passing to Lie groups via the correspondences gives us the classification

result for compact Lie groups, once we have constructed the exceptional Lie

groups and their Lie algebras. We could also consider similar classification

problems, such as:

• Compact Lie groups K up to local isomorphism: a compact connected

Lie group is locally isomorphic to A × S where A is abelian and S is

semisimple (for example, consider Spinc(4) = SU(2)×SU(2)×U(1)
±(1,1,1) which is

locally isomorphic to SU(2) × SU(2) × U(1) with obvious abelian and

semisimple factors).

• Reductive complex Lie groupsGC up to local isomorphism: the classifica-

tion will follow from the classification of reductive complex Lie algebras.

• Reductive complex Lie algebras gC: reductive complex lie algebras are

by definition of the form g = a⊕ s where s = [g, g] and a = Z(g) so the

above classification extends easily.

We can say slightly more about the first case of the above:

Proposition 4.1.7

Any compact connected Lie group K has a finite covering group

A× S → K where A is a torus and S is compact semisimple.

Maximal Tori

Lecture 24: October 30th

Recall that a torus is a Lie group isomorphic to T k = Rk/Zk which is

equivalent to a Lie group that is compact, connected, and abelian (non-

compact connected Lie groups are simply tori ×Rk). We have already

discussed tori that are topologically cyclic or monogenic i.e. G a topological

group is topologically cyclic if there exists g ∈ G s.t ⟨g⟩ = G.

There are two natural lattices (free abelian groups of maximal rank) we can

associate to an r-dimensional torus T : the lattice of characters Hom(T, S1),

and the lattice of cocharacters Hom(S1, T ). For example, let V be a vector
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space, Λ a maximal rank lattice, and set T = V/Λ. Any V ∨ ∋ λ : V → R
descends to a homomorphism T → S1 iff λ(Λ) ⊆ Z, so we have a map

Λ∗ = Hom(Λ,Z) ↪→ Hom(T, S1) into the character lattice. In fact, this

map is a bijection by naturality of the exponential map (or via a covering

space argument). The character lattice is also known as

the weight lattice.

We can build an inverse map Hom(T, S1) → Λ∗ ⊆ V ∗ by ρ 7→ (Deρ : TeT =

V → R) and show that this lands in Λ∗. There is a similar strategy for the

cocharacter lattice which we can identify with Λ.

The natural pairing Λ∗×Λ → Z is realized intrinsically (for T ) as Hom(T, S1)×
Hom(S1, T ) → Hom(S1, S1) = Z by composing the two homomorphisms. Tim relates this to a very specific case

of Langlands duality; in particular,

semisimple Lie groups G come with a
Langlands dual LG and one basic fea-

ture of Langlands duality is that the
character lattice of one is the cocharac-

ter lattice of the other.

Remark 4.2.1

Any sub-torus S ⊆ T can be realized as the intersection of the

kernels of those characters χ ∈ Hom(T, S1) = Λ∗ with χ(S) = 0.

Proposition 4.2.2

A vector v = (v1, · · · , vn) ∈ Rn generates a 1-parameter subgroup

Πn of Tn of dimension S where S = dimQ Q{v1, · · · , vn}.

Sketch : The key step is to represent S = exp(Rv) as an intersection of kernels of

characters as in the above remark. ■

Definition 4.2.3: Maximal Tori

A maximal torus T in a Lie group G is a torus subgroup such that

if T ⊆ T ′ for T ′ another torus subgroup, then T = T ′.

Lemma 4.2.4

A torus T ⊆ G with G compact is maximal iff its Lie algebra t is a

maximal abelian Lie subalgebra of g.

Proof : Suppose t is maximal. If we have T ′ ⊇ T with t′ ⊇ t, then t′ = t so T ′ = T .

If T is maximal, and we have t′ ⊇ t, set A = exp(t′). A (its closure) is then

a closed subgroup, so an embedded connected (since it is submanifold with

a dense path-connected subset) Lie subgroup of G. G compact implies A

is compact, and we know that A is abelian and connected, and therefore a

torus. T ⊆ A so T = A. ■

Proposition 4.2.5

Let G be a compact Lie group. Then, a maximal torus T exists and

if dimG > 0 then dimT > 0.
Why are we specifying dimG > 0?

What is a zero-dimensional Lie group?
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Proof : Recall that for G of positive dimension, Theorem 2.12.9 implies that G

admits an embedded torus subgroup of positive dimension. Take some

such torus T of maximal dimension; then T is maximal since if T ′ ⊇ T ,

they must have the same Lie algebra and are therefore equal. ■

Lemma 4.2.6: Maximality Criterion

For a subgroup H ⊆ G, define the invariant subspace of the Lie

algebra gH = {x ∈ g : AdH x = x}. A torus T ⊆ G with G compact

is maximal iff gT = t.
The proof is omitted but not too diffi-

cult.

The Road Not Taken
Tim quotes the Robert Frost poem.

We have taken the branch in the road towards compact Lie groups and their

maximal tori. The other branch considers complex semisimple/reductive

Lie algebras whose corresponding subobjects are maximal toral subalge-

bras. The stories are analogous but there are many technical differences.

Definition 4.2.7: Toral Subalgebras

Let g be a Lie algebra over a field k. A subalgebra t is called toral if

for every x ∈ t, adx ∈ End g is a semisimple endomorphism (i.e. it

is diagonalizable over k iff its minimal polynomial has no repeated

roots).

Toral implies abelian, and if k = k and g is reductive, then a non-zero

toral subalgebra exists. The latter fact is somewhat nontrivial to show;

one uses the fact from linear algebra that for g semisimple over k = k, any

x ∈ g decomposes uniquely as x = xs + xn where adxs is a semisimple

endomorphism and adxn is nilpotent, which comes from a sort of Jordan

decomposition (the Jordan-Chevalley decomposition).

Roots

Lecture 25: November 4th

Lemma 4.3.1

Let G be a compact abelian Lie group, ρ : G → GL(E) a represen-

tation on a finite dimensional complex vector space E. Then

E =
⊕
i

Ei

where each Ei is a complex line invariant under G and G acts on Ei

through a homomorphism ρi : G → U(1) i.e. ρ(g)ei = ρi(g)ei for

ei ∈ Ei. The ρi are called the weights of ρ.
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We want to apply this to Ad : G→ GL(gC) restricted to the maximal torus

T ⊆ G, which is evidently compact abelian, and where gC := g⊗R C is the

complexification. We may write gC as the direct sum of tC, on which T acts

trivially, and lines Ei = Cηi ⊆ gC on which Ad(t)ηi = ρi(t)ηi with weights

ρi : T → U(1).

Recalling our maximality criterion Lemma 4.2.6, T ⊆ G is maximal iff

gTC = tC, so for our maximal torus T , the homomorphisms ρi are non-

constant. Conversely, if we have such a decomposition gC = tC ⊕
⊕

iEi

where the ρi are nontrivial, then the torus T must be maximal. gTC = tC implies that the ρi are non-

constant since if some ρi is constant

then Ei is outside of tC but fixed by
Ad(T ).The Ei are called root spaces in gC, and the homomorphisms ρi : T →

U(1) are called global roots. We call these ρi global roots as we could also

consider ad : t → End gC which preserves the same lines Ei and acts as

ad(ξ)ηi = θi(ξ)ηi for ξ ∈ t and θi : t → iR ⊆ C the infinitesimal roots, and

where ρi ◦ exp = exp(θi) via the naturality of exp applied to Ad. The terminology roots for the ρi comes

from the fact that they are literally the
roots of the characteristic polynomial

of Ad(t), t ∈ T .Real Root Planes

If we do not complexify, Ad |T : T → GL(g) no longer decomposes into

eigenlines but does decompose into eigenplanes. The idea is that if ρi :

T → U(1) is a root of the complexification acting on the eigenline Cηi, so
is ρ−1

i = ρi acting on Cηi. Set u = ηi + ηi and v = i(ηi − ηi) both of which

are evidently invariant under conjugation and therefore lie in g ⊆ gC, and

set Pi = Ru⊕ Rv ⊆ g called a root plane.

The action is defined as follows: Ad(t)ηi = eiθi(t)ηi with θi : T → R, then

Ad(t)u = u cos θi(t) + v sin θi(t) Ad(t)v = u sin θi(t) + v cos θi(t)

There are a handful of natural objections to this construction:

1. The root planes are not well-defined if the eigenvalues of Ad t have mul-

tiplicity greater than 1; this can be quickly resolved by verifying that

the eigenvalues in fact always have multiplicity 1.

2. Rotation by θi(t) without reference to a form does not make sense; since

V is a two-dimensional real vector space, V ⊗RC = L⊕L, then rotation

of V by θ is meaningful as the rotation that induces the automorphism(
eiθ 0
0 e−iθ

)
on V ⊗R C.

3. θ versus −θ: we are taking two roots and calling them ρi and ρi but

the assignment of one of these as the actual root and the other as its

conjugate is arbitrary. This one turns out to be real, so we only get θ

up to sign.
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Roots of SU(2)

The maximal torus T of SU(2) consists of diagonal matrices of the form

D(θ) =
(

eiθ 0
0 e−iθ

)
so we can diagonalize the action of T on su(2) ⊗ C =

sl2(C). sl2(C) has an obvious basis

e =

(
0 1

0 0

)
f =

(
0 0

1 0

)
h =

(
1 0

0 −1

)

with the following relations:

[e, f ] = h [h, e] = 2e [h, f ] = −2f

Note that h ∈ t⊗ C, and the relations above show that e and f are eigen-

vectors for ad(h) with eigenvalues ±2 respectively. D = exp(iθh), so via

the naturality of exp, we have that Ad(D)e = exp(2iθ)e and Ad(D)f =

exp(−2iθ)f . Thus, we see that e and f each span a complex root space with

corresponding global roots ρ(D) = e2iθ and ρ(D) = e−2iθ. The maximality

criterion then implies that T is maximal.

There is one real root plane P = R⟨u, v⟩ with u =
(

0 1
−1 0

)
, v = ( 0 i

i 0 ) and

Ad(D) rotates P by ±2θ. Lecture 26: November 6th

Set t∗ = Hom(t,R) which contains the character lattice Λ = Hom(T,R/Z)
(the inclusion is given by taking the derivative) which we can draw as

follows: All subsequent root lattice figures are
stolen (with permission) from Tim’s

notes.

0 θ−θ 2θ−2θ

t∗ is the line, containing the lattice Λ (whose generator θ is really the map

Diag(iθ,−iθ) 7→ θ, i.e., we are essentially decomplexifying) and the real

roots are±2θ by the above calculation. Thus, we can see that Λ/Z{roots} =

Z/2. Note that SU(2) double covers SO(3).

Roots of SO(3)

SO(3) contains an evident torus T = SO(2) given by rotations about the

z-axis, i.e., given by matrices of the form Rθ =
(

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

)
. In so(3)

we may take the following generators, which are the infinitesimal rotations

about the coordinate axes:

L1 =

0 0 0

0 0 −1

0 1 0

 L2 =

 0 0 1

0 0 0

−1 0 0

 L3 =

0 −1 0

1 0 0

0 0 0


where, since exp(θLk) is rotation by angle θ about the ek-axis (so exp(θL3) =

Rθ, L3 ∈ t. This is the basis for which so(3) as a

Lie algebra is just R3 with the cross
product, i.e.,

[Li, Lj ] =
∑
k

εijkLk
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Ad(expG x) = ead x by naturality, so we may compute

Ad(Rθ)L1 = L1 cos θ + L2 sin θ Ad(Rθ)L2 = −L1 sin θ + L− 2 cos θ

so L1 and L2 span a root plane P . The global roots are therefore Rθ 7→ e±iθ.

As above, we may draw t∗ containing the character lattice Λ:

0 θ−θ

Note that, here, Λ/Z{roots} = 1. This surely has something to do with

π1 and covering spaces but I can’t yet

formulate a conjecture.
Roots of SO(4)

SO(4) also contains an evident torus T = SO(2) × SO(2) given by block

matrices of the form Rθ1,θ2 =
(

Rθ1
0

0 Rθ2

)
. Define the following 2× 2 matri-

ces:

I =

(
1 0

0 1

)
J =

(
0 −1

1 0

)
K =

(
1 0

0 −1

)
L =

(
0 1

1 0

)

One root plane is given by P = span
((

0 I
−I 0

)
, ( 0 J

J 0 )
)
with global root

Rθ1,θ2 7→ e±i(θ1−θ2) and the other is given by P ′ = span
(
( 0 K
K 0 ),

(
0 L

−L 0

))
with global root Rθ1,θ2 7→ e±i(θ1+θ2).

Thus, as above, we may draw the character lattice:

0

The covolume of the lattice generated by the roots is 2 so Λ/Z{roots} = Z/2
as with SU(2). No longer confident that the covolume

is saying anything about π1.

Roots of U(n)

U(n) contains an evident torus T consisting of matrices of the form Diag(eiθ1 , · · · , eiθn).
u(n)⊗C = gln(C) since any matrix can be written as the sum of a hermitian

and skew-hermitian matrices. We want to diagonalize Ad |T ; to do so, we

utilize the obvious basis Ejk for gln(C) which is given by (Ejk)lm = δjlδkm

(i.e. Ejk has a single nonzero entry at index (j, k), which is equal to 1).
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Then, if D = Diag(eiθ1 , · · · , eiθn), D−1 = Diag(e−iθ1 , · · · , e−iθn) so

(DEjkD
−1)lm =

∑
a,b

Dla(Ejk)ab(D
−1)bm =

∑
a,b

eiθlδalδjaδkbe
−iθbδbm = ei(θl−θm)(Ejk)lm

Thus, Ad(D)Ejk = ei(θj−θk)Ejk and Ejk is a simultaneous eigenvector for

all Ad(D) with D ∈ T .

One can show that this torus T is in fact maximal by showing that it is the

invariant subspace of u(n) under the action of T , and that (therefore) the

global roots are the functions D 7→ ei(θj−θk) for i ̸= j. One can then use

this to calculate Killing form κU(n)(X,Y ) = −2nTr(XY )+ 2Tr(X) Tr(Y ).

Roots of SU(n)
Lecture 27: November 8th

SU(n) contains the restriction of the above torus, which consists of matrices

of the form Diag(eiθ1 , · · · , eiθn) where the θi satisfy e
i(θ1+···+θn) = 1. The

corresponding Lie algebra consists of matrices of the form Diag(iθ1, · · · , iθn)
satisfying

∑
i θi = 0. To compute the roots, we consider the diagonal action

of T on su(n) ⊗ C = sln(C) where we have the same basis as above, the

Ejk, so we have the same roots and root planes as above.

Since t = {
∑

i xiei :
∑

i xi = 0} ⊆ Rn, t∗ = (Rn)∗/R(e∗1 + · · · + e∗n), the

character lattice is the Z-span of the images in t∗ of the e∗i , and the roots

in t∗ are e∗i − e∗j . Since su(n) is an ideal in u(n), κsu(n) = κu(n)|su(n), i.e.,
κsu(n)(X,Y ) = −2nTr(XY ) since X and Y are themselves traceless.

Setting n = 3, we can draw a picture of t∗ = (R3)∗/R(e∗1 + e∗2 + e∗3). Let

λ = e∗1 + e∗2 + e∗3 and identify t∗ with λ⊥, so the projection (R3)∗ → t∗

is identified with the orthogonal projection π : (R3)∗ → λ⊥. Setting vi =

π(e∗i ) we have

v1 =
1

3
(2e∗1−e∗2−e∗3) v2 =

1

3
(−e∗1+e∗2−e∗3) v3 =

1

3
(−e∗1−e∗2+2e∗3)

so v1 + v2 + v3 = 0 and the coefficients in each vi sum to zero. The six

vectors ±e∗i project to the six vectors ±v∗i which form the vertices of a

regular hexagon:

0 v1

v2

v3

The roots e∗i − e∗j project to vi − vj where the vi generate a honeycomb
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lattice in λ⊥. The character lattice modulo the lattice generated by the

roots is Z/3 in this instance.

Conjugacy Theorem

This apparent technical lemma turns

out to have major implications in the
theory of compact Lie groups; the con-

sequences of this theorem will occupy

the bulk of this section.

Theorem 4.4.1: Conjugacy Theorem

Let G be a compact connected Lie group, T ⊆ G a maximal torus.

Then ⋃
g∈G

gTg−1 = G

Corollary 4.4.2

All maximal tori are conjugate.

Proof : Let T , T ′ be maximal tori in G. One can show that there exists g ∈ T ′

a topological generator and g = huh−1 for u ∈ T by the theorem, so

⟨u⟩ = h−1⟨g⟩h = h−1T ′h ⊆ T .

Similarly, T ′ ⊆ hTh−1 and hTh−1, so hTh−1 is a torus containing hT ′h−1 =

T ′. ■

Corollary 4.4.3

The dimension of the maximal torus is an invariant of G, called its

rank.

We computed (some cases of) the following ranks above:

rankU(n) is n as we calculated above.

rank SU(n) is n− 1, also as above.

rank SO(2n) is n. We didn’t actually calculate this above in generality, but SO(2)×
SO(2) ⊆ SO(4) is a maximal torus and SO(2)n ⊆ SO(2n) is similarly a

maximal torus in general.

rank SO(2n+ 1) is n. Similarly, we showed that the maximal torus in SO(3) is SO(2)

given by rotations of the z-axis, and a similar recipe of block diagonal

rotation matrices gives the maximal torus in SO(2n+ 1).
I don’t think we’ve done any calcula-

tions of rank for non-matrix Lie groups,

although perhaps we can expect some
type of lifting result for e.g. Spin(n).

Corollary 4.4.4

If G is compact and connected then expG : g → G is surjective.
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Proof : Let T be a maximal torus, t its Lie algebra, then expG |t = expT : t → T is

surjective (we know explicitly what t and T are by identifying T = U(1)n

and it is easy to see that exp is surjective in this case). By naturality,

exp(Ad gt) = g exp(t)g−1 where t ∈ t, so the image of exp contains gTg−1

for all g ∈ G, so, by the conjugacy theorem, expG is surjective. ■

The proof of the conjugacy theorem relies on the flag manifold, i.e., the left

coset space G/T , so named since for G = U(n) with its standard torus (as

above), the complete flags in Cn are parameterized by G/T . U(n) evidently

acts transitively on the space of complete flags, so we need to understand

the stabilizer of some flag F . Pick an ordered basis v1, · · · , vn for F so that

Fi is the span of v1, · · · , vi. The stabilizer of this flag is then evidently T ,

the set of diagonal matrices, so G/T parameterizes complete flags. We mention the flag picture here but it
doesn’t really seem to be that impor-

tant for the Lefschetz-theoretic proof

below.Similarly, with G = SO(n), G/T parameterizes the complete flags in Rn. In

what will follow, we will reduce the proof of the conjugacy theorem to the

Lefschetz fixed point theorem applied to the map G ×G/T
ϕ−→ G/T given

by (g, hT ) 7→ ghT , but first, we need some basic results on homogeneous

manifolds.

Homogeneous Manifolds
Lecture 28: November 11th

A manifoldM equipped with a transitive action of a Lie group G is called a

homogeneous space; fixing a basepoint x ∈M and setting H = stabG(x) ⊆
G, we have a homeomorphismG/H →M given by gH 7→ g·x. The quotient
G/H is a manifold, and in fact, this homeomorphism is a diffeomorphism.

The key fact is the following:

Lemma 4.4.5

LetH be a closed subgroup of a Lie groupG, thenG/H is a manifold

and the quotient map π : G→ G/H is a submersion.
We omit the proof.

Corollary 4.4.6

A homogeneous manifold G/H with G a Lie group and H a con-

nected embedded Lie subgroup is orientable.
We omit this proof as well, though note

that connectedness of G is essential; for

example, RP2 = SO(3)/S(O(1)×O(2))
is not orientable but O(1) is discon-

nected.

Proof of the Conjugacy Theorem

G acts on the left on the closed manifold G/T by left multiplication; ex-

plicitly we have G × G/T
ϕ−→ G/T given by ϕ(g, hT ) = ghT . Write x to

denote the coset xT in G/T , and let ϕg denote ϕ(g,−). A fixed point of ϕg

is therefore a coset x such that gxT = xT , i.e., x−1gxT = T , so x−1gx ∈ T .

Thus, it suffices to show that ϕg has a fixed point for all g ∈ G. Among our lemmata above we showed
that G/T is orientable, which is neces-

sary to apply Lefschetz.
Recall the Lefschetz fixed point theorem in the following form: let M be a

closed orientable manifold, f :M →M a smooth map with non-degenerate
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fixed points, i.e. the graph Γf is transverse to the diagonal ∆ in M ×M .

Points in this intersection are precisely the fixed points of f and transver-

sality means that Dfx : TxM → TxM does not have 1 as an eigenvalue (i.e.

det(Dfx − I) ̸= 0). For (non)example, the fixed points of
the identity map are all degenerate.

Define the Lefschetz sign ϵ(f ;x) = sign det(Dfx − I); then the Lefschetz

number is defined as the signed intersection number of ∆ and Γf given by

∆ · Γf =
∑

f(x)=x

ϵ(f ;x)

where there are finitely many such fixed points by compactness (since such

fixed points are necessarily isolated, as otherwise, a tangent direction to an

adjacent fixed point corresponds to 1 as an eigenvalue for Dfx).

For our purposes, the “weak” Lefschetz fixed point theorem, which states

that ∆ · Γf depends only on the homotopy class of f , will suffice. Setting

f = ϕg, since ∆ · Γϕg depends only on the homotopy class of ϕg, it is

independent of g ∈ G (since a path from g to e in G connected corresponds

to a homotopy of ϕg to ϕe). Thus, it suffices to show the following: The logically necessary “strong” Lef-

schetz theorem is the one that I am
more familiar with, which computes

Λ · Γf as the alternating sum of the

traces of f∗ acting on H∗ (generalizing
the Euler characteristic, which is the

Lefschetz number of the identity).

Lemma 4.4.7

There exists g ∈ G with nonzero Lefschetz number.

The correct choice of g for ease of calculation turns out to be a topological

generator for T since then we have

ϕg(x) = x ⇐⇒ x−1gx ∈ T ⇐⇒ x−1Tx = T ⇐⇒ x ∈ N(T )

where N(T ) is the normalizer defined as N(T ) = {g ∈ G : gtg−1 ∈
T for allt ∈ T} and where we use the fact that g is a topological gener-

ator when we assert that x−1gx ∈ T ⇐⇒ x−1Tx = T . Thus, the fixed

points of ϕg correspond to points in N(T )/T , the Weyl group (which we

will discuss in more detail below).

Note that since g ∈ T , ϕg(x) = cg(x)gxg−1 where the conjugation map cg

descends to the quotient as a map cg since T is abelian. Thus, ϕg is induced

by the conjugation action of g on G. Lecture 29: November 13th

The key calculation is that of the Lefschetz signs: note that N(T )0 the

connected component of the identity is T itself. To see this, note that

Aut(T ) is discrete since an automorphism of T is fully determined by its

action on the co-character lattice Hom(Rn/Zn, T ), so the conjugation action

N(T ) → Aut(T ) is locally constant, and therefore constant on N(T )0. This

implies that N(T )0 is abelian, and closed, and evidently contains T , so

N(T )0 = T .

We first check that e = T is non-degenerate as a fixed point of ϕg; note that

Te(G/T ) = g/t, and that Decg = Ad(g), so Deϕg = Ad(g) ∈ End(g/t). De-
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composing g/t =
⊕

j Pj into its root planes on which Ad(g) acts as rotation

R(θj(g)), we can compute the determinant of I −Deϕg ∈ EndTe(G/T ):

det(I −Deϕg) =
∏
j

det(I −R(θj(g)))

where I − R(θj(g)) ∈ EndPj . For a generic choice of g ∈ T , the ro-

tations R(θj(g)) are nontrivial for all j, and for a nontrivial rotation,

det(I −R(θj(g))) = 2(1 + cos θj(g)) > 0, so e is a non-degenerate fixed

point with Lefschetz sign +1.

Let rn : G/T → G/T be the right multiplication map, with n ∈ N(T ), i.e.

rn(xT ) = xnT . rn is a diffeomorphism commuting with ϕg, and mapping

e to n, so, by the chain rule, ϵ(ϕg;n) = ϵ(ϕg; e) = 1, so all n ∈ N(T ) are

non-degenerate with Lefschetz sign +1.

Now, since G/T is compact, and non-degenerate fixed points are isolated,

there are finitely many fixed points for any self map, so N(T )/T is finite,

and since all of the Lefschetz signs are +1, ∆ · Γϕg
= |N(T )/T | ≥ 1, from

which the lemma follows. Another proof of the conjugacy the-

orem using algebraic topology comes
from the Bruhat decomposition, which

is a CW structure on G/T (and on

some class of algebraic groups in gen-
eral) with only even-dimensional cells,

and the number of cells is |N(T )/T |.
Thus, using cellular cohomology, we
have that χ(G/T ) = |N(T )/T |, the

Lefschetz number of the identity.

Corollary 4.4.8

χ(G/T ) = |N(T )/T |

Proof : Apply the strong Lefschetz fixed point theorem. ■

The Weyl Group

The conjugacy theorem has the following additional consequence:

Proposition 4.5.1

In a compact connected Lie group G, a maximal torus T is also

maximal among the abelian subgroups of G.
I skipped class and received moderately
bad information on what we covered.
As such, I skipped past what we actu-
ally covered (thinking that that mate-

rial was just extra flavor in the notes)
and wrote stuff up from two lectures

ahead of where we were. If this sec-
tion feels disorganized or repeats itself,

that’s why.

Proof : Suppose T ⊆ A with A abelian, and let a ∈ A. We want to show that there

is a torus T ′ containing T and a, from which it follows by maximality that

T ′ = T and so a ∈ T .

Let U = ⟨a, T ⟩ which is a compact abelian Lie group, so its identity

component U0 must be a torus, with U/U0 finite cyclic with generator

a (which gives us cyclicity) and compactness gives us finiteness. Thus U

is an extension of a finite cyclic group by a torus, and therefore admits a

topological generator u, with u ∈ T ′ by the conjugacy theorem, but then

T ∪ {a} ⊆ U ⊆ T ′ and we can conclude that T = T ′. ■
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Note that there exist abelian subgroups not contained in a torus, e.g., the

Klein 4-group embeds in SO(3) as the set {I, A,B,AB} for the matrices

A =
(−1 0 0

0 −1 0
0 0 1

)
B =

(
1 0 0
0 −1 0
0 0 −1

)
One can show that this copy of Z/2 × Z/2 is not contained in any torus

(A and B are rotations about different axes) or indeed any larger abelian

subgroup, so is maximal abelian but not a torus.

Definition 4.5.2

The Weyl group of a compact connected Lie group G with respect

to a chosen maximal torus T is W (G,T ) = N(T )/T .
Meaningless pattern matching: the

Weyl group is some sort of categori-
fication of the fact that χ(G/T ) =

|W (G,T )| = |N(T )/T |.
We write Inn(G) for the inner automorphisms of G (i.e. automorphisms of

the form x 7→ gxg−1 indexed by elements of G). Note that the conjugacy

theorem implies that, up to the induced action of inner automorphisms on

cosets in W (G,T ), the Weyl group is independent of T . Lecture 30: November 18th

Lemma 4.5.3

W (G,T ) = {ϕ ∈ Inn(G) : ϕ(T ) = T}

Proof : Let InnT (G) = {ϕ ∈ Inn(G) : ϕ(T ) = T}, then any ϕ is of the form

ϕ(t) = wtw−1 so w ∈ N(T ); this defines a homomorphism c : N(T ) →
InnT (G) that is evidently surjective. ker c is the centralizer of T , i.e., the

set Z(T ) = {g ∈ G : gtg−1 = g for all t ∈ T} and N(T )/Z(T ) = InnT (G).

For any g ∈ ker c, ⟨g, T ⟩ is abelian and contains T , so is equal to T , so

ker c = T . ■

Example 4.5.4

Let G = SU(n) with its torus T of diagonal elements,W = N(T )/T .

Pick t ∈ T with distinct eigenvalues λi, then t has eigenspaces

Ce1, · · · ,Cen. If w ∈ N(T ) then t and wtw−1 share the same spec-

trum (since they are conjugate) and the same eigenvectors, so the

action of N(T ) permutes the eigenspaces. This gives rise to a ho-

momorphism N(T ) → Sn.

Permutation matrices lie in U(n) and have determinant ±1, so,

changing the sign of the first column matrix entry if necessary (i.e.

for odd permutations), we can see that N(T ) → Sn is surjective.

The kernel of this map consists of diagonal matrices, i.e., T , so

W = N(T )/T = Sn.
In particular, W (SU(2)) = S2 = Z/2
(recall that this is also the character
lattice modulo roots for SU(2)).Example 4.5.5

Let G = SO(2n) with its torus T of block diagonal matrices, i.e.,

T = SO(2)n. Fix R ∈ T which acts by rotations through θ1, · · · , θn
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in its block factors, and assume that the θi are all distinct from each

other and from ±I. For w ∈ N(T ) acting on R2n, commuting with T

implies that w must permute the planes P1 = span(e1, e2), · · · , Pn =

span(e2n−1, e2n). As above, this gives a surjective homomorphism

f :W → Sn.

Suppose N(T ) ∋ w ∈ ker f . Then w preserves the Pj , but not

necessarily by an element of SO(2), as the determinant of each block

of the matrix can be ±1 (i.e. we can have rotations and reflections),

i.e., ker f ∋ w ∈ S(O(2)n).

Taking signs of the matrix blocks gives a map ω : {1, · · · , n} → Z/2
with the condition that

∑
j ωj = 0 (since the overall determinant is

+1). The set of all such maps is an abelian group A of order 2n−1,

so we get a short exact sequence

1 → A→W (SO(2n)) → Sn → 1

so W (SO(2n)) ∼= A⋊Sn. In particular, |W | = n!2n−1 and the Weyl

group is morally Sn, but augmented by some sign data.
A similar calculation for SO(2n + 1)

gives W (SO(2n + 1)) = Sn ⋊ (Z/2)n
so |W (SO(2n+ 1))| = n!2n.Roots and SU(2) Representations

Theorem 4.5.6

Let G be compact, connected, and semisimple (i.e. Z(G) is discrete

⇐⇒ Z(g) = 0 ⇐⇒ κg is negative-definite), and let T be a maximal

torus, α a root. Then there exists a homomorphism rα : SU(2) → G

such that the induced homomorphism Drα : su(2) → g has image

Pα ⊕ Rt where Pα is the root plane corresponding to α and t ∈ t.

First, we want to fix some conventions. Our roots are complex, i.e. α ∈
(tC)

∗, with tC = t⊗ C ⊆ g⊗ C = gC, with gα ⊆ tC given by gα = {x ∈ gC :

ad(t)x = α(t)x for all t ∈ tC} and ΦC = {α ∈ (tC)
∗ : gα ̸= 0} is the complex

root system.

Lemma 4.5.7

[gα, gβ ] ⊆ gα+β

Proof : The proof is essentially the Jacobi identity: let x ∈ gα, y ∈ gβ , and t ∈ tC,

then

ad(t)[x, y] = [t, [x, y]] = −[x, [y, t]]− [y, [t, x]] =

− [x,−β(t)y]− [y, α(t)x] = (α(t) + β(t))[x, y] ■

So if α, β ∈ ΦC, either α + β ∈ ΦC or [gα, gβ ] = 0 (note that this is true

without the requirement that g be semisimple).
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Proposition 4.5.8

If α, β ∈ ΦC ∪ {0} ⊆ t∗C, α + β ̸= 0, then κg(gα, gβ) = 0 i.e. the

root spaces are orthogonal with respect to the Cartan-Killing form

unless α = −β.

Proof : Let x ∈ gα, y ∈ gβ , t ∈ t∗C, and note that g0 = tC. By ad-invariance of κ,

0 = κ(ad(t)x, y) + κ(x, ad(t)y) = (α(t) + β(t))κ(x, y)

Since t is arbitrary and α+ β ̸= 0, the result follows. ■

Now, assuming that g is semisimple (which was not required for the above),

κgC is non-degenerate.

Lemma 4.5.9

κ̃ : gα × g−α → gC is a non-degenerate pairing.
This is essentially because there is

nowhere else for the κg-dual of some-

thing in gα to live.Proof : gC = tC ⊕
⊕

α∈ΦC
gα, so take 0 ̸= x ∈ gα. Since x is κ-orthogonal to tC

and all gβ with β ̸= −α by the above, and since κ is non-degenerate, there

must exist y ∈ gC s.t. κ(x, y) ̸= 0, and the only place this y can therefore

live is g−α. ■

Thus we have inclusions gα ↪→ (g−α)
∗ and g−α ↪→ (gα)

∗, so gα
∼−→ g∗−α

since the two spaces have the same dimension. I am meaninglessly alternating between

Lemmas and Propositions to make the

colors look nicer.Proposition 4.5.10

Assume g is negative-definite; then, if x ∈ gα and y ∈ g−α,

[x, y] = κg(x, y)Hα ∈ tC

where Hα ∈ tC is characterized by κ(Hα, t) = α(t) for all t ∈ tC.

Proof : By the above, [x, y] ∈ gα−α = g0 = tC, so we have

κ([x, y], t) = κ(ad(x)y, t) = −κ(y, ad(x)t) = κ(y, ad(t)x) = α(t)κ(x, y)

Since this holds for all t ∈ tC, the claim follows. ■

Now, to build our SU(2) representation, we begin by finding a copy of

sl2(C) ⊆ gC. Recall that we have the following basis for sl2(C):

e =

(
0 1

0 0

)
f =

(
0 0

1 0

)
h =

(
1 0

0 −1

)

with the following relations:

[e, f ] = h [h, e] = 2e [h, f ] = −2f
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So we want to find an sl2(C)-triple (eα, fα, hα) in gC obeying the same

relations. For what follows, we will denote by (−,−) the pairing on t∗

induced by κ on t. Somewhat noteworthy that Tim is giv-

ing a “basis”-dependent proof here as
he is usually very opposed to that.

Pick any 0 ̸= eα ∈ gα, and fα ∈ g−α with the normalization condition

κ(eα, fα = 2
(α,α) ) so that

[eα, fα] = κ(eα, fα)Hα =
2

(α, α)
Hα =: hα ∈ tC

so the first relation is automatically satisfied. One can check that α(hα) =

2:

[hα, eα] = α(hα)eα =
2

(α, α)
α(Hα)eα = 2

(α, α)

(α, α)
eα = 2eα

Similarly, one can check that [hα, fα] = −2fα.

Thus, we may conclude that any 0 ̸= eα ∈ gα extends to an sl2(C)-triple
(eα, fα, gα). Now, we want to restrict to su(2); recall the basis of Pauli

matrices for su(2):

σ1 =

(
i 0

0 −i

)
σ2 =

(
0 1

−1 0

)
σ3 =

(
0 i

i 0

)

which satisfy σ2
j = −I, σ1σ2 = σ3 = −σ2σ1 and cyclic permutations

thereof.

Clearly, σ1 = ih, σ2 = e − f , and σ3 = i(e + f), so our homomorphism

θ : sl2(C) → gC given by (e, f, h) 7→ (eα, fα, hα) restricts to su(2) ⊆ sl2(C)
via the Pauli matrices as above, mapping to g ⊆ gC.

Since SU(2) is simply connected, we can integrate θα|su(2) to the promised

homomorphism rα : SU(2) → G via rα(exp t) = expG θα(t). This rα

is unique, which will follow from the fact that the root spaces are one-

dimensional, which we will see later on.
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Lie Groups Fall 2024

The Geometry of Roots

Professor Tim Perutz Abhishek Shivkumar

sl2(C) Representation Theory

Recall that a Lie algebra representation

is a map θ : g → EndV that respects
brackets.By the final construction from the last chapter, for all roots α of some com-

pact, connected, semisimple Lie groups G (with discrete center), we have a

copy of sl2(C)α ⊆ gC generated by eα, fα, hα. The adjoint representation

ad : gC → End gC then gives us a representation of sl2(C) into End gC.

To exploit this structure towards an understanding of the representation

theory of gC, it behooves us to understand the representation theory of

sl2(C). We won’t prove much here, this is

just an accounting of the salient facts

(sometimes with an indication of how
they are proved).Let V be a representation of sl2(C), i.e., sl2(C) acts on a finite dimensional

complex vector space V via a homomorphism sl2(C) → EndV , and let Vλ

be the weight space of weight λ, which is the λ-eigenspace of h =
(
1 0
0 −1

)
.

By the commutation relations, e · Vλ ⊆ Vλ+2 and f · Vλ ⊆ Vλ−2. A nonzero

vector v ∈ Vλ (for some λ) is primitive if e · v = 0, and it is easy to see that

a primitive vector exists since h has finitely many eigenvalues and e raises

the weight by 2.

For v ∈ Vλ primitive, set vn = 1
n!f

n·v ∈ Vλ−2n for n ≥ 0, so that vn ∈ Vλ−2n

and f · vn = (n + 1)v)n+1, e · vn = (λ − n + 1)vn−1. It follows by the

commutation relations that the weight λ of a primitive vector is a non-

negative integerm, and that v0, · · · , vm are linearly independent and vk = 0

for k > m.

One can show that, if Wm is the vector space with basis (v0, · · · , vm) as

above, thenWm is an irreducible representation of sl2(C) of dimensionm+1

with weights m,m−2, · · · ,−m+2,−m. It also follows that any irreducible

representation of dimension m+ 1 is isomorphic to Wm. Not sure where the tensoring by Pm(V )
comes from, it’s a bit less clear than the
rest of it.

There is a corresponding decomposition theorem for our arbitrary repre-

sentation V :

V ∼=
⊕
m≥0

Pm(V )⊗C Wm

where Pm(V ) = Vm ∩ ker e is the space of primitive elements of weight m.
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sl2(C) acts on gC

Lecture 31: November 22nd

Returning to the point of this discussion (to construct from a root of a

compact connected semisimple Lie group G a homomorphism SU(2) → G),

let ΦC denote as above the set of complex roots and let α ∈ ΦC. We have a

copy sl2(C)α of sl2(C) inside gC generated by eα ∈ gα, fα ∈ g−α, hα ∈ tC.

The claim is now that ad restricted to sl2(C)α makes gC a representation

of sl2(C). But, first, we need the following:

Lemma 5.2.1

dim gα = 1.

Proof : We have eα ∈ gα, and we know by the above discussion that gα and g−α are

dually paired via κ (Lemma 4.5.9), with [x, y] = κ(x, y)Hα for x ∈ gα, y ∈
g−α, and Hα ∈ tC corresponding to α under tC ∼= t∗C (Proposition 4.5.10).

If dim gα > 1, take 0 ̸= y ∈ g−α κ-orthogonal to eα, i.e., [eα, y] = 0. Then

ad(hα, y) = −α(hα)y = −2y

so the weight is −2.

So y is primitive (as eα ·y = 0) and has weight −2, but this is a contradiction

since primitives have non-negative integer weight. ■

Now suppose α, β ∈ ΦC are linearly independent roots and take
⊕

m∈Z gβ+mα ⊆
gC which is a sub-representation of sl2(C)α in gC (this takes some checking).

Then we have the following: The proof is omitted but is straightfor-

ward.

Proposition 5.2.2: Serre Relations

With α, β as above with gα−β = 0, then V =
⊕

m∈Z gβ+mα is an

irreducible representation of sl2(C)α. The indices where gβ+mα is

nonzero are those with m ∈ {0, · · · , N} where N = 2 (α,β)
(α,α) . Thus V

has a basis (eβ , ad(eα)eβ , · · · , ad(eα)Neβ) and

ad(eα)
N+1eβ = ad(fα)

N+1fβ = 0

The above are called the Serre relations.
The Serre relations are named for their
discoverer, Chevalley.

The Weyl Group as Isometries

The Weyl group W (G,T ) can be thought of by Lemma 4.5.3 as the group

of automorphisms of T arising from an inner automorphism of G. One can
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check that Ad embeds N(T ) into O(t) using the naturality of the Cartan-

Killing form, hence W into O(t). Using the isomorphism t ∼= t∗, we also

have W ↪→ O(t∗) via wT 7→ (Ad(w)|t)∗. The set of real infinitesimal roots

Φ lives in t∗, and one can check that the action of W preserves Φ. Lecture 32: December 2nd

For any 0 ̸= α ∈ t∗, we have the reflection sα in α⊥ which leaves the

α direction unchanged and rotates α⊥. On t we have the inner product

−κ(−,−) which gives rise to an inner product (−,−) on t∗, and the formula

for our reflection is

sα(v) = v − 2
(α, v)

(α, α)
α

Theorem 5.3.1

W ⊆ O(t∗) contains the reflection sα for all α ∈ Φ.
More precisely, one can show that W
is generated by the sα, but we don’t

yet have the technology for that. The

proof follows using coroots, which are
sometimes easier to work with.

Proof : Recall that for any complex root α, we introduced an element hα ∈ t

characterized by θ(hα) = 2 (α,θ)
(α,α) for all θ ∈ (tC)

∗, called a coroot.

Now, for α a real root, we may repeat this definition with a change of

notation: the coroot α∨ is the element of t such that

θ(α∨) = 2
(α, θ)

(α, α)

for all θ ∈ t∗. Note that α(α∨) = 2 so sα(v) = v − v(α∨)α.

We want to find an element wα ∈W whose action on t∗ is sα. To that end,

note that we have a homomorphism rα : SU(2) → G such that Im(Derα) =

Rα∨ ⊕Pα; in particular, Derα(σ1) = α∨ where σ1 is the first Pauli matrix.

The Weyl group of SU(2) is S2 = Z/2 and its unique nontrivial element is

represented by w = ( 0 i
i 0 ) = exp

(
π
2σ3

)
. Note that w2 = −I ∈ T and w4 =

I = exp(2πσ3) = I so 2πσ3 is a cocharacter of SU(2). Set wα = rα(w).

Lemma 5.3.2

wα normalizes T and so represents an element of W (G) of order 2.

Its action on t is

Ad(wα)(t) = t− α(t)α∨

and its action on t∗ is by sα.

The proof of this lemma follows by the naturality of exp and some tedious

(hence omitted) calculation, which completes the proof of the claim. ■

Abstract Root Systems
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Definition 5.4.1: Abstract Root Systems

An (abstract) root system (V,Φ) is a finite dimensional inner-product

space (V, (−,−)) together with a finite subset Φ ⊆ V \ {0} whose

elements are called roots, such that:

1. spanΦ = V

2. For all α ∈ Φ, sα(Φ) = Φ

3. For all α, β ∈ Φ, the number nαβ = 2 (α,β)
(α,α) is an integer (called

the Cartan integers of Φ)

4. If α ∈ Φ and c ∈ R, then cα ∈ Φ ⇐⇒ c = ±1

Note that the second axiom implies

that Φ is closed under antipodal re-

flection α 7→ −α, so in the fourth ax-
iom, one of the implications in ⇐⇒
is redundant. Moreover, omitting the

fourth axiom entirely, if α maximizes
length among vectors in Φ ∩ Rα, one

can show that either

Φ ∩ Rα = {±α} or {−α,−
1

2
α,

1

2
α, α}

The significance of an abstract root system, whose axioms may seem arbi-

trary, is the following:

Theorem 5.4.2

The (real, infinitesimal) roots Φ ⊆ t∗ coming from a compact con-

nected semisimple Lie group form a root system. The set of coroots

Φ∨ = {α∨ : α ∈ Φ} is a root system in t.

The proof of this theorem is omitted; it

is somewhat calculation heavy and in-
tuition light, and can be found in all of

the standard texts. Due to the accel-

eration of content towards the end of
the semester, an increasing proportion

of proofs will be omitted.

Although they capture equivalent information, it is useful to have both

notions (roots and coroots) as proofs of various lemmata are often more

natural in one setting than the other.

Let the rank of Φ be defined as the dimension of the vector space in which

it lives, so the rank of Φ ⊆ t∗ as above is equal to the rank of G. With the

axioms of an abstract root system in place, it is possible to classify them: Lecture 33: December 4th

Rank 1

A rank 1 root system is generated by a single element α ̸= 0, and must

also contain −α, and no other elements by the fourth axiom. All such root

systems are evidently equivalent and denoted A1. A1 is the root system for SU(2).

Rank 2
TikZ for the root systems as always

stolen from Tim.

Remark 5.4.3

If (V,Φ) and (V ′,Φ′) are root systems, so is their sum (V ⊕ V ′,Φ×
{0} ∪ {0} × Φ′).

Thus, we get our first and most obvious rank 2 root system, A1 × A1

(somewhat idiosyncratically this is denoted as a product): A1 × A1 = D2 is the root system for

SU(2)× SU(2) = Spin(4).



80 abhishek shivkumar

A1 ×A1

α

β

A1 ×A1

when |α| = |β|, this root system is also known as D2

The remaining root systems are the following:

A2
α+ β

α

β

A2 is the root system for SU(3).

B2 = C2

α+ β

β α+ 2β

α B2 is the root system for Spin(5) =

Sp(2).



lie groups 81

G2

α

α+ β

β α+ 2β 2α+ 3β

α+ 3β

G2 is the root system for G2, an excep-

tional Lie group constructed from this

root system.

G2 is our first exceptional root system, corresponding to an exceptional Lie

algebra lying outside of the infinite families An, Bn, Cn, Dn (which have

corresponding infinite families in the root system/Dynkin diagram setting).

We can arrive at this short list of rank 2 root systems systematically after

first developing some basic properties of abstract root systems.

Reducibility and Isomorphism

Towards the notion of equivalence for root systems (which we have implic-

itly used above), we have the following observations:

• If Φ is a root system in V , then so is cAΦ with c ̸= 0, A ∈ O(V ). These

ought to be isomorphic.

• We noted above that there is a natural notion of sum or product of root

systems. If we can decompose (V,Φ) as a sum, then it is reducible and

irreducible otherwise.

• Given (V1,Φ1) and (V2,Φ2), we can form their sum with arbitrary scalars:

(V1 × V2, c1Φ1 × {0} ∪ {0} × c2Φ2) with c1c2 ̸= 0 and we would like all

of these root systems in V1 × V2 to be considered isomorphic.

• Given (V,Φ), we may define an equivalence relation on Φ generated by

α ∼ β if (α, β) ̸= 0. This gives rise to equivalence classes Φi, and it turns

out that V =
⊕

i Vi where Vi = spanΦi is an orthogonal decomposition.

This decomposes (V,Φ) as a product of sub-root systems (Vi,Φi) each

of which is irreducible.

Then, we have the following definition:
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Definition 5.4.4: Isomorphism of (Abstract) Root Systems

If (V,Φ) and (V ′,Φ′) are root systems, an isomorphism between

them is an invertible linear map θ : V → V ′ with θ(Φ) = Φ′ and if

(V,Φ) has irreducible components (Vi,Φi), (V
′,Φ′) has irreducible

components (V ′
j ,Φ

′
j), with θ(Vi) = V ′

j and θ|Vi
: Vi → V ′

j is a

homothety i.e. of the form cA where c ̸= 0 and B is an isometry.
This definition is a little verbose and

can be simplified by ignoring the irre-
ducible sub-root systems entirely; the

following are equivalent to the above

definition as demands on θ : V → V ′:

1. θ(Φ) = Φ′ and θ preserves the Car-

tan integers: nAβ,Aα = nβ,α for all
roots α, β.

2. θ(Φ) = Φ′ and A ◦ sα = sAα for all

α ∈ Φ i.e. A intertwines the reflec-
tions.

We can now explicitly check that the above list of rank 2 root systems

is complete by casework on the nontrivial Cartan integer, which will tell

us the angle θ between α and β with α, β the generators for some rank 2

root system Φ. Note that nα,α = 2, nα,−α = −2 (similarly for β), and

cos θ = (α,β)
|α||β| ; then nβα = 2 (α,β)

(α,α) = 2 cos θ |β|
|α| so

nβαnαβ = 4 cos2 θ ∈ {0, 1, 2, 3, 4}

For this to be an integer then gives us a very short list of possible values

for θ:

nβαnαβ θ and length constraints Root System

4 θ = 0, π, α = ±β degenerate configuration

3 cos θ = ±
√
3
2 , so θ = π

6 or 5π
6 and |β|2 = 3|α|2 G2

2 cos θ = ± 1√
2
, so θ = π

4 or 3π
4 and |β|2 = 2|α|2 B2 = C2

1 cos θ = ± 1
2 , so θ =

π
3 or 2π

3 and |β|2 = |α|2 A2

0 θ = π
2 so α ⊥ β and there is no length constraint A1 ×A1

We call an irreducible root system simply-laced if all its roots have the same

length (e.g. A2).

Root Lattices

It is possible to extend some of the above examples of root systems to

infinite families of root systems indexed by dimension. Our technique to

do this is to consider the root system associated to a lattice. Suppose

L ⊆ Rn is an integer lattice, i.e., a discrete subgroup of full rank n s.t.

λ1, λ2 ∈ L implies that (λ1, λ2) ∈ Z; L is called a root lattice if the set

ΦL = {λ ∈ L : (λ, λ) = 2} spans L. In this case, ΦL is a root system in

Rn. When L is an even root lattice, i.e., (λ, λ) ∈ 2Z for all λ ∈ L, ΦL is

simply-laced. This follows by the reflection formula, which becomes One can obtain non-simply-laced root

systems via a modification of this con-
struction by setting

ΦL = {λ ∈ L : (λ, λ) = 1 or 2}
sα(v) = v − 2

(α, v)

(α, α)
= v − (α, v)α ∈ L

for α of length-squared 2 (i.e., in ΦL), since (α, v) ∈ Z and lattices are

Z-linearly closed.

Example 5.4.5: An To construct An, the root system for the Lie al-
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gebra su(n+ 1), consider v = (1, · · · , 1) ∈ Rn+1,

and in particular, the subspace V = v⊥ with its

induced inner product arising from the standard

inner product on Rn+1. Set

Φ := {ei − ej : i ̸= j}

and let αij = ei−ej . It is routine to check that Φ

forms a simply-laced root system with all lengths

equal to 2. Φ spans

LAn
= V ∩Zn+1 = {

∑
i

niei : ni ∈ Z,
∑
i

ni = 0}

Example 5.4.6: Dn

Dn is the root system of the Lie algebra so(2n)

and is given by Φ = {ei ± ej : i ̸= j} ⊆ Zn which

is simply-laced with length-square 2 in the Dn

lattice

LDn = {
∑
i

niei : ni ∈ Z,
∑
i

ni ∈ 2Z}

Since LDn
is an even lattice spanned by Φ, Φ is

a simply-laced root system.

Example 5.4.7: Bn and Cn

Bn and Cn are the root systems for so(2n + 1)

and sp(2n) respectively, and are given by

ΦBn
= {ei ± ej : i ̸= j} ∪ {±ei} ⊆ Zn

and

ΦCn
= {ei ± ej : i ̸= j} ∪ {±2ei} ⊆ Zn

The corresponding lattices

LBn = {
∑
i

niei : ni ∈ Z} = Zn

and

LCn
= {
∑
i

niei : ni ∈ Z,
∑
i

ni ∈ 2Z}

are spanned by their respective short roots (it

turns out that (λ, λ) can only take on at most

two values for a given root system, and Bn and

Cn are evidently not simply-laced).

Starting from even lattices (finding these is itself a non-

trivial task), one can also find three of the five excep-

tional root systems E6, E7, E8; the remaining two, F4

and G2 are not simply-laced.

Positive and Simple Roots
Lecture 34: December 6th

One important notion in the study of root systems is that of positive roots,

which involves a choice of separating hyperplane in V so that half of the

roots are on one side and their negatives are on the other. Explicitly, pick

λ ∈ V ∗ such that λ(α) ̸= 0 for all α ∈ Φ. Then the positive roots Φ+ ⊆ Φ

are precisely those for which λ(α) > 0 and Φ = Φ+ ⊔ (−Φ+). In the above

pictures of rank 2 root systems, the labeled roots form a set of positive

roots.

Example 5.4.8

A half plane λ > 0 is shaded in blue showing a choice of positive

roots for A2:
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A2
α+ β

α

β

It is instructive to think about rotating

this shaded region and at what points
in this rotation the shaded half plane

does not give us a valid subset of posi-
tive roots.

Definition 5.4.9: Simple Roots

With respect to a chosen set of positive roots Φ+, the set of simple

roots in Φ+ are those which are not the sum of two positive roots.

In the above example, α and β are simple while α+ β is not.

Proposition 5.4.10

Any positive root is a sum of simple roots.

Proof : Let Φ+
λ be given by λ > 0 for some λ ∈ V ∗. Order the positive roots

α1, · · · , αn where 0 < λ(α1) ≤ · · · ≤ λ(αn). If some αk is not simple, then

αk = αi + αj with i, j < k by definition, and we can recursively expand

αi, αj into sums of other positive roots, eventually terminating in a sum of

simple roots. This process terminates since λ(αi) is bounded below by 0 and

attains finitely many values, and decreases at each step of this expansion.■

Thus for any root α, either α or −α (but never both) is a sum of simple

roots (with some choice of positive roots fixed).

Proposition 5.4.11

If α ̸= β ∈ Φ with (α, β) > 0 (i.e. they meet at an acute angle),

then α− β is a root.

Proof : nβα > 0 by assumption so nβαnαβ ∈ {1, 2, 3}, so one of nβα, nαβ is equal

to 1 (we may assume nβα = 1). But then α− β = sβα. ■
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Proposition 5.4.12

Distinct simple roots α, β meet at a right or obtuse angle (i.e.

(α, β) ≤ 0).

Proof : If (α, β) > 0 then α − β would be a root, as would β − α. One of these

must be positive (WLOG α− β), but α = (α− β) + β is a sum of positive

roots, which contradicts simplicity of α. ■

Putting these together, we have the following:

Lemma 5.4.13

The set ∆ of simple roots forms a basis for the ambient vector space

V .

Proof : The simple roots N-linearly span the positive roots, therefore they Z-
linearly span all of the roots (and therefore R-linearly span V itself). Lin-

ear independence follows from an analysis of the angles between the simple

roots: if there is a non-trivial linear dependence relation, write it as

φ =
∑
i

xiβi =
∑
j

yjγj

where βi ∈ ∆1, γj ∈ ∆2 and ∆ = ∆1 ⊔∆2, and where the coefficients are

all positive. Then

0 ≤ (φ,φ) =
∑
i,j

xiyj(βi, γj) ≤ 0

since simple roots met at a right or obtuse angle, hence φ = 0, contradicting

the non-triviality of the relation. ■
Lecture 35: December 9th

Definition 5.4.14: A Base

A subset ∆ of Φ is called a base if it is linearly independent and

N-linearly spans Φ+.
The simple roots form a base by the
above, and it turns out that every base

arises as the set of simple roots for some

selection of positive roots, so “base” is
just an occasionally convenient way to

say “simple roots with respect to some
λ ∈ V ∗.”

The Weyl Group Redux

Definition 5.5.1: The Weyl Group of a Root System

The Weyl group W = W (Φ) of a root system Φ is the subgroup of

O(V ) generated by the reflections sα, α ∈ Φ.

Recall that we have shown that a compact connected semisimple Lie group

G with maximal torus T gives rise to a Weyl group W (G,T ) = N(T )/T ⊆
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O(t∗) and we have shown that this Weyl group contains the Weyl group

of reflections (Theorem 5.3.1) i.e. W (G,T ) ⊇ W (Φ). As suggested by our

otherwise incoherent nomenclature, these groups will end up being equal,

though this has yet to be shown.

Definition 5.5.2: Weyl Chambers

Let Σ = ∪α∈Φα
⊥ ⊆ V ; the connected components C of V \ Σ are

called the Weyl chambers of Φ.

Note that the Weyl chambers are in bijection with choices of subsets of

positive roots Φ+ since the only invalid choices for v in λ = (v,−) as above

are precisely the roots α themselves, and passage through the hyperplanes

α⊥ switches a given root from positive to negative. Varying λ in some fixed

chamber C evidently does not change the set of positive roots.

Example 5.5.3

Here is the chamber structure on A2, with a Weyl chamber C shaded

(this is the choice of Weyl chamber that gives us the choice of posi-

tive roots shown in our previous depiction of A2):

A2

α+ β

α

β

Σ

C

More than a simple correspondence, we in fact have a W -equivariant bijec-

tion between Weyl chambers and choices of positive roots defined explicitly

as follows: given a Weyl chamber C, fix any v ∈ C and set λ = (v,−), and

define Φ+
λ as usual. This bijection intertwines the action of W on chambers
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and the action on sets of positive roots.

The action of W (Φ) on the Weyl chambers is transitive since reflection

through any of the hyperplanes α⊥ exchanges adjacent chambers on oppo-

site sides of α⊥, so we can take a chamber C to any chamber adjacent to

it, and, repeating this, to any other chamber. Thus, W acts transitively on

the set of bases for Φ.

Theorem 5.5.4

W (∆) = Φ and W is generated by the reflections through simple

roots.
The proof is omitted but straightfor-
ward.

Theorem 5.5.5

Our two definitions for the Weyl group are equivalent for G com-

pact connected and semisimple. Moreover, W (G,T ) acts freely and

transitively on the set of Weyl chambers.
The proof is omitted. What remains to

be shown is that w ∈ W (G,T ) is a re-

flection through some root α; the proof
proceeds by studying the action of w

on the Weyl chambers. The proof is

not too complicated, but is not partic-
ularly interesting.

Cartan Matrices and Dynkin Diagrams

We have seen in our discussion above that the data of a root system is

completely captured by the coefficients nαβ ; we can further organize this

data as follows:

Definition 5.6.1: Cartan Matrix

Let (V,Φ) be a root system, Φ+ a choice of positive roots, ∆ ⊆ Φ+

the corresponding simple roots. The Cartan matrix associated to

this data is the function A : ∆×∆ → Z given by

A(α, β) = nαβ

If one chooses an ordering of ∆, then A can be given by an actual

matrix.

Example 5.6.2

The Cartan matrices for the rank 2 root systems with the positive roots as above (ordered lexicographically)

are as follows:

A(A1 ×A1) =

(
2 0

0 2

)
A(A2) =

(
2 −1

−1 2

)
A(B2) =

(
2 −1

−2 2

)
A(G2) =

(
2 −1

−3 2

)
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Proposition 5.6.3

The Cartan matrix A for an ordered base fully determines the root

system.

Proof : As noted above, the reflections through simple roots generate the Weyl

group W , and W (∆) = Φ. Moreover, sαi(αj) = αj −Ajiαi and the simple

roots span V , so from A we may determine the reflections through simple

roots, hence W , hence W (∆) = Φ. ■

Dynkin Diagrams
On the final class day (which I missed)

or perhaps in its unrealized coda, we
have finally gotten to the main reason

I took this class.
We are now (at last) ready to introduce Dynkin diagrams, which are the

key combinatorial gadget used to classify Lie algebras and their Lie groups

subject to adequate adjectives.

Definition 5.6.4: Dynkin Diagrams

A Dynkin diagram is decorated graph of the following kind: there is

a vertex set, and for each pair of distinct vertices (v, v′) a multiplicity

m(v, v′) ∈ N. If m(v, v′) > 1 there is also an arrow pointing from v

to v′ or vice versa — i.e., a distinguished element of the pair {v, v′}.

Definition 5.6.5: Dynkin Diagram of a Root System

The Dynkin diagram associated to a root system Φ (with a specified

system of simple roots ∆) is a Dynkin diagram whose vertex set

is ∆, and multiplicities m(α, β) = nαβnβα ∈ {0, 1, 2, 3}. If the

multiplicity is 2 or 3, the arrow points from the longer to the shorter

root.
We will see shortly how these Dynkin

diagrams correspond to the Lie alge-

bras and root systems whose names
they share.

Example 5.6.6

An :

Bn :

Cn :

Dn :

The coefficient n refers to the number of vertices. We may also (as particular

instantiations of the above) give more explicit Dynkin diagrams for the rank

2 root systems which we explicitly computed above:

A1 ×A1 = D2:

A3 = D3:

B2 = C2:

G2:
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Lemma 5.6.7

The connected components of the Dynkin diagram correspond to

the irreducible components of the root system.
This follows directly from definitions.

The angles between the simple roots can be read off directly from the

Dynkin diagram from the multiplicities for i ̸= j (setting (ei, ei) = 1):

(ei, ej) =


0, m = 0,

cos(2π/3) = −1/2, m = 1,

cos(3π/4) = −
√
2/2, m = 2,

cos(5π/6) = −
√
3/2, m = 3.

From these restrictions, we may progressively whittle down the possible

simply-laced (i.e. all multiplicity 1) Dynkin diagrams and produce a com-

plete classification. Our strategy will be to start from the valid simply-laced

Dynkin diagrams:

An: Dn: E6: E7: E8:

whose existence we accept as an axiom from e.g. the above calculations

and lattice/quadratic form theory (in the case of E6, E7, and E8). From a

valid diagram, we add extra vertices and then demonstrate that this leads

to a contradiction.

Lemma 5.6.8

The diagram

does not arise as a sub-Dynkin diagram of any root system (where

by sub-Dynkin diagram we mean merely a subgraph).

Proof : Suppose e0, · · · , en is the basis of Rn+1 coming from this diagram, and set

v = e0 + · · ·+ en. Then

(v, v) =

n∑
i=0

e2i + 2
∑
i<j

(ei, ej) = n+ 1− 1

2
2(n+ 1) = 0

■

We may also rule out a vertex of valency ≥ 4:

Set v0 to the central vertex, v1, · · · , v4 the outer vertices, then v = 2e0 +

(e1 + · · ·+ e4) has (v, v) = 0. We omit the following verifications which are

substantially similar to the two above:
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• A connected simply-laced sub-Dynkin diagram cannot have two distinct

vertices of valency at least 3.

• The following sub-Dynkin diagrams are “illegal” (i.e. give rise to a con-

tradiction):

(i) (ii) (iii) (iv)

The ADE Dynkin diagrams show up
everywhere in math, and a desire to un-

derstand them was the main reason I

took this class. Here are a few flavors
of DynkinADE:

• As alluded to throughout this im-
pressionistic discussion is that sim-

ply laced Dynkin diagrams are in-

timately related to lattices; a theo-
rem of Witt states that any integral

lattice having a basis consisting of

vectors of norm-square 2 is a direct
sum of ADE lattices. Moreover, an

integral lattice with a basis of vec-
tors of norm-square 1 or 2 is a sum

of ADEs and copies of Z.

• A quiver is simply a directed graph
(where loops and multiple arrows

are allowed) and a quiver represen-

tation is a functor from this graph
(regarded as a category) to the cate-

gory of finite-dimensional (complex)

vector spaces. There is an evident
category of representations Rep(Q)

of any quiver Q; Gabriel’s theorem

states that a quiver Q has finite type
(i.e. has finitely many isomorphism

classes of indecomposable objects)

iff the underlying undirected graph
of Q is an ADE Dynkin diagram.

Moreover, in this case, the indecom-
posable representations of Q are in

bijection with the positive roots of

the Dynkin diagram. This can be
extended to all quivers using Kac-

Moody algebras.

• There is a correspondence, due to
McKay, between the ADE Dynkin

diagrams and the finite subgroups

of SO(3) (or SU(2)).

It then follows that the only connected simply-laced Dynkin diagrams are

the ADE ones listed above. One can extend this combinatorial playtime

to show that the only non-simply-laced Dynkin diagrams arising from irre-

ducible root systems are Bn, Cn, G2 and F4 .

It remains to realize E6, E7, E8, G2, and F4 as lattices (with corresponding

root systems) giving rise to these Dynkin diagrams; as these constructions

can only appear ad hoc without the development of much further theory,

we omit them here. E8 is particularly important and appears ubiquitously

in lattice theory.

Theorem 5.6.9

Any irreducible root system is isomorphic to An (n ≥ 1), Bn (n ≥ 2),

Cn (n ≥ 3), Dn (n ≥ 4), or E6, E7, E8, G2, or F4.

Sketch : The above list represents all connected Dynkin diagrams, and any irre-

ducible root system determines such a diagram. Since a given Dynkin di-

agram determines the simple roots ∆, and hence reflections through them

(which generate the Weyl group), and W (∆) = Φ, the Dynkin diagram

determines Φ. ■

To complete our classification of Lie algebras from Dynkin diagrams, we

need now to be able to reconstruct a Lie algebra g from its root system

Φ ⊆ t∗; we also need to show that every root system arises from a compact

connected semisimple Lie group.

Lie Algebras from Root Systems

Let Φ be a root system, ∆ = {α1, · · · , αr} a base for Φ with associated

Cartan matrix Aij . We can now build a complex Lie algebra associated

to these data by hand with generators and relations: Let Xi, Yi, Hi for

i = 1, · · · , r be our generators, and let g̃ be the complex Lie algebra with

these generators and the following Weyl relations:

[Hi, Hj ] = 0 [Xi, Yj ] = δijHi [Hi, Xj ] = AijXj [Hi, Yj ] = −AijYj



lie groups 91

g̃ is infinite-dimensional (since, e.g., [Xi, Xj ] is not a priori determined in

terms of our existing generators), so is not our target. Let ñ+ and ñ− denote

the Lie subalgebras generated by the Xi and Yi respectively, and h̃ the Lie

subalgebra generated by the Hi. The Hi commute, so h̃ = C{H1, · · · , Hn}.
For any 0 ̸= α ∈ h̃∗, set g̃α := {x ∈ g̃ : ad(x)(Hi) = α(Hi)x for all i} to be

the “root space,” and set Q = ZΦ, Q± ⊆ Q to be the monoids generated

by ±∆ (so elements of Q+ are positive sums of simple roots).

Theorem 5.7.1: Chevalley, Harish-Chandra

We have that g̃ = ñ− ⊕ h̃ ⊕ ñ+ as vector spaces. Moreover, ñ+

(resp. ñ−) is the free Lie algebra on the Xi (resp. the Yi) and

ñ± = ⊕α∈Q±\{0}g̃α. tk reenumerate
By free Lie algebra on a set of genera-
tors, we simply mean the vector space

spanned by those generators together

with all possible bracketings thereof.
Finally, we define g as the quotient of g̃ by the following additional relations:

ad(Xi)
−Aij+1Xj = 0 ad(Yi)

−Aij+1Yj for all i ̸= j

These relations give what is called the Serre presentation of g. The Serre presentation is named for
its discoverers, Chevalley and Harish-

Chandra.Theorem 5.7.2: Serre

The quotient g = g̃/r where r is the ideal generated by the above

two relations, is a semisimple complex lie algebra of finite dimension

|Φ|+ r with abelian subalgebra h = C{H1, · · · , Hr} acting on g via

the root system Φ.
Although this is the punchline of what
we have done so far, the proof is omit-

ted because it is long and also relies

on (in the notes) an unproven techni-
cal lemma.

Corollary 5.7.3

Every root system Φ arises from a compact, simply connected, semisim-

ple Lie group K with maximal torus T ; moreover, the pair (K,T )

is uniquely determined up to isomorphism by Φ.
There’s some material in Tim’s notes
beyond the end of the course on univer-

sal enveloping algebras (another main

reason I took this class) but I will end
my notes here.
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