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The chapters here will line up with the

chapters in Tim’s notes/ the syllabus.

As always with a proof about bilinear
forms, we will induct on the dimension.

Symplectic Topology Fall 2023

Chapter I: First Impressions

Professor Tim Perutz Abhishek Shivkumar

Symplectic Vector Spaces

Definition 1.1.1: Symplectic Vector Spaces

A symplectic vector space over a base field k is a pair (V, β) where

V is the underlying vector space, and β is a symplectic pairing β :

V ×V → k is a bilinear skew-symmetric (β(v, v) = 0) nondegenerate

(β♯ : V → V ∗ given by v 7→ β(v,−) is an isomorphism) pairing.

Note that skew-symmetry of β implies that β(u, v) = −β(v, u) (and is often

defined this way), and this equality for all u, v ∈ V in fact implies that β

is skew-symmetric as long as the characteristic of the base field is not 2.

If V is finite dimensional, we can pick a basis e1, · · · , ed for V and set

sij = β(ei, ej) and obtain a skew-symmetric matrix S representing β♯, with

non-degeneracy of β equivalent to detS ̸= 0. Non-degeneracy is an open

condition with respect to the Zariski topology on kd
2

, i.e, detS ̸= 0 is an

open condition since detS is a polynomial. Since the ordinary topology

on k = R is finer than the Zariski topology, non-degeneracy is open with

respect to it as well. For V finite dimensional, note also that β♯ being an

isomorphism implies that for all 0 ̸= v ∈ V , there exists u s.t β(v, u) ̸= 0.

Definition 1.1.2: Symplectic Subspace

A linear subspace U of (V, β) symplectic is symplectic if β|U is non-

degenerate.

We will denote the annihilator of U with Uβ , i.e,

Uβ = {v ∈ V |β(v, U) = 0}

One can show that U ⊆ V is a symplectic subspace iff V = U ⊕ Uβ iff Uβ

is a symplectic subspace.

Lemma 1.1.3

Any finite dimensional symplectic vector space (V, β) has even di-

mension 2n and admits a symplectic basis e1, · · · , en, f1, · · · , fn s.t

β(ei, ej) = β(fi, fj) = 0 and β(ei, fj) = δij .
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This still doesn’t really explain the ex-
tra minus sign, which I suspect is prob-

ably due to historical reasons.

Tim pauses here to give the story of the
word symplectic; Weyl liked the word

complex, which is from Latin, so he
pulled it back, translated it to Greek,
and pushed it forward. Apparently

mathematicians aren’t the only clever
ones to do this and biologists talk about
symplectic bones, which some fish have.

Proof : We will induct on the dimension. The base case is when dimV = 0, in

which case there is nothing to check. If V ̸= 0, take 0 ̸= e1 ∈ V and find

f1 s.t β(e1, f1) = 1 (since β is non-degenerate), and let U be the span of

e1 and f1. Uβ is a symplectic vector space of dimension dimV − 2 so we

may apply the inductive hypothesis to obtain a symplectic basis for Uβ ,

and adjoin e1, f1 to it. ■

The matrix of β with respect to a symplectic basis is −J0 where

J0 =

(
0 In

−In 0

)

The extra minus sign comes from identifying R2n with Cn via ei 7→ ei,

fj 7→ iej , and in this context, J0 is the matrix of multiplication by i.

The vector space of skew pairings on V is
∧2

V ∗ which consists of sums of

the form
∑

j αj ∧ βj for αj , βj ∈ V ∗ and where

(α ∧ β)(u, v) = α(u)β(v)− α(v)β(u)

for u, v ∈ V .

With respect to a symplectic basis (e1, · · · , en, f1, · · · , fn) for β, we can

write

β =

n∑
j=1

e∗j ∧ f∗
j

Since k2n has a natural basis (written (e1, · · · , en, f1, · · · , fn)), the standard
symplectic pairing on k2n is given by β0 =

∑n
i=0 e

∗
i ∧ f∗

i .

Definition 1.1.4: Isomorphisms

A symplectic isomoprhism (V, β) → (V ′, β′) is a linear isomorphism

A : V → V ′ s.t β′(Au,Av) = β(u, v). Equivalently, A∗β′ = β as

elements of
∧2

V ∗.

Proposition 1.1.5

β ∈
∧2

V ∗ is symplectic iff βn = β ∧ · · · ∧β ̸= 0 ∈ detV ∗ =
∧2n

V ∗.

Proof : If β is symplectic, we can pick a symplectic basis so that it can be written

as β0, and then explicitly compute βn
0 = n!(e1 ∧ f1) ∧ · · · ∧ (en ∧ fn) ̸= 0,

and the converse is straightforward. ■

Definition 1.1.6: Symplectic Linear Groups

The symplectic linear group of (V, β) is the group Sp(V, β) consisting

of symplectic automorphisms of (V, β).
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This inclusion is an equality in dimen-

sion 2 and a strict inclusion in higher

dimensions.

This section is largely just a list of re-
sults to come, with no proofs.

This is the Poincaré lemma, and nei-

ther of the two equivalent conditions is
specific to symplectic manifolds.

Note that for A ∈ Sp(V, β), A∗β = β ∈
∧2

V ∗ so A∗(βn) = (A∗β)n = βn ∈
detV ∗, thus, A∗ acts trivially on detV ∗, i.e detA = 1. Thus, Sp(V, β) ⊆
SL(V ).

Sp(V, β) is cut out from GL(V ) by polynomial equations, i.e, it is an alge-

braic group over k (and in particular a Lie group), and has a Lie algebra

denoted sp(V, β), given by

sp(V, β) = {ξ ∈ End(V )|β(ξu, v) = −β(u, ξv)}

Concretely, for (k2n, β0),

Sp(k2n) = {A ∈ GL(V )|ATJ0A = J0} =⇒ sp(k2n) = {ξ ∈ gl(V )|ξTJ0+J0ξ = 0}

by the regular yoga of calculating the Lie algebra by writing A = I + tξ

and keeping only the first order terms in t. sp(k2n) is equipped with the

regular commutator Lie bracket [−,−].

Note that JT
0 = −J0 so J0ξ is symmetric by the condition ξTJ0 + J0ξ = 0,

so sp(k2n) consists of matrices which are J0 times the symmetric endomor-

phisms of k2n, from which we can calculate dim sp(k2n) = dimSp(k2n) =
1
22n(2n+ 1) = n(2n+ 1).

Intro to Symplectic Manifolds

Definition 1.2.1: Symplectic Manifolds

A symplectic manifold (M,ω) is a C∞ manifoldM with a 2-form ω ∈
Ω2(M) that is non-degenerate (i.e, for all x ∈ M , ωx ∈

∧2
(T ∗

xM) is

non-degenerate) and closed (i.e dω = 0).

In local coordinates x1, · · · , x2n on M , ω can be written as

ω =
∑
i<j

ωij(x) dxi ∧ dxj

so dω = 0 is equivalent to the system of PDEs

∂

∂xi
ωjk +

∂

∂xj
ωki +

∂

∂xk
ωij = 0

for all i, j, k. Equivalently, dω = 0 implies that locally ω is exact, i.e, there

exists a cover Uα s.t ω|Uα
= dηα.

dω = 0 is a coordinate-independent (diffeomorphism-invariant) condition,

since, given a smooth map M
ϕ−→ N , ωN ∈ Ω2(N), then dωN = 0 implies

that d(ϕ∗ωN ) = 0 since the exterior derivative d commutes with pullbacks.

Non-degeneracy is similarly coordinate independent.
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We will later give two proofs of this

result, but first need to develop some
more background.

Definition 1.2.2: Symplectomorphisms

A symplectomorphism between symplectic manifolds (M,ωM ) and

(N,ωN ) is a diffeomorphism ϕ : M → N s.t ϕ∗ωN = ωM .

Definition 1.2.3: Symplectic Immersions

A symplectic immersion is a smooth map ϕ : M → N s.t ϕ∗ωN =

ωM .

ϕ∗ωN = ωM implies that Dxϕ is injective for all x ∈ M , as, otherwise, ωM

would be degenerate, so the maps that preserve our chosen structure in this

subject are quite rigid.

Example 1.2.4

The basic example of a symplectic manifold is (R2n, ω0), with coor-

dinates x1, x2, · · · , xn, y1, · · · , yn and

ω0 =

n∑
j=1

dxj ∧ dyj

The coordinate vector fields ∂
∂x1

, · · · , ∂
∂xn

, ∂
∂y1

, · · · , ∂
∂yn

form a sym-

plectic basis of each tangent space. We can write

ω0 = −d

 n∑
j=1

yj dxj


which immediately proves that ω0 is closed.

We can also work in complex coordinates, with zj = xi+iyj , so that

ω0 =
i

2

n∑
j=1

dzj ∧ dzj =
i

2
∂∂∥z∥2

where ∂f =
∑

j
∂f
∂zj

dzj and ∂α =
∑

j
∂α
∂zj

∧ dzj .

Theorem 1.2.5: Darboux

Near any point p in a symplectic manifold (M2n, ω), there exist

coordinates (x1, · · · , xn, y1, · · · , yn) such that the coordinate vector

fields ∂
∂xi

, ∂
∂yi

form a symplectic basis for each tangent space, i.e,

there exist open neighborhoods p ∈ U ⊆ M and 0 ∈ U ′ ⊆ R2n, and

a symplectomorphism

ϕ : (U, ω|U ) → (U ′, ω0|U ′)

This theorem essentially shows that symplectic manifolds have no interest-

ing local structure (the way that Riemannian manifolds do).
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I have heard this result also referred to

as “Gromov’s symplectic camel.”

Definition 1.2.6: Symplectic Volume

Given (M2n, ω), U an open subset of M , then the symplectic volume

of U is

volω(U) =

∫
U

ωn

Note that symplectomorphisms ϕ preserve volume, i.e, given ϕ :

M → M , volω(ϕ(U)) = volω(U).

In (R2n, ω0), volω0
(U) = n!Measure(U), and there does not exist a sym-

plectic automorphism of R2n that maps the unit ball into a strictly smaller

ball.

Example 1.2.7

Consider S2 with any symplectic structure on it (we will assume that

one exists). There is no symplectic automorphism of S2 that moves

the equator to anything other than a great circle, since, otherwise,

the areas on either side of the putative image circle will be different

than the areas of the hemispheres on either side of the equator.

Theorem 1.2.8: Gromov’s non-squeezing theorem

There does not exist a symplectic automorphism ϕ of (R2n, ω0) car-

rying the open unit ball about the origin (denoted B2n(0; 1)) into

the cylinder B2(0; r)× R2n−2 for r < 1.

Theorem 1.2.9: Seidel

There exist symplectic automorphisms of certain compact symplec-

tic 4-manifolds (M,ω) s.t ϕ is trivial in π0Diff+(M) but nontrivial

in π0Aut(M,ω) (where Aut in this course always refers to the sym-

plectic automorphism group).

Example 1.2.10: Stein Manifolds

If X ⊆ Cn is a closed complex submanifold, then ω0|X is a symplec-

tic form on X.

Theorem 1.2.11: Seidel-Smith

For any even number 2k ≥ 4, there exists a smooth affine variety X

of complex dimension 2k such that X is diffeomorphic to R4k but

not symplectomorphic to (R4k, ω0).
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The proof can be found in Tim’s notes,

but the reverse implication is immedi-
ate, and the forward implication is an

easy induction on dimension.

Theorem 1.2.12: McLean

For all k ≥ 3, there exists an infinite family of pairwise non-isomorphic

symplectic (Stein) structures on R2k.

Lagrangian Submanifolds

For (V, β) a symplectic vector space, T ⊆ V (not necessarily a subspace),

we write T β for the annihilator of T (which is always a subspace).

Definition 1.2.13: Lagrangian Subspaces

L ⊆ V is a Lagrangian subspace if Lβ = L.

Definition 1.2.14: Isotropic and Coisotropic Subspaces

A subspace U ⊆ V is isotropic if U ⊆ Uβ i.e β = 0 on U × U , and

coisotropic if U ⊇ Uβ .

Therefore, a Lagrangian subspace is precisely one that is both isotropic and

coisotropic.

Lemma 1.2.15

For a subspace U ⊆ (V, β) (finite dimensional), U is isotropic iff

there exists a symplectic basis (e1, · · · , en; f1, · · · , fn) and a k ≤ n

s.t U is the span of e1, · · · , ek.

Note that U is isotropic iff Uβ is coisotropic since (Uβ)β = U , so we can

dualize the above lemma in the obvious way (U is coisotropic iff there exists

a symplectic basis (e1, · · · , en; f1, · · · , fn) and a k ≤ n s.t U is the span of

ek+1, · · · , en, f1, · · · , fn). Combining these two lemmas, we have:

Proposition 1.2.16

For L ⊆ V , the following are equivalent:

1. L is Lagrangian

2. L is isotropic and dimL = 1
2 dimV

3. L is maximal among isotropic subspaces

4. L is coisotropic and dimL = 1
2 dimV

5. L is minimal among coisotropic subspaces

6. There exists a symplectic basis (e1, · · · , en, f1, · · · , fn) s.t L is the

span of the ei.
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Any orientable surface has a symplec-

tic structure, since by orientability, the

surfaces in question have volume forms,
which here are also symplectic forms

(perhaps up to constant factors).

The proofs are straightforward and left as an exercise. By the sixth equiva-

lent condition above, we note that Sp(V, β) acts transitively on Lagrangian

subspaces.

Definition 1.2.17: Lagrangian Submanifolds

Let (M,ω) be a symplectic manifold, L another manifold. A La-

grangian immersion of L in M is an immersion i : L → M s.t for

all x ∈ L, Dx(TxL) is Lagrangian in TxM (note that this implies

dimL = 1
2 dimM). In the case that i is also the inclusion of an em-

bedded submanifold L ⊆ M , we call L a Lagrangian submanifold.

Example 1.2.18

Any circle embedded in any surface (not necessarily compact or ori-

entable) is a Lagrangian submanifold, since in a 2-dimensional vector

space, any one-dimensional subspace is isotropic since ω(v, λv) = 0

by skew-symmetry and bilinearity.

Example 1.2.19

Let ϕ : (M,ωM ) → (N,ωN ) be a symplectomorphism, then its graph

Γϕ = {(x, ϕ(x)) : x ∈ M} ⊆ (M ×N, (−ωM )⊕ ωN )

is a Lagrangian submanifold, as one can easily check.

Example 1.2.20: Clifford Tori

Let C(a) ⊆ C be a circle in C centered at 0 bounding a disk of area

a, C(a1, · · · , an) := C(a1) × · · · × C(an) ⊆ Cn, with ai > 0. Such

tori are Lagrangian with respect to ω0.

One can ask whether two such Clifford Tori are symplectomorphic, and we

will later give a necessary and sufficient condition for such a symplectomor-

phism to hold.

Example 1.2.21: Whitney Embedding Theorem

Let L be a smooth compact n-manifold, then there exists an embed-

ding L ↪→ R2n. One can ask which compact n-manifolds appear as

either embedded or immersed Lagrangian submanifolds of (R2n, ω0);

in the immersed case, Gromov and Eliashberg gave a complete an-

swer, that any such L is an immersed Lagrangian submanifold of

(R2n, ω0) (this is called “symplectic flexibility” and the proof uses a

technique called the “h-principle”). Not all such L appear as embed-

ded Lagrangian submanifolds, however; and in fact this fails even

for some surfaces embedded in R4 as we will see below.
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This can be refined when dimL = 2,

and there is a result that χ(L) ≡ 0
(mod 4) due to Audin.

Recall that if X is a vector field on
a manifold M , then ιX : Ωk(M) →
Ωk−1(M) is the contraction map that
sends a k-form ω to a k − 1-form ιXω
via

ιXω(X1, · · · , Xk−1) = ω(X,X1, · · · , Xk−1)

Proposition 1.2.22

Let L ⊆ (R2n, ω0) be a closed embedded Lagrangian submanifold,

with Euler characteristic χ(L). Then χ(L) ≡ 0 (mod 2), and if L is

orientable, then χ(L) = 0.

This implies that the only compact orientable surface that can (and in fact

does) admit a Lagrangian embedding in R4 is the torus T 2.

Proof : Say L is orientable, so it has a self-intersection L ·L ∈ Z given by the signed

count of the number of intersection points, so if L is closed, we can just

push our perturbed copy of L far enough away that it doesn’t intersect the

original copy at all, so χ(L) = 0 (one can also see this with Poincaré duality

and cup products since R2n has no cohomology in dimension 2n). In the

non-orientable case, L · L is only defined (mod 2) and χ(L) ≡ 0 (mod 2)

follows by the same reasoning. ■

Recall that J0 represents the action of i on TxCn = Cn, so ω0(v, J0v) =

∥v∥2 > 0 for v nonzero. If Λ ⊆ TxCn is a Lagrangian subspace, then

Λ ∩ J0Λ = 0 since, by the above, J0Λ is disjoint from the annihilator of

Λ by ω0 (which is Λ since Λ is Lagrangian), so TxCn = Λ ⊕ J0Λ. So, an

embedded Lagrangian submanifold L ⊆ Cn has normal bundle NL/Cn =

J0(TL) ∼= TL, so, taking a section s of the normal bundle, L · L can be

calculated as the number of zeros of s counted by sign, which in turn is

equal to the Euler characteristic of L since s is a generic vector field on L,

and we may apply Poincaré-Hopf.

Complex Projective Spaces

In this section we will give an infinite family of nontrivial symplectic man-

ifolds, the complex projective spaces. Recall that CP1 = S2; since a sym-

plectic form must agree with a volume form on S2, we must only write

down the usual area measure on S2. ωS2 ∈ Ω2(S2) ought to be SO(3)-

invariant, and
∫
S2 ωS2 = 4π. We will construct ωS2 by first considering

vol = dx1 ∧ dx2 ∧ dx3 ∈ Ω3(R3) which is manifestly rotationally invariant.

This is a 3-form, and we want a 2-form, so we contract vol against the

vector field

Z =
1

2
∇∥ · ∥2 = x1∂x1 + x2∂x2 + x3∂x3

which is also rotationally invariant (it points radially outwards at each

point).

One can calculate that

ιZ vol = x1 dx2 ∧ dx3 + x2 dx3 ∧ dx1 + x3 dx1 ∧ dx2
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This map is what I understand as the

Mercator projection, which is confor-
mal but definitely not area-preserving,

so I must be wrong, but I then don’t

know what kind of map projection this
is then.

In the notes, it says an aside that
this would make S2n+1 a symplectic
correspondence between the symplectic
manifolds

(
Cn, 1

π
ω0

)
and (CPn, τn).

The Lie derivative of a differential form

ω by a vector field X is given by the

formula

LXω = ιX(dω) + d(ιXω)

This is known as Cartan’s magic for-

mula. The Lie derivative has a more
general definition in more general con-

texts, but morally is defined to give the

rate of change of a general tensor field
along the flow defined by a given vector

field.

and we set ωS2 = (ιZ vol)|S2 . This satisfies our normalization condition:∫
S2

ωS2 =

∫
S2

(ιZ vol)|S2 =

∫
B3

d(ιZ vol) = 3

∫
B3

vol = 3
4

3
π = 4π

Example 1.3.1

Consider S2 sitting inside R3, together with its tangent cylinder

(aligned with the z axis). Then Φ : S2 \ {poles} → S1 × (−1, 1)

given by mapping (x1, x2, x3) to (longitude, x3) is a symplectomor-

phism. This is due to Archimedes, since a symplectomorphism in

this context is equivalent to area-preserving.

In higher dimensions, CPn = (Cn+1\{0})/C× = S(Cn+1)/U(1) = S2n+1/S1.

We want to define the symplectic form τ = τn on CPn called the Fubini-

Study form which is invariant under PU(n+1) = U(n+1)/diagonal matrices,

satisfying τn|CPn−1 = τn−1, with normalization condition
∫
CP1 τn = 1 for

any projective line CP1 ⊂ CPn (i.e, CP1 ↪→ CPn given by [x : y] 7→ [x : y :

0 : · · · : 0]). Our construction will be a prototype for symplectic reduction.

Consider the following maps:

S2n+1 Cn+1

CPn = S2n+1/S1

ρ

e

where e is just the inclusion and ρ is given by z 7→ [z] (this map is called

the Hopf fibration). The idea is to construct τ such that

1

π
e∗ω0 = ρ∗τ

where ω0 is the symplectic form on Cn+1.

By Weinstein’s symplectic creed “everything is Lagrangian”, we consider

(ρ, e) : S2n+1 ↪→ CPn × Cn+1 whose image is middle-dimensional; we want

to show that it is Lagrangian with respect to the symplectic form −τ⊕ 1
πω0.

Starting with some z ∈ S2n+1, we consider its S1-orbit which has a tangent

direction ξ and an orthogonal direction z⊥. TzS
2n+1 is the real orthogonal

complement to the vector z in Cn+1 and therefore splits as z⊥⊕Rξ (where

z⊥ is the Hermitian orthogonal complement to z).

Dzρ : TzS
2n+1 → T[z]CPn ∼= z⊥ maps ξ to 0 by construction; setting

η = ω0|S2n+1 = e∗ω0, one can check that η(ξ,−) = 0, equivalently, ιξη = 0

(where ι is the contraction map by a vector field as above). Moreover,

ω0, hence η, is S1-invariant. The above two properties imply that the Lie

derivative vanishes, notationally Lξη = 0.

We want 1
πη = ρ∗τ . Explicitly, we want τ[z](u, v) = 1

πη(u
♮, v♮) where u♮

is the lift to z⊥ of u and similarly for v♮, so we may as well define τ that
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Tim remarks that this is essentially the
connecting homomorphism in the long

exact sequence of homotopy groups.

way. The lifts are well-defined by the above splitting of TzS
2n+1, and for

z, z′ both mapping to [z], this definition is still well-defined since η is S1-

invariant. The last thing to check is that dτ = 0, which we can see since

ρ∗(dτ) = d(ρ∗τ) =
1

π
d(η) =

1

π
e∗d(ω0) = 0

by repeatedly applying the commutativity of pullbacks with d.

τn is PU(n + 1)-invariant, which follows from the fact that η is U(n + 1)-

invariant, and τn|CPn−1 = τn−1 (which follows by the analogous restriction

statement for η2n+1). For normalization, we want
∫
CP1 τn = 1 but τn|CP1 =

τ1 so only have to check this once; our proof strategy will be related to the

topology of fiber bundles.

Consider a fiber bundle given by the following data:

F E

B

p

Here, F is the fiber, B is the base, and E is the total space, with p smooth.

E and B are both oriented, and we will take F compact. Then we have the

following:

Proposition 1.3.2

There is a homomorphism ∂ : πk(B, b) → πk−1(Fb).

Proof : Given π : (Dk, ∂Dk) → (Sk, •) a smooth map restricting to a diffeomor-

phism on the interior of Dk; given f : (Sk, •) → (B, b), define f̃ = f ◦ π :

Dk → B. f̃∗E is then a bundle over Dk which is automatically trivial since

Dk is contractible, so f̃ lifts to a map f ♮ : Dk → E as follows:

f̃∗E ∼= Fb ×Dk E

Dk B
f̃

pr2 pf♮

In general, if the pullback bundle is trivial then we can define a map f ♮ as

above by picking a point b ∈ B (here we are given one by our setup), and

regard our Dk as {b}×Dk and then travel along the map f̃∗E → E. Then,

finally, we can set ∂f = f ♮|∂Dk . One has to show that this is well-defined

i.e up to homotopy of f (we omit this verification). ■

What does this do for us? Suppose we have τ a closed k-form on B,

and suppose p∗τ = dγ for some γ ∈ Ωk−1(E), and δ = γ|F . Then, for

f : (Sk, •) → (B, b) as above, we have∫
Sk

f∗τ =

∫
Sk−1

(∂f)∗δ
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This follows by the following chain of equalities:∫
Sk

f∗τ =

∫
Dk

f̃∗τ =

∫
Dk

(f ♮)∗p∗τ =

∫
Dk

(f ♮)∗dγ =

∫
Dk

d((f ♮)∗γ) =

∫
Sk−1

(∂f)∗γ

where the first equality is the pullback by the diffeomorphism π, the final

equality is by Stokes’ theorem (and the definition ∂f = f ♮|∂Dk), and all in-

termediate equalities are by standard properties of integration on manifolds

(i.e that pullbacks commute with the exterior derivative).

Using this we may finally verify that
∫
CP1 τ1 = 1 via the Hopf fibration; on

C2, ω0 = 1
2

∑2
i=1 xi dyi − yi dxi, so on S3, we have ρ∗τ = 1

πη = dγ where

γ =
1

2π
(x1 dy1 − y1 dx1 + x2 dy2 − y2 dx2)|S3

and by the above lemma,
∫
CP1=S2 τ1 =

∫
F
δ where F = S1 is some fiber of

ρ and δ = γ|F = 1
2π (x1 dy1 − y1 dx1) = 1

2πdθ. Hence
∫
F
dθ = 1 and the

result follows.

Complex Structures

Our basic examples of symplectic manifolds, R2n, have an obvious complex

structure as Cn, with hermitian inner product

h(z, w) = z · w =
∑
j

zjwj

Specifically, we identify R2n with Cn via a basis for the former (e1, . . . , en, f1, · · · , fn)
where fj = iej , and we can then write

h0 = g0 − iβ0

where g0 is the standard inner product on Rm and β0 is the standard

symplectic form on R2n.

Let J0 denote the endomorphism of R2n corresponding to multiplication by

i, i.e

J0 =

(
0 −In

In 0

)
Using the basis above, one can check that g0(u, v) = β0(u, J0v), and since

h0(J0u, J0v) = h0(u, v) we have that g0(J0u, v) = β0(J0u, J0v) = β0(u, v).

Thus, one can see that given any two of J0, g0, β0, one can reconstruct the

third one; the only remaining case is reconstructing J0 from g0 and β0;

choose a basis v1, · · · , v2n, then

n∑
k=1

β0(u, vk)vk =

n∑
k=1

g0(Ju, vk)vk = Ju
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This seems like the vector space version
of the definition of a Kähler manifold.

for u arbitrary (since
∑n

k=1 g0(−, vk)vk is the identity operator).

Given these relations of the standard structures on Cn, we are motivated

to define the following:

Definition 1.4.1: Compatible Complex Structures

Given a symplectic vector space (V, β), a compatible complex struc-

ture is an element J ∈ End(V ) with J2 = −I (so J is a complex

structure) such that if we set

g(u, v) := β(u, Jv)

then g is a real inner product.

Given (V, β, J, g), there are various symmetry groups inside GL(V ) preserv-

ing the various structures on our vector space; we have already discussed

Sp(V, β), the symmetries of β, and we also have GL(V, J), the complex

automorphisms of V (symmetries of J), and O(V, g), the orthogonal auto-

morphisms (symmetries of g). Considering the intersection of any two of

these subgroups of GL(V ), the “two out of three principle” implies that

this must equal the triple intersection since any automorphism preserving

two of the structures automatically preserves the third. In notation, we

have

Sp(V, β)∩GL(V, J) = Sp(V, J)∩O(V, g) = O(V, g)∩GL(V, J) = U(V, J, h)

Polar Decomposition

Theorem 1.4.2: Polar Decomposition

Given a hermitian vector space (V, J, h = g− iβ), the unitary group

U(V, J, h) is naturally a deformation retract of Sp(V, β). U(V, J, h) is

a maximal compact subgroup of Sp(V, β), and any maximal compact

subgroup of Sp(V, β) is conjugate to U(V, J, h).

Example 1.4.3

Consider Sp(R2) = SL2(R) which is homeomorphic (in fact, diffeo-

morphic) to a solid open torus S1×D̊2 (one can see this, for example,

via Gram-Schmidt or the QR decomposition). U(1) ⊆ SL2(R) is the
core longitudinal circle of the solid torus, and we can deformation

retract to it in the natural way.

This is the general picture that polar decomposition generalizes, which is in

turn an instance of a general structure theorem for non-compact semisimple

Lie groups whose proof utilizes a so-called Cartan involution. In the base

case, with V a real hermitian vector space, GL(V ) contains O(V, g) as
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I don’t understand why we can’t obtain

this deformation retract with Gram-

Schmidt.

I don’t know why it’s clear that the
square root is unique here. If you
have a diagonal matrix then given any
square root, you can get a different one
by changing the signs of the diagonal

entries; maybe the point is that there is

a unique positive-definite square root of
a positive-definite matrix? That tracks

in the diagonal case.

a maximal compact subgroup as a deformation retract; showing this and

then restricting to Sp(V, β) will give us the desired result since Sp(V, β) ∩
O(V, β) = U(V, J, h).

Proof : Set G = GL(V ); we define Θ : G → G a Lie group homomorphism which

will satisfy Θ2 = id (this is our Cartan involution) by Θ(Z) = (Z∗)−1

where Z∗ denotes the g-adjoint, i.e, g(Z∗u, v) = g(u, Zv) (in Rn with

its standard inner product, Z∗ = ZT ). Note that (Y Z)∗ = Z∗Y ∗ and

(Y Z)−1 = Z−1Y −1 so the order flips two times, and Θ is in fact a homo-

morphism (that Θ is an involution is clear).

Let GΘ denote the fixed point set of Θ; Z = (Z∗)−1 ⇐⇒ ZZ∗ = I,

so GΘ = O(V, g). Passing to the Lie algebra g = TIG = End(V ), set

θ = DIΘ : TIG → TIG; one can check that θ(ξ) = −ξ∗ and thus θ2 =

idg. Thus, g splits into the ±1 eigenspaces of θ (since finite order ma-

trices are diagonalizable), which are o(V, g) (skew-adjoint endomorphisms)

and symm(V, g) (self-adjoint endomorphisms) respectively. One can show

that [o(V, g), o(V, g)] ⊆ o(V, g) and [o(V, g), symm(V, g)] ⊆ symm(V, g) so

symm(V, g) is a module for the Lie algebra o(V, g).

We have the exponential map exp : g → G given by ξ 7→ exp(ξ) =
∑

n≥0
ξn

n! ;

look at exp |symm(V,g)

∼=−→ S where S consists of positive definite symmetric

automorphisms inside G, since any positive definite symmetric matrix P

has a unique symmetric logarithm.

We can now define Φ : symm(V, g) × O(V, g) → G given by Φ(ξ,O) =

exp(ξ) ·O. We claim that Φ is an O(V, g)-equivariant diffeomorphism, and

hence O(V, g) is a deformation retract of G.

That Φ is O(V, g)-equivariant is immediate; moreover, if Z = PO ∈ G,

with P positive-definite self-adjoint and O orthogonal, then

ZZT = POOTPT = PPT = P 2

so P is a positive-definite square root of the self-adjoint positive-definite

matrix ZZT , which must be unique, so Φ is injective. We can also recover

P from Z as the square root of ZZT , and O = P−1Z, so Φ is surjective. Φ

is obviously smooth, and so is its inverse. ■

Restricting to Sp(V, β), we have

Sp(V, β)Θ = Sp(V, β) ∩O(V, g) = U(V, h)

The derivative θ = DIΘ splits sp(V, β) = p⊕u with u = u(V, h) the unitary

Lie algebra of skew-adjoint endomorphisms and

p = sp(V, β) ∩ Jsp(V, β) = Jsymm(V, g) ∩ symm(V, g)

We then have the following corollary:
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Neither assertion in this paragraph is

obvious to me.

Tim uses some commutative diagrams

here to define what we mean by a vector

space structure on the fiber that I’ve
omitted.

Corollary 1.4.4

Ψ : p×U(V, h) → Sp(V, β) given by (ξ, U) 7→ exp(ξ) ·U is a U(V, h)-

equivariant diffeomorphism.

Symplectic and Complex Vector Bundles

Let (V, β) be a symplectic vector space, and let J (V, β) ⊂ End(V ) be the

space of compatible complex structures, i.e,

J (V, β) = {J ∈ End(V ) : J2 = −I, β(Ju, v) = −β(u, Jv) = 0 and β(v, Jv) > 0 for all v ̸= 0}

By the above discussion, these criteria are equivalent to the requirement

that g(u, v) := β(u, Jv) defines a real inner product.

Sp(V, β) acts transitively on J (V, β) by conjugation, and the stabilizer of

some fixed complex structure J is U(V, J, g− iβ) so, fixing J ∈ J (V, β), we

have

J (V, β) ∼= Sp(V, β)/U(V, J, g − iβ)

Note that this is not a group quotient, but a space of cosets (a homogeneous

space).

From our discussion of polar decomposition above, Sp(V, β) = exp(p) (where

p = sp(V, β) ∩ Jsp(V, β) = Jsymm(V, g) ∩ symm(V, g) as above) hence

Sp(V, β)/U(V, J, g− iβ) is homeomorphic to p which is a vector space, and

therefore contractible (note that we need a choice of J ∈ J (V, β) for this

contraction).

Definition 1.4.5: Symplectic Vector Bundles

Recall that a smooth vector bundle is a surjection of smooth mani-

folds V
p−→ B where B is the base manifold, such that each fiber Vb

of p has the structure of a vector space and such that for all b ∈ B

there exists an open neighborhood U ∋ b such that p−1(U) ∼= U×Vb

i.e V is locally diffeomorphic to a product of an open set of B with

the fiber.

A symplectic vector bundle is a smooth vector bundle together with

β a smoothly varying family of symplectic pairings βb on the fibers

Vb, such that the local trivializations are symplectomorphisms i.e

Vb×{x} ∼−→ Vx is a symplectomorphism (where x is a nearby point).

Example 1.4.6

If η is a non-degenerate 2-form on a manifold M , then (TM, η) is

a symplectic vector bundle. Note that we do not require that η is
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I think this should be equivalent to

just taking the compact-open topology,
i.e, when considering C(X,Y ), take the

topology generated by the subbase con-

sisting of V (K,U) defined as

V (K,U) = {f ∈ C(X,Y ) : f(K) ⊆ U}

with K compact in X and U open in Y .

Also, recall that a subbase just means
that you are allowed to take arbitrary

unions and finite intersections of the

opens in question (or, equivalently, that
the set of all finite intersections of ele-

ments in the subbase forms a base).

closed, so M may not have a symplectic structure.

We can similarly define a compatible complex structure on a symplectic

vector bundle as a smoothly varying family of complex structures on the

fibers such that gb := βb(−, Jb−) is an inner product on Vb. As before, we

will denote the set of such structures J (V, β).

Recall that C∞(B;E) denotes the vector space of smooth sections of our

vector bundle E
p−→ B; for any compact K ⊆ B, any r ∈ N, there exists

a seminorm on C∞(B;E) controlling the suprema of sections s and of its

derivatives through order r over K. Taking an exhaustion by compacta of

the base (i.e K1 ⊆ K2 ⊆ · · · all compact such that B =
⋃

i Ki) and r → ∞
we get a countable set of seminorms ∥·∥k, for k ∈ N, which gives a complete

metric on C∞(B;E):

d(s1, s2) =
∑
k

∥s1 − s2∥k
2k(1 + ∥s1 − s2∥k)

which makes C∞(B;E) into a Fréchet space.

Then we topologize J (V, β) with the subspace topology of C∞(B,End(V ))

(where End(V ) is the vector bundle of vector bundle endomorphisms).

Theorem 1.4.7

J (V, β) is contractible.

J (V, β) is the space of sections of a fiber bundle overB with fibers J (Vb, βb) ∼=
pJb

given Jb ∈ J (Vb, βb), so once we’ve exhibited one symplectic structure

on the vector bundle V , i.e, a J ∈ J (V, β), J (V, β) is isomorphic to the

C∞ sections of a vector bundle, pJ → B, and this space of sections is a

metric vector space, hence contractible. The trouble then is exhibiting a

single symplectic structure on the vector bundle in question.

One approach is via obstruction theory, where one can construct J induc-

tively over k-skeleta of the base B with respect to a CW decomposition of

B, and then deform this a priori continuous function to a smooth function.

However, a more direct approach is possible: concretely, given (V, β) a sym-

plectic vector space, we may take any inner product g on V (not necessarily

compatible with β), and define K ∈ End(V ) by g(u, v) = β(u,Kv), so K

is skew-adjoint.

If K ∈ O(V, g), then K ∈ J (V, β) since g(K2u, v) = −g(Ku,Kv) =

−g(u, v) so K2 = −I, and since K is defined by g(u, v) = β(u,Kv), this

implies that K ∈ J (V, β).

In general, K has a polar decomposition K = PO with O orthogonal, and

P = exp(ξ) with ξ symmetric (via polar decomposition); we claim that O
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Note that we only need to specify that
KM is independent of J because we are

taking a complex determinant; the ar-

gument given here also does not seem
to use any special properties of the de-

terminant line bundle, and seems to
gives a recipe for proving that the iso-

morphism type of a complex vector

bundle does not depend on the specific
almost complex structure in question,

although I’m not completely sure that

this is true.

is a compatible complex structure, and omit the verification of this. Note

that a partition of unity argument would not work here because, unlike

with a Riemannian metric, a convex combination of symplectic forms is

not guaranteed to be symplectic.

The Canonical Line Bundle and the Adjunction Formula

A complex structure on the tangent bundle (as a vector bundle) is called an

almost complex structure on the underlying manifold M . On a symplectic

manifold (M,ω), we refer to the set of compatible almost complex struc-

tures by J ∈ J (TM,ω). If J0, J1 ∈ J (TM,ω), then (TM, J0) ∼= (TM, J1)

as complex vector bundles via an isomorphism that is canonical up to ho-

motopy.

Definition 1.4.8: Canonical Line Bundle

Given (M,ω), the canonical line bundle onM isKM := detC(T
∗M,J∗)

where the determinant of a vector bundle is simply its top exterior

power.

This line bundle does not depend on the choice of J ; note that, last

time, we showed that J (TM,ω) is contractible, hence path-connected (and

nonempty), so for any J0, J1 there exists a path between them Jt which

gives a complex line bundle over M × I whose restriction to M × {t} is

detC(T
∗M,J∗

t ), so detC(T
∗M,J∗

0 )
∼= detC(T

∗M,J∗
1 ); moreover, by con-

tractibility, any two paths between J0 and J1 are homotopic (since J (TM,ω)

is simply connected) so the latter isomorphisms are canonical up to homo-

topy.

KM is a symplectic invariant in that KM
∼= ϕ∗KN if ϕ is a symplecto-

morphism between (M,ωM ) and (N,ωN ). Note that for any manifold X,

the isomorphism classes of complex line bundles L → X form an abelian

group Pic(X) under the tensor product, with inverses given by duals. The

first Chern class gives an isomorphism c1 : Pic(X)
∼−→ H2(X;Z); there

are many ways to calculate c1(L). For example, in algebraic topology, one

can identify Pic(X) with [X,BU(1)] since all line bundles pull back from

the universal line bundle over BU(1) which turns out to be equal to CP∞,

which is in turn equal to K(Z, 2), so [X,BU(1)] = H2(X;Z) by Brown

representability.

More concretely, H2(X;Z) consists of singular 2-cochains, which you can

evaluate on 2-chains in some CW structure on X (and you can demand that

the 2-chains are smooth), so given a line bundle L over X, pick some generic

section s and look at its intersection Z with the zero section (generically

these intersections are transverse); so Z is some codimension 2 oriented

submanifold of X since dimR Lx = 2, which we can think of as a 2-cochain

by taking a 2-chain u to the intersection number u · z, i.e, c1(L) = δZ ,
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In fact, one can define the higher Chern

classes in a similar way, with ci an

obstruction class to the existence of
n− i+1 linearly independent sections.

If a1 = a2, then the map (x, y) 7→
(y, x) is a self-symplectomorphism that
is nontrivial on cohomology.

We never actually got to this in class,
and I’m just including the result with-
out proof for some measure of comple-

tion.

Z = s−1(0). c1 is also natural in the sense that it commutes with pullbacks,

i.e, c1(f
∗L) = f∗c1(L) for f : Y → X. Thus, c1(KM ) is an important

symplectic invariant of a symplectic manifold M .

Example 1.4.9

Let (Σ, ω) be a symplectic surface, closed, orientable, connected, and

genus g. Then KΣ is (T ∗Σ, J), and c1(KΣ) = c1(T
∗Σ) = −c1(TΣ),

and by Poincaré-Hopf, the signed count of zeros of a generic vector

field (i.e section of TΣ) is the Euler characteristic, so ⟨c1(KΣ), [Σ]⟩ =
2g − 2. Since H2(Σ) = Z, this fully characterizes c1(KΣ), i.e, no

information is lost when evaluating against the fundamental class.

For Σ non-orientable, H2(Σ) = 0 so c1(KΣ) = 0 trivially.

Example 1.4.10

Consider (S2 × S2, ω = pr∗1ζ1 ⊕ pr∗2ζ2) where ζ1, ζ2 are symplectic

forms on S2, with areas ai =
∫
S2 ζi > 0. KS2×S2 = pr∗1KS2⊗pr∗2KS2

so

c1(KS2×S2) = c1(pr
∗
1KS2) + c1(pr

∗
2KS2) = −2e1 − 2e2

where H2(S2 × S2) = Z · e1 ⊕ Z · e2.

Proposition 1.4.11

Suppose [ω] = a1e1 + a2e2 ∈ H2(S2 × S2;R) with a1 ̸= a2, and

ϕ ∈ Aut(S2 × S2, ω), then ϕ∗ : H∗(S2 × S2) → H∗(S2 × S2) is the

identity on cohomology.

Proof : Recall that

H∗(S2 × S2) = Z
0
⊕ (Z⊕ Z)

2
⊕ Z

4

ϕ∗ is the identity on H0 since this is true for any self-homeomorphism of

a path-connected space, and on H4 since ϕ is orientation preserving (as a

symplectomorphism). On H2, since [ω] = a1e1 + a2e2 ∈ H2(S2 × S2;R) =
H2(S2×S2)⊗ZR, and we know that c1(K) = −2e1−2e2, since a1 ̸= a2 by

assumption, [ω] and c1(K) form a basis for H2(S2 × S2;R), and both are

symplectic invariants and hence fixed by ϕ∗, so ϕ∗ must be be the identity

on H2 since it fixes two linearly independent vectors. ■

Proposition 1.4.12: The Adjunction Formula

Let (X,ω) be a symplectic manifold, D a closed, codimension 2

submanifold of X. Then, there is an isomorphism of complex line

bundles (which is an isomorphism of holomorphic line bundles when

X is a complex manifold and D a complex submanifold)

KD
∼= ND/X ⊗C KX |D
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Here we develop a generalization of
c1(KM ) to the data of (M,ω) to-

gether with a Lagrangian submanifold

L. Why we do this is totally opaque to
me.

The charts for other Grassmanians (i.e,

not middle dimensional) are defined
similarly.

I guess implicitly we’re picking some
embedding O(n) ↪→ U(n) correspond-

ing to the stabilizer of a Lagrangian L
but what is the “canonical” Lagrangian
submanifold of R2n? The span of

x1, · · · , xn?

Maslov Indices and Classes of Lagrangians

Definition 1.5.1: Maslov Class

Given (M2n, ω) and a Lagrangian submanifold Ln ⊆ M2n, there is a

Maslov class µL ∈ H2(M,L) whose image in H2(M) is −2c1(KM ).

The Lagrangian Grassmanian

Let (V, β) be a symplectic vector space, then we write L(V, β) to denote

the set of Lagrangian subspaces of V , and L(n) := L(R2n, β0). Evidently,

L(V, β) ⊆ Grn(V ) where dimV = 2n, from which L(V, β) obtains a sub-

manifold structure.

Recall that if V = R2n with its standard inner product g, given L ∈ Grn(V ),

L⊥ ∈ Grn(V ) as well. Then, we obtain the standard charts on Grn(V ) via

maps ϕL : HomR(L,L
⊥) → Grn(V ) by taking graphs, i.e,

ϕL(α) = Γα = {l + αl : l ∈ L}

The ϕL give charts for the Grassmanian.

Then, for (V, β) symplectic, g a compatible Riemannian metric (for exam-

ple, arising from a compatible complex structure J), and given L ∈ L(V ),

one can ask for which α ∈ HomR(L,L
⊥) is Γα ∈ L(V )? Here, β defines a

linear isomorphism L⊥ ∼= L∗, so we can think of α as a map L → L∗ i.e

l 7→ α(l)(−) := β(α(l),−|L⊥), so for Γα to be a Lagrangian subspace, it is

necessary and sufficient that α(l)(l′) = α(l′)(l), i.e, Γα is Lagrangian iff α

is symmetric. This defines a linear subspace symm(L,L∗) ⊆ Hom(L,L∗)

so the ϕL work as a submanifold chart for L(V ) ⊆ Grn(V ) giving L(V ) the

structure o a submanifold.

Alternatively, we can give the manifold structure by noting that U(V ) acts

transitively on L(V ), so, fixing L ∈ L(V ), we can set L(V, β) ∼= U(V )/O(L)

where O(L) stabilizes L.

Lemma 1.5.2

π1(L(V, β)) ∼= Z for V ̸= 0.

We won’t prove this here, but the idea is to use the long exact sequence of

homotopy groups arising from the following diagram:

O(n) U(n) L(n)

O(n+ 1) U(n+ 1) L(n+ 1)

The maps L(n) ↪→ L(n+1) will induce an isomorphism on π1 for all n ≥ 1.
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Maybe this comes later, but why ex-
actly are we interested in the Maslov
class? What information does it give

us? What does it obstruct?

I missed a lecture here with more on the
Maslov class; for now I’m omitting the
content of this lecture as I don’t think

it really further motivated the Maslov
class, just kind of elaborated on it.

The one result was that if the Clifford

torus C(a1, · · · , an) is symplectomor-
phic to C(1, · · · , 1) (as Lagrangian sub-

manifolds of Cn), then (a1, · · · , an) =

(1, · · · , 1) which used the Maslov class.

The Maslov Index

Consider the complex line detC(V, J)
⊗2. A Lagrangian L ∈ L(V ) defines

a half-ray in detC(V, J)
⊗2, i.e, a point denoted in det2(L) ∈ SV which

is the circle of half-rays in detC(V, J)
⊗2. detL =

∧n
R L ↪→

∧n
C V , and

0 ̸= η ∈ detL gives rise to η ⊗ η ∈ detC(V, J)
⊗2 which is invariant under

η 7→ −η, so det2(L) := R+(η⊗η) ∈ SV . This gives us a more canonical iden-

tification of π1(L(V, β)) with Z; in particular det2∗ : π1L(V, β)
∼−→ π1(SV ) is

an isomorphism, and since SV is an oriented circle, the right hand side is

canonically equivalent to Z (i.e no sign indeterminacy). We omit the proof

is this here. This isomorphism m = det2 : π1L(V, β)
∼−→ Z is called the

Maslov index.

The Maslov Class

Now, passing to the case of Lagrangian submanifolds Ln ⊆ (M2n, ω), we

have a bundle L(TM,ω) → M of Lagrangian Grassmanians L(TxM,ωx)

above x ∈ M . Then, L defines a section τL of L(TM,ω)|L → L since the

tangent space of a Lagrangian submanifold is Lagrangian (this is simply

the definition of a Lagrangian submanifold).

Fixing J ∈ J (M,ω), we can form a complex line bundle det⊗2
C (TM, J) →

M with circle bundle STM → M and over L there is a section of STM |L → L

given by det2(τL). τL is a trivialization of det⊗2(TM) = (K∗
M )⊗2 over L,

and is one formulation of the Maslov class.

More concretely, a line bundle E → X has a Chern class c1(E) ∈ H2(X),

and similarly a line bundle E → X with a trivialization t over A ⊆ X

has a relative Chern class crel1 (E, t) ∈ H2(X,A). We want to consider

det2(τL) ∈ H2(M,L) as the relative Chern class of STM → M relative to

the trivialization det2L.

To define it, pick a generic section σ of (K∗
M )⊗2 → M that extends the

section det2 τL on L, then σ−1(0) is a closed, oriented, codimension two

submanifold of M \ L and so has a fundamental class [Z] ∈ H2n−2(M \
L) ∼= H2(M,L) (where the identification of homology with cohomology

is via Lefschetz duality) which is precisely the relative Chern class (here,

specifically, the Maslov class) µL.

Using the map to absolute cohomology H2(M,L) → H2(M) we have

µL 7→ c1(det
⊗2
C (TM)) = 2c1(K

∗
M ) = −2c1(KM )

so µL has the promised image.
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We previously defined the Lie deriva-

tive of forms in the margins above via
Cartan’s magic formula, which is in fact

a theorem.

This is philosophically an important re-
duction technique for proving identities

between forms.
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Hamiltonian Mechanics

Flows and Lie Derivatives

Definition 2.1.1: Flows

Let Mn be a manifold, and Xt a smooth time-dependent vector field

on M (with t ∈ I an interval in I containing 0). Then the flow of

{Xt : t ∈ I} is a smooth map ϕ : I × M → M (often rewritten

ϕt : M → M) such that ϕ0 = idM and dϕt

dt = Xt ◦ ϕt.

In saying ϕt is the flow of Xt, we are implicitly assuming the fact that ϕt

is unique. Moreover, one can always show that ϕt exists on some neigh-

borhood t ∈ (−ϵ, ϵ) of 0. If M is compact, then a flow exists for t ∈ R.

Definition 2.1.2: Lie Derivatives

Given a vector field X on a manifold M , the Lie derivative is a map

LX : Ωk(M) → Ωk(M) given by

LXα =
d

dt

∣∣∣∣
t=0

(ϕ∗
tα)

Note that since d commutes with pullbacks, LX ◦ d = d ◦LX . One can also

check that there is a Leibniz rule, LX(α∧β) = LX(α)∧β+(−1)|α|∧LX(β).

Finally, we have Cartan’s magic formula, LX = d ◦ ιX + ιX ◦ d. To prove

this, one works in Rn since both sides of the equation are local operators.

Both sides are R-linear and obey the same Leibniz rule, so it suffices to

check on 0 and 1-forms (since all other forms are sums of wedges of these),

i.e to check α = f dg where f and g are functions. In fact, it suffices to

check α = f and α = dg separately by using the Leibniz rule; we can reduce

this even further by noting that the right hand side commutes with d, so if

the formula holds for g, it holds for dg, so finally we may check the formula

only for functions f in which case the formula simply states LX(f) = df(X)

which holds.
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Lemma 2.1.3

Let Xt be a time-dependent vector field on M with flow ϕt, α ∈
Ωk(M). Then

d

dt
(ϕ∗

tα) = ϕ∗
tLXt

(α)

We will omit the proof but note that the strategy is similar to proving

Cartan’s magic formula, i.e, reducing to the case of functions where it is

easy.

Proposition 2.1.4

Let (M,ω) be a symplectic manifold, I an interval containing the

origin, {ϕt}t∈I a family of diffeomorphisms M → M with ϕ0 = idM .

Then, the following are equivalent:

1. ϕ∗
tω = ω for all t (i.e ϕt is a symplectomorphism at all times)

2. LXt
ω = 0 for all t where Xt generates the flow, i.e, dϕt

dt = Xt ◦ϕt

(which can be taken as a definition since ϕt are diffeomorphisms)

3. dat = 0 for all t where at ∈ Ω1(M), at = ιXtω = ω(Xt,−) i.e at

is always closed

Proof : We have the following cases:

1 ⇐⇒ 2 We use the above lemma, that

d

dt
(ϕ∗

tω) = ϕ∗
tLXt

(ω)

which immediately gives us that the first and second assertions are equiv-

alent.

2 ⇐⇒ 3 Cartan’s magic formula tells us that

LXtω = d ◦ ιXtω + ιXt ◦ dω = d ◦ ιXtω = dat

since ω is closed which immediately tells us that the second and third

assertions are equivalent. ■

Definition 2.1.5: Symplectic Vector Fields

A time-dependent vector field is called symplectic if LXtω = 0 for

all t, i.e, it generates a flow by symplectic automorphisms.
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This result has a generalization to the

non-autonomous case.

Example 2.1.6

Let (M,ω) be (T 2 = R2/Z2, ω = dx ∧ dy) with vector field X =
∂
∂x which generates the translation flow ϕt(x, y) = (x + t, y). The

corresponding one-form a = ω(X,−) = dy is clearly closed (but not

exact since y is not a well-defined function on the torus for the same

reason that θ is not a well-defined function on S1).

Definition 2.1.7: Hamiltonian Flows

A time-dependent vector field Xt on (M,ω) is called Hamiltonian if

at = ιXtω is exact, say at = dHt. Ht, which is well-defined up to

the addition of locally constant functions, is called the Hamiltonian.

A flow ϕt is also called Hamiltonian if its generating vector field is

Hamiltonian.

Moving backwards, Ht ∈ C∞(M) (varying smoothly in t) for M symplectic

defines a vector field Xt characterized by dHt = ω(Xt,−) and thereby a

flow. We will often write the flow associated to a Hamiltonian as XH
t . With

respect to a compatible complex structure J , we can explicitly write

XH
t = −J ◦ ∇gHt

where ∇g is the gradient with respect to the metric g defined by J and ω.

Note that the flow is locally orthogonal to the gradient of the Hamiltonian.

Proposition 2.1.8

Let H ∈ C∞(M), independent of t (called an autonomous Hamilto-

nian), then ϕ∗
tH = H.

Proof : Since H is just a function, the pullback is just ϕ∗
tH = H ◦ ϕt so

d

dt
ϕ∗
tH = ϕ∗

t (LXHH) = ϕ∗
t (dH(XH)) = ϕ∗

t (ω(X
H , XH)) = 0 ■

Example 2.1.9

Consider (S2, ω) where ω is the SO(3)-invariant volume form with

total area 4π, and let H(x, y, z) = z (with coordinates coming from

the standard embedding into R3). Since the flows preserve H, the

contour lines are isolatitudinal, and the flow is just rotation about

the z-axis.

Hamiltonian Dynamics

Given a Hamiltonian H : I×M → R for (M,ω) symplectic, denote by ϕH
t ∈

Aut(M,ω) its flow, which satisfies
dϕH

t

dt = XHt ◦ ϕH
t with ϕ0 = id. These

flows are called Hamiltonian diffeomorphisms. The t = 1 maps ϕH
1 generate

the subgroup Ham(M,ω) ⊆ Aut(M,ω) of Hamiltonian diffeomorphisms.
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Our discussion of Lie group structures
on various automorphism groups here

will necessarily be somewhat imprecise
and impressionistic to avoid spending

the time it would take to fully flesh out

all the details.

Recall that in local coordinates, we can
write the vector field X as

X =
∑
i

Xi ∂

∂xi
=⇒ X(f) =

∑
i

Xi ∂

∂xi
(f)

which gives the action of X on func-

tions.

This is all in the time-independent (au-

tonomous) case. Also, it’s not clear to
me why L[X,Y ] is equal to LXLY −
LY LX .

Example 2.1.10

Consider (V, β) a symplectic vector space regarded as a symplectic

manifold, with ξ ∈ sp(V, β), and consider the flow t 7→ exp(tξ) ∈
Diff(V ). This flow is Hamiltonian. To see this, note that the given

vector field is time-independent, given by x 7→ ξx by differentiating.

Example 2.1.11

Consider (Cn, ω0) with Hamiltonian H(z) = − 1
2∥z∥

2, which gener-

ates the flow ϕt(z) = exp(tJ0)z = (cos t)z + i(sin t)z which is just

the S1 action on Cn (z 7→ e2πitz).

Poisson Brackets

We want to think of Diff(M) as an infinite dimensional Lie group, and

consider its Lie algebra TidM
Diff(M). Elements of the tangent space arise

from paths passing through the origin, i.e, ϕt : I×M → M with ϕ0 = idM ,

which are the same as flows, so we may identify TidM
Diff(M) with the set

of vector fields on M .

We would also want an exponential map exp : TidM
Diff(M) → Diff(M),

which has a natural candidate in the t = 1 flow ϕ1 (we will assume M

is compact so that this flow always exists). The final desiderata is a Lie

algebra structure, i.e, a bracket of vector fields, which is given by

[X,Y ](f) = X(Y (f))− Y (X(f))

regarding vector fields as derivations.

So far, we have been ignoring the symplectic structure; we can think of

Aut(M,ω) as a Lie subgroup of Diff(M), and think of TidM
Aut(M,ω) as a

subspace of TidM
Diff(M), which naturally consists of the symplectic vector

fields ξ s.t Lξω = 0 (so that the corresponding flow is symplectic).

Given two symplectic vector fields X,Y , is the bracket [X,Y ] also symplec-

tic? Yes, since we have

L[X,Y ]ω = (LXLY − LY LX)ω = 0

since LXω = LY ω = 0, so the set of symplectic vector fields indeed forms a

Lie algebra, svect(M,ω). The Hamiltonian automorphisms should form a

Lie subgroup of Aut(M,ω) with corresponding Lie subalgebra consisting of

the Hamiltonian vector fields, but Hamiltonian vector fields correspond to

functions in C∞(M) upto overall additive constants, so we should obtain a

bracket of functions themselves giving a Lie algebra structure to C∞(M)/R.
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This result tells us that {−,−} is the

“correct” bracket since it gives us what

we want on vector fields.

Definition 2.1.12: Poisson Brackets

The Poisson bracket on C∞(M) (not on C∞(M)/R) is defined by

H,K = ω(XH , XK)

It is easy to check that {−,−} is R-linear, skew-symmetric, and satisfies

the Jacobi identity (so it is a Lie bracket). Moreover, {const,−} = 0, so it

descends to a bracket on C∞(M)/R = hvect(M,ω) (the Lie algebra of the

Lie group of Hamiltonian diffeomorphisms). Note that we can also write

{H,K} = ιXK
◦ ιXH

ω = ιXK
dH = dH ◦XK = LXK

H

so we can think of the Poisson bracket as measuring the variation of H in

the direction of XK .

Example 2.1.13

On (R2n, ω0), we have

XH = −J0∇H =

n∑
j=1

(
∂H

∂yj

∂

∂xj
− ∂H

∂xj

∂

∂yj

)
so we can write

{H,K} = ω0(XH , XK) =

n∑
j=1

(
∂H

∂yj

∂K

∂xj
− ∂H

∂xj

∂K

∂yj

)

Proposition 2.1.14

X{H,K} = [XH , XK ].

Proof : We want to show that d{H,K} = ω([XH , XK ],−). Using {H,K} =

LXK
H, we may calculate

d{H,K} = d(LXK
H) = LXK

dH

On the other side, we have

ι[XH ,XK ]ω = ιLXK
Hω

which we may transform into LXK
dH via application of the identity

LU (ιV α) = ιLUV α+ ιV LUα

for vector fields U, V , and forms α. ■

The Poisson bracket satisfies one additional identity aside from the general

axioms of a Lie bracket, the Leibniz rule.
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The proof is omitted but this follows

from the ordinary Leibniz rule for the
exterior derivative i.e d(fg) = f dg +

g df .

For the physics of symplectic geometry,

Tim recommends Arnold’s Mathemat-

ical Methods of Classical Mechanics.

Lemma 2.1.15: Leibniz Rule

{f · g, h} = f{g, h}+ g{f, h}

Definition 2.1.16: Poisson Algebras

A commutative algebra over a field equipped with a Lie bracket that

satisfies the Leibniz rule as above is a Poisson algebra.

Commuting Hamiltonians

Consider an autonomous Hamiltonian H ∈ C∞(M) with accompanying

flow ϕH
t . If K ∈ C∞(M), we can ask how K evolves along the flow associ-

ated to H, i.e, we may evaluate

d

dt
K ◦ ϕH

t =
d

dt
(ϕH

t )∗K = (ϕH
t )∗(LXH

K) = (ϕH
t )∗{H,K}

If H and K Poisson commute, i.e, {H,K} = 0, then K is constant along

the flow of H, equivalently it is a conserved quantity of the flow. In fact,

the above calculation shows that K is a conserved quantity iff K Poisson

commutes with the Hamiltonian.

Lemma 2.1.17

If (H1, · · · , Hm) are pairwise Poisson-commuting functions on (M2n, ω),

then

Ix := span(XH1
(x), · · · , XHm

(x)) ⊆ TxM

is isotropic, i.e, ω|IX = 0.

Proof : This is immediate from the fact that ω(XHi , XHj ) = {Hi, Hj} = 0. ■

This simple observation tells us that dim IX ≤ n, or, equivalently,

span(dH1(x), · · · , dHm(x)) ⊆ T ∗
xM

has dimension at most n. We call the Hi independent at x if the corre-

sponding vectors or covectors are linearly independent at x, so this shows

that there are at most n independent Hamiltonians at each point.

Example 2.1.18

On (R2n, ω0), (x1, · · · , xn) Poisson-commute and are independent

everywhere. If H ∈ C∞(R2n) Poisson commutes with all the xi,

it must be a function of the xi independent of the yi. Note that

dx1, · · · , dxn here span a Lagrangian submanifold of R2n.

This situation generalizes:
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Totally integrable systems are the set-

ting for the celebrated Liouville-Arnold
theorem, which gives a canonical trans-

formation to “action-angle” coordi-

nates, in which the Hamiltonian de-
pends only on the action coordinates,

and the angle coordinates evolve lin-
early through time.

Proposition 2.1.19

Let (F1, · · · , Fn) be Poisson commuting functions on (M2n, ω) that

are independent at (and therefore near) p ∈ M . Say H ∈ C∞(M),

{H,Fi} = 0 for all i. Then, near p, H is dependent on the Fi, i.e,

there exists a function G such that

H(x) = G(F1(x), · · · , Fn(x))

for all x near p.

Proof : We want to show that, near p, H is constant on the level sets of F =

(F1, · · · , Fn) : M → Rn to encode functional dependence. Set vi = XFi , so

that at p, (v1, · · · , vn) spans the tangent space to the level set of F (by the

independence of the Fi). If p is a regular point of F , the same is true near

p, and since {H,Fi} = 0, dH(vi) = 0, so dH vanishes on tangent spaces to

the level set, so H is a constant. ■

If F1, · · · , Fm are independent at almost all p ∈ M , then we call the Fi

functionally independent. A Hamiltonian H on (M2n, ω) such that there

exist n functionally independent Fi such that {Fi, H} = 0 and {Fi, Fj} = 0

is called a totally integrable system.

Symplectic Origins

Hamiltonian mechanics is where symplectic geometry comes from. To define

Hamiltonian mechanics beyond what we have already discussed, it is helpful

to first define Lagrangian mechanics; consider some dynamical system in

which “points” are parameterized by a manifold Q. For example, we could

have Q = R3 × R3 × R3 to parameterize the positions of the Sun, Earth,

and Moon, or we could consider a spinning top whose point of contact is

fixed, in which case Q = SO(3).

At each time t in our abstract dynamical system, we have position co-

ordinates q(t) ∈ Q, and a velocity vector q̇(t) ∈ Tq(t)Q. In Lagrangian

mechanics, we take a function L = L(q, q̇) ∈ C∞(TQ); in classical mechan-

ics, L = T − V where T is the kinetic and V is the potential energy. In

the planetary setup, the kinetic energy is translational and the potential

energy is from mutual gravitational attraction; for the top, the potential

energy is again from gravity, and the kinetic energy is rotational.

The time evolution of our dynamical system is then given by the Euler-

Lagrange equations

d

dt

∂L

∂q̇i
=

∂L

∂qi
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The fact that momentum lives on the

cotangent bundle is still somewhat ob-

scure to me.

This kind of resembles the trick of
introducing extra variables to turn a

higher order ODE into a system of first

order ODEs.

There’s some mental yoga here as a
symplectic form on the cotangent bun-

dle lives on the double cotangent bun-
dle, making some of the notation kind
of clunky.

The total energy E = T + V is constant along the time-evolution, i.e,

∂L

∂q̇
q̇ − L(q, q̇)

is constant. In Hamiltonian mechanics, we convert L ∈ C∞(TQ) to a

function H = E ∈ C∞(T ∗Q) by introducing conjugate momenta pi =
∂L
∂q̇i

which is a function on the cotangent fiber T ∗
q Q.

In these new coordinates, we may rewrite the Euler-Lagrange equations as

∂H

∂p
= q̇ and

∂H

∂q
= −ṗ

These are Hamilton’s equations, with H(p, q) = T + U = p · q − L. If

f ∈ C∞(T ∗Q) is some other function, perhaps representing a physical

quantity, we may check that f evolves correctly along a solution (q(t), p(t))

of Hamilton’s equations by checking that

df

dt
= {H, f}

If f Poisson commutes with H, then f is a conserved quantity of our dy-

namical system, as stated somewhat more abstractly above. Before we

continue our analysis of a generic dynamical system, we must observe a

fundamental fact: the cotangent bundle T ∗Q comes with a canonical sym-

plectic structure.

To write down the symplectic form on T ∗Q, first we will define the tauto-

logical one-form θtaut ∈ Ω1(T ∗Q) and set ω = −dθtaut. Let π : T ∗Q → Q

be the natural projection map, and let p ∈ T ∗
q Q, v ∈ Tp(T

∗
q Q) so that

π(p) = q and Dπp(v) ∈ TqQ. Then, set

⟨θtaut, v⟩ = ⟨p,Dπp(v)⟩

This is quite abstract, and we can rephrase this more concretely using local

coordinates q1, · · · , qn on an open set U ⊆ Q with corresponding forms

pi = dqi giving a local trivialization of T ∗Q. Thus, since π(q, p) = q,

Dπ(∂qi) = ∂qi and Dπ(∂pi
) = 0, and we get the following formula for θtaut

valid on the open set T ∗U ⊆ T ∗Q:

θtaut =
∑
i

pi dqi

In these coordinates, we have

ωT∗Q =
∑
i

dqi ∧ dpi = ω0

More generally, we have the following definition:
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What are the interesting examples of
these that are not cotangent bundles?

What, if any, Lagrangian submanifolds
do not arise as the graph of a one-form?
Why is this significant?

Definition 2.1.20

An exact symplectic manifold (M, θ, ω) is a manifold M with a one-

form θ such that ω = dθ is non-degenerate (and evidently closed).

Thus, we may see that T ∗Q comes as an exact symplectic manifold. Note

that a diffeomorphism ϕ : (M1, θ1, ω1) → (M2, θ2, ω2) is a symplectomor-

phism iff

ϕ∗ω2 = ω1 ⇐⇒ ϕ∗(dθ2) = dθ1 ⇐⇒ d(ϕ∗θ2) = dθ1 ⇐⇒ d(ϕ∗θ2−θ1) = 0

So ϕ defines a class ϕ∗θ2−θ1 ∈ H1(M ;R). We say ϕ is exact if ϕ∗θ2−θ1 =

df . A diffeomorphism Q1
f−→ Q2 induces a diffeomorphism T ∗Q1

f̃−→ T ∗Q2

covering f in the sense that the following diagram commutes:

T ∗Q1 T ∗Q2

Q1 Q2

f̃

f

f̃ is defined as f̃ |T∗
q Q1

= (Df(q)f
−1)∗. The fact that θtaut is constructed in

a coordinate-independent manner makes it clear that f̃∗(θtaut) = θtaut so

f̃ is an exact symplectomorphism.

Given α ∈ Ω1(Q), α can be regarded as a map α̃ : Q → T ∗Q (this is just the

definition of a global section) which has a graph Γ(α) ⊆ T ∗Q which should

be a middle dimensional submanifold since π|Γ(α) : Γ(α) → Q is a diffeo-

morphism with inverse α̃. Moreover, one can check that α̃∗(θtaut)|Γ(α) = α.

A submanifold L ⊆ Q is Lagrangian iff it is middle-dimensional and ω|L =

0; if Q is exact, then this is equivalent to θtaut|L being closed, so we may as-

sociate to a Lagrangian submanifold a class [θ|L] ∈ H1(L,R). A Lagrangian

submanifold is exact if θ|L = df for some f ∈ C∞(L).

Lemma 2.1.21

In (T ∗Q,ωT∗Q, θtaut), the fibers T
∗
q Q are exact Lagrangian subman-

ifolds. Moreover, the graph Γ(α) of a one-form α is Lagrangian

(resp. exact Lagrangian) iff α is closed (resp. exact).

Proof : It is straightforward from the p dq formula for θtaut above that θtaut vanishes

on the fibers T ∗
q Q, and the formula α̃∗θtaut = α gives the second claim. ■

An Interlude on the Lagrange Top

As a basic but instructive example of an integrable system, consider a

spinning top (a solid body) fixed at its tip in a frictionless system. With no
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further assumptions, this is not explicitly solvable in full generality. The

Lagrange case is where the top is rotationally symmetric, i.e, its moment

of inertia tensor has two equal eigenvalues.

There are two coordinate systems in which we can consider this problem:

the stationary frame, with unit vectors (ex, ey, ez) and gravity pointing in

the negative ez direction, and the dynamical frame, where we have moving

basis vectors (e1(t), e2(t), e3(t)) = (Rtex, Rtey, Rtez) where Rt ∈ SO(3) is

a rotation operator describing the position of the top. e3 points up through

the axis of the top.

The position of our top is then described by points of Q = SO(3). The

angular velocity at time t will be essentially given by Ṙt ∈ TRt
SO(3). For

R ∈ SO(3), TRSO(3) is identified with so(3) which consists of 3 × 3 skew-

symmetric matrices. As a Lie group, SO(3) is parallelizable (also, all 3-

manifolds are parallelizable), so we can write TSO(3) ∼= SO(3)×so(3) given

by (R,α) 7→ (R,αR−1). We may also identify so(3) with R3 as Lie algebras

(with the bracket on R3 the standard cross product), via R3 → so(3) given

by ξ(u)(v) = [u× v].

Thus, we have

ξ

x

y

z

 =

 0 −z y

z 0 −x

−y x 0


One can show that ξ(Rv) = Rξ(v)R−1 where R ∈ SO(3).

Concretely, then, the angular velocity is given by

ω(t) = ξ−1(ṘtR
−1
t ) ∈ R3

The kinetic energy of the top can be written as

Ekinetic(t) =
1

2
I1ω1(t)

2 +
1

2
I2ω2(t)

2 +
1

2
I3ω3(t)

2

where ωj(t) = ω(t)·ej(t) and the Ij are the moments of inertia, with I1 = I2

as we required at the beginning. The potential energy is

Epotential(t) = mgl(e3(t) · e2)

wherem is the mass, g is the acceleration due to gravity, and l is the distance

of the center of gravity from the ground, and e3(t) · e2 is a correction factor

that just picks out the vertical component of l.

We can define the kinetic energy function on TSO(3):

T (R,ω) =
1

2
I1(ω ·Rex)

2 +
1

2
I2(ω ·Rey)

2 +
1

2
I3(ω ·Rez)

2

where ω ∈ so(3) and a potential energy function

U(R,ω) = mgl(Rez · ez)
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I don’t think there’s anything special
here about the symplectic structure

giving us an induced action; if we have

a diffeomorphism f : M → M (which
our group action is) then d(f−1)∗ :

T ∗M → T ∗M should be the induced

action on the cotangent bundle.

Kind of just filling in details from the

notes now, but just in broad strokes be-

cause we didn’t cover this in class.

Together, this gives a Lagrangian L(R,ω) = T−U ∈ C∞(TSO(3)). We can

now write down a Hamiltonian in terms of the conjugate momenta Lj :=
∂L
∂ωj

= Ijωj understood as angular momenta about dynamical axes, and

H = T +U now regarded as a function in C∞(T ∗SO(3)), where T ∗SO(3) ∼=
SO(3)× R3 as above, and R3 has coordinates given by the Lj . We have

H(R,L) =
1

2I1
L2
1 +

1

2I2
L2
2 +

1

2I3
L2
3 +mglu(R)

where u(R) = Rez · ez is just the height of the center of mass.

There are two circle actions on our system: the first is given by rotation

of the plane that the top is sitting on, i.e, around the ez-axis, which does

not affect our system at all. The second action depends on the fact that

our top is symmetric, so we have an action around the axis of the top, the

e1-axis. The former action can be written as the matrix

ρ(ϕ) =

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 ∈ SO(3)

with the action by right translation: ϕ · A = Aρ(ϕ) for A ∈ SO(3). This

induces an action of S1 on T ∗SO(3).

We have

d

dϕ

∣∣∣∣
ϕ=0

R · ρ(ϕ) = Rξ(ez) = (Rξ(ez)R
−1)R = ξ(Rez)R

Thus, the generating vector field on SO(3) is X = ξ(Rez)R which lifts to a

Hamiltonian vector field X̃ on T ∗SO(3).

Since H doesn’t change along S1-orbits, {J,H} = 0 where J is the gener-

ating function in C∞(T ∗SO(3)) for X̃.

The second circle action is given by left translation, by rotations around

the axis of the top. Since this is a left action, it commutes with our other

action which was a right action, and repeating similar calculations as above,

we find that {K,H} = {K,J} = 0 where K is a generating function for

the Hamiltonian vector field on T ∗SO(3) corresponding to our second circle

action, so our top is a completely integrable system.

Recall the term u(R) = Rez · ez in our Hamiltonian above; one can show

that

u̇(Rt) = γ1ω2 − γ2ω1

Using the other equations that we have already setup, one can show that

there exists a relation of the form (u̇(Rt))
3 = f(u(Rt)) where f is a cubic

polynomial; such a relation is solved precisely by the Weierstraß ℘ function,

from the theory of elliptic curves, which satisfies the relation

℘′2 = 4℘3 − g2℘− g3
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We had an in class vote as to whether
we would continue discussing the La-

grangian top for a second lecture or

just move on; I really wish we hadn’t
moved on. There is some commentary

in the notes about how this relates to
symplectic reduction, but they’re fairly

sketchy and I’ll wait until we actually

cover that topic to include them.

Why is it reasonable to expect such an

operator K to exist? Is there some ge-

ometric intuition underlying it?

where the gi are multiples of the Eisenstein series from the theory of mod-

ular forms. This is somewhat far afield from our original discussion of

integrable systems, but perhaps the punchline is this: we exhibited a com-

muting full rank set of Hamiltonians, and, as promised, found a somewhat

explicit solution to our system.

Moser’s Method and Darboux’s Theorem

Note that when considering de Rham cohomology, we only care about closed

forms modulo exact forms, but so far we have been discussing closed forms

explicitly (i.e not as classes). In fact, we can show that deforming a sym-

plectic form ω by an exact form will not change the symplectomorphism

class of the underlying symplectic manifold, which will enable us to prove

the celebrated Darboux theorem, which states that all symplectic manifolds

are locally symplectomorphic to (R2n, ω0).

First, we must discuss how we may control the primitives of exact forms

(where the primitive of dα is α). Consider U ⊆ Rn an open, star-shaped set

(i.e not convex) with a marked point •; by the Poincaré lemma, for k > 0,

for η ∈ Ωk(U), if η is closed, then it is exact. More precisely, there is a

homotopy operator K : Ωk(U) → Ωk−1(U) s.t d ◦K +K ◦ d = id−p∗ ◦ i∗

where p : U → {•} and i : {•} → U .

K can be taken such that if t 7→ αt is a smooth family of forms, then so

is t 7→ Kαt. Moreover, if α ∈ Ωk(U), and α vanishes on •, then we can

demand that Kα vanishes there as well.

We can work in greater generality using vector bundles: let p : V → M

be a real vector bundle, i : M → V its zero-section, U ⊆ V an open

neighborhood of i(M). Let rt : V → V be the function v 7→ tv; we want

that rtU ⊆ U for all t ∈ [0, 1] (where rtU is evidently a thickened copy of

the zero-section). U deformation retracts to i(M) so in particular the de

Rham cohomology of U agrees with that of M . We claim that there exists

K : Ωk(U) → Ωk−1(U) s.t d ◦K −K ◦ d = id−p∗ ◦ i∗ as above, satisfying

that if αt is a smooth family of forms, then so is Kαt and if α is zero along

i(M), then so is Kα.

We can write an explicit formula for K:

Kα =

∫ 1

0

r∗t (ιeα)
dt

t

where e denotes the radial Euler vector field that points outwards, given by
d
dt |t=1rt. We will omit the verification that this operator satisfies the given

properties.
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We omit the verification, but one
may prove this by using the quasi-

isomorphism of the de Rham complex
with the Čech-de Rham complex along

with the Poincaré homotopy operator

K (to reduce from global to local).

Of course, if M is compact, then we
may take U = M .

Lemma 2.2.1

For any smooth path of exact forms t 7→ βt ∈ Ωk(Q), there exists a

smooth path t 7→ αt of primitives such that dαt = βt.

Now, we may discuss Moser’s method.

Definition 2.2.2: Symplectic Isotopies

A path t 7→ ωt of symplectic forms on M is called a symplectic

isotopy if there exists a flow ϕt with ϕ0 = id such that ϕ∗
tωt = ω0

so that all the (M,ωt) are symplectomorphic.

Lemma 2.2.3: Moser

Take t 7→ ωt a path of symplectic forms on M , t 7→ αt a path of one-

forms such that dωt

dt = dαt, Xt a vector field such that ωt(Xt,−) =

−αt, and U ⊆ M an open set on which the flow ϕt of Xt is well-

defined as a map [0, 1]× U → M .

Then ϕ∗
tωt = ω0 on ϕ−1

t (U).

Proof : It is clear that ϕ∗
0ω0 = id∗ ω0 = ω0. In general, we want to show d

dt (ϕ
∗
tωt) =

0 which will allow us to conclude that ϕ∗
tωt = ω0 for all t:

d

dt
ϕ∗
tωt = ϕ∗

t (LXtωt) + ϕ∗
t (ω̇t) = ϕ∗

t (d(ιXtω)) + ιXt(dω) + ϕ∗
t dαt

The middle term vanishes since dω = 0 and since ιXt
ω = −αt by construc-

tion, the first and third terms cancel, and the derivative is equal to zero as

claimed. ■

Theorem 2.2.4: Moser’s Isotopy Theorem

Let M2n be compact, ωt a smooth path of symplectic forms with

[ω̇t] = 0 ∈ H2(M ;R) for all t. Then ωt is a symplectic isotopy.

Proof : There exists a smooth path αt such that ω̇t = dαt by assumption, so we

may apply Moser’s lemma on U = M . ■

Corollary 2.2.5

Let Σ be a compact connected oriented surface, ω0, ω1 area forms

such that
∫
Σ
ω0 =

∫
Σ
ω1. Then (Σ, ω0) ∼= (Σ, ω1).

Proof : To see this, note that [ω0] = [ω1] ∈ H2(Σ;R) so we may take ωt = (1 −
t)ω0 + tω1; clearly [ω̇t] = 0 ∈ H2(M ;R), so we may apply Moser’s isotopy

theorem. ■
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I don’t know if this bit about Kähler

classes was fully explained; I think it

might be related to the ∂∂ lemma , but
I don’t think it’s obvious that it’s true

specifically for Kähler forms and not for

symplectic forms in general.

This result tells us that there are no
interesting local invariants of symplec-

tic manifolds, as any two points in
two equal-dimensional symplectic man-

ifolds have symplectomorphic neigh-

borhoods.

Now, let (M,J) be a complex manifold arising from a holomorphic atlas. A

symplectic form ω compatible with J is called a Kähler form (we have seen

several examples of these, for example, CPn with its Fubini-Study form). If

M is compact, you can linearly interpolate between Kähler forms ω0, ω1 on

(M,J) as above and get a family of Kähler forms and show that a Kähler

form, up to symplectomorphism, only depends on its cohomology class.

We are now ready to prove Darboux’s theorem:

Theorem 2.2.6

For any p ∈ (M2n, ω), there exists an open neighborhood U ∋ p and

a symplectomorphism ϕ to U ′ ⊆ (R2n, ω0) taking p to 0.

Proof : We may apply a manifold chart to map p to 0 and U to an open neighbor-

hood of 0 in (R2n, ω) (with ω a priori not equal to ω0), and by choosing a

symplectic basis for T0R2n, may assume that ω(0) = ω0(0). Our idea then

is to interpolate, using Moser’s lemma: let ωt = (1 − t)ω0 + tω be a path

of closed 2-forms, with ωt(0) = ω0(0), hence ωt is non-degenerate on some

open neighborhood of 0. ω̇t = ω1 − ω0 = dα since we are in R2n, and since

(ω1 − ω0)(0) = 0, we may assume α(0) = 0 (this is true up to a constant

we can subtract).

Let Xt be a vector field such that ωt(Xt,−) = −α as in Moser’s lemma,

ϕt the corresponding flow, and note that Xt(0) = 0 by assumption, so

ϕt(0) = 0 for all t, so there exists an open neighborhood 0 ∈ V ⊆ U such

that ϕt(V ) ⊆ U for all t ∈ [0, 1] (with U compact).

Then, Moser’s lemma tells us that ϕ∗
tωt = ω0 on ϕ−1

t (V ), so at t = 1,

ωt = ω, and we have our result. ■

This result allows us to define the following invariant:

Definition 2.2.7: Gromov Width

The Gromov width of a symplectic manifold (M,ω) is given as

w(M,ω) = {supπ2
r : (B2n(0; r), ω0) ↪→ (M,ω)}

This is an example of a “symplectic capacity”, i.e, an invariant c(M2n, ω) ∈
[0,∞] such that if (M,ω) ↪→ (M ′, ω′) then c(M,ω) ≤ c(M ′, ω′). c should

also satisfy c(M,aω) = |a|·c(M,ω) and normalized such that c(B2n(0; r), ω0) =

πr2.

Note that in a finite volume symplectic manifold, the volume determines

an upper bound for the Gromov width since symplectic embeddings are

volume preserving. Gromov’s celebrated non-squeezing theorem amounts

to the claim that w(B2(0; r)× R2n−2) = πr2.
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Note that any area form on a surface is

a symplectic form, and are classified as
symplectic forms by their total areas.

There also exist neighborhood theorems for the important symplectic sub-

manifolds, i.e, coisotropic, isotropic, and Lagrangian submanifolds.

Theorem 2.2.8: Symplectic Neighborhood Theorem

Given (M2n, ω), (M ′2n, ω′), and (S2n−2k, ζ) which is equipped with

symplectic embeddings ι, ι′ into M and M ′ respectively. Then there

are normal bundles, N,N ′ respectively over S which we may regard

as N = (TS)ω) ⊆ ι∗TM , N ′ = (TS)ω
′ ⊆ ι′∗TM ′ (recall that in

a symplectic vector bundle (V, β), T a linear subspace, then Tω =

{v ∈ V : β(v, T ) = 0}; we define (TS)ω similarly).

Assume that there exists θ : N → N ′ an isomorphism of symplectic

vector bundles over S. Then there exist open neighborhoods ι(S) ⊆
U ⊆ M and ι′(S) ⊆ U ′ ⊆ M ′ and a symplectomorphism ϕ : U → U ′

such that ϕ|ι(S) = ι′ ◦ ι−1. Moreover, Dϕ|ι(S) : N → N ′ is equal to

θ.

Before we prove this theorem, we give an application:

Corollary 2.2.9

Say (M4, ω), (M ′4, ω′) are symplectic 4-manifolds, S ⊆ M , S′ ⊆ M ′

symplectic 2-manifolds, compact, connected, and of the same genus

g, satisfying
∫
S
ω =

∫
S′ ω

′ (i.e they have equal area), and that the

self-intersections S · S and S′ · S′ are equal. Then, S and S′ have

symplectomorphic neighborhoods.

Proof : There exists a diffeomorphism S ∼= S′ by the classification of surfaces, so by

the Moser isotopy theorem, it follows that (S, ω|S) is symplectomorphic to

(S′, ω′|S′). Moreover, S ·S = e(NS)[S] = c1(NS)[S] so S ·S fully determines

c1(NS) ∈ H2(S) = Z and therefore uniquely determines the normal bundle

(since in this dimension it is determined as a complex line bundle (and

hence a symplectic vector bundle) by the first Chern class), so NS
∼= NS′

and the theorem applies. ■

Now we may prove the theorem, whose proof is modeled on the proof of

Darboux:

Proof : We start by exhibiting ϕ as a diffeomorphism by the tubular neighborhood

theorem, which states that for Y ⊆ X a submanifold, there exist neighbor-

hoods Y ⊆ V ⊆ X and 0Y ⊆ V ′ ⊆ NY/X (where 0Y is the zero section) and

a diffeomorphism ϕ : V → V ′ mapping Y to the image of the zero-section

such that Dϕ|Y is essentially the identity. Hence, we need only show that

we may take ϕ to be a symplectomorphism.

Consider symplectic forms ω0, ω1 near S ⊆ M , both non-degenerate when

restricted to TS. We may assume that ω0 = ω1 along S. Set ωt = (1−t)ω0+

tω1 which is symplectic near S for all t ∈ [0, 1], and ω̇t = ω1 − ω0 = dα
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is zero along S, so we may take α to be zero along S as above. Take

Xt s.t ω(Xt,−) = −α as above, with Xt = 0 along S, so there exists a

neighborhood U ′ of S such that the flow ϕt carries U
′ into the neighborhood

U where ωt is symplectic, and ϕt is the identity along S. Now, Moser’s

lemma tells us that ϕ∗
1ω1 = ω0, from which the result follows. ■
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