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But over the past 30 years a new type of interaction has taken place,
probably unique, in which physicists, exploring their new and still
speculative theories, have stumbled across a whole range of
mathematical ‘discoveries’.

This development has led to many hybrid subjects, such as topological
quantum field theory, quantum cohomology or quantum groups, which
are now central to current research in both mathematics and physics.
The meaning of all this is unclear and one may be tempted to invert
Wigner’s comment and marvel at ‘the unreasonable effectiveness of
physics in mathematics’.
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In the latter half of the twentieth century, a complex interplay between the fron-
tiers of physics and geometry was discovered, resulting in new perspectives on
enumerative geometry, among other subjects. Enumerative geometry is the study
of general geometric restrictions that result in a finite number of admissible con-
figurations (and of these finite numbers), e.g How many conics are tangent to two
lines and pass through three points? or How many points lie in the intersection
of plane curves of degree m and n?. The connection to physics came from the
study of Gromov-Witten invariants, which in our study represent counts of ra-
tional curves, and in physics roughly represent scattering amplitudes in a certain
variant of string theory. We will not venture too far afield into the physics of
Gromov-Witten invariants beyond the toy models of topological quantum field
theories, and we will largely work within algebraic geometry.

We will focus on a specific problem in enumerative geometry which was resolved
by Kontsevich [KM94] around 1994 using ideas from quantum field theory; what is
the number Nd of rational plane curves of degree d passing through 3d− 1 general
points? Here, and everywhere in our discussion, “plane” refers to the complex
projective plane P2, and “general” is shorthand for “in general position”, and a
rational curve is a one-dimensional algebraic variety that is birational to P1. In
enumerative geometry, imposing the wrong number of conditions on the objects
of study will generally result in either infinitely many solutions or no solutions;
here, 3d − 1 is the right number of conditions to impose since a rational plane
curve of degree d may be parameterized as a map

[x, y] 7→ [s0[x, y], s1[x, y], s2[x, y]]

where si ∈ H0(P1,O(d)) are homogeneous polynomials of degree d. Clearly, each
si has d + 1 coefficients, so 3d + 3 coefficients in total, one of which we may
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This discussion of where 3d − 1 comes
from is fairly informal, and can be
made more rigorous using the genus-
degree formula; we will briefly discuss
this below.

assume to be 1 by rescaling the tuple [s0, s1, s2] (via projective equivalence in P2).
Moreover, for any φ ∈ Aut(P1), [s0 ◦ φ, s1 ◦ φ, s2 ◦ φ] produces the same image
curve, and since dim Aut(P1) = 3, we find that the dimension of the “space” (where
we are being intentionally vague) of degree d rational plane curves has dimension
3d + 3 − 1 − 3 = 3d − 1. Forcing a curve to pass through some fixed point is
a codimension 1 condition, from which it follows that 3d − 1 points is the right
number to whittle down to a 0-dimensional (finite) set of solutions.

Determining N1 amounts to counting the number of lines through two points,
which is of course 1. d = 2 is less immediate, but it is still relatively easy to
obtain N2 = 1 using only elementary techniques. The numbers N1 and N2 have
been known since antiquity, in contrast to N3 and N4, which were computed in
1848 and 1873 respectively. The classical method for computing these numbers
grows rapidly in complexity as d increases, as evidenced by the fact that N5 was
not calculated until over a hundred years after N4 was. The following recursion,
which can be derived in a variety of contexts (from quantum cohomology, from
the moduli spaces of stable maps, or even from tropical geometry) gives all of the
Nd recursively from the single datum N1 = 1:

Theorem: Kontsevich [KM94]

Nd =
∑

dA+dB=d

NdANdBd
2
AdB

(
dB

(
3d− 4

3dA − 2

)
− dA

(
3d− 4

3dA − 1

))

Our goal is to explore the different ideas and perspectives with which to view, and
from which one may obtain, the above identity. The algebro-geometric perspective
is that it follows from the recursive structure of the moduli spaces of stable maps,
while the physical perspective is that it is a consequence of the associativity of the
quantum product, an operation on the quantum cohomology ring, which arises in
a natural way from topological quantum field theory. The expected background
for this report is some level of algebraic geometry (e.g Chapter II of [Har77]).
Subsections marked with F consist of material that is not strictly necessary to
understand the main thrust of the text.

I. Mise en Schème

I.1 Moduli Spaces

One goal of our discussion here is to construct and describe the moduli space of
stable maps, a piece of technology whose recursive structure makes the enumera-
tion of rational plane curves of degree d a purely combinatorial exercise. A moduli
space is the solution to a moduli problem (informally, a problem of the form “clas-
sify objects of type X up to equivalence” for some notion of equivalence), where
the points of the moduli space are in bijection with the objects in question (up to
equivalence).

The archetypal examples of moduli spaces are the projective spaces Pn, which clas-
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Roughly, a stack is a structure sim-
ilar to a scheme, but which allows
points to have nontrivial automor-
phisms, which is often useful when the
objects we want to classify possess non-
trivial automorphisms (for example, el-
liptic curves). We will briefly discuss
quotient stacks (which form an impor-
tant subclass of the more general Artin
or algebraic stacks) below.

One reason that one might want to
study quadruples of points comes from
the study of elliptic curves: one way to
define a nonsingular elliptic curve is as
a degree 2 map from P1 to itself rami-
fied at four distinct points. In this set-
ting, the points of ramification are un-
ordered, so the cross ratio λ of an ellip-
tic curve is not well-defined; however,
we have the j-invariant

j(λ) = 28
(λ2 − λ+ 1)3

λ2(1− λ)2

where the prefactor of 28 appears to
assure well-behavedness over fields of
characteristic 2 or 3. j is invariant un-
der the action on λ induced by per-
muting the four points, and two ellip-
tic curves are isomorphic iff their j-
invariants are equal.
Note that the subscript 0, 4 inM0,4 is

intentionally suggestive of a larger pic-
ture here: more generally,Mg,n param-
eterizes genus g curves with n marked
points up to equivalence. The given
characterization of M0,4 follows from
the fact that all genus 0 curves are bi-
rational to P1, which fails in positive
genus, in which case the curves them-
selves become important.

sify lines in Cn+1, and their natural generalizations, the Grassmanians Gr(k, n),
which classify k-dimensional linear subspaces in Cn, and the Flag Varieties GLn /P

which classify flags 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk = Cn (where P is a parabolic sub-
group of GLn, which is generally not normal, so GLn /P refers to the set of cosets
with the induced topology).

In our discussion, we will want a moduli space to be a smooth variety, but higher
level discussions engage with moduli spaces that are stacks or orbifolds. The
geometry of the moduli space should reflect the underlying objects in that points
which are close in the moduli space represent similar objects. Intuitively, we
expect smooth paths in the moduli space to produce a smooth deformation of the
type of object in question.

As an elementary example of a moduli problem, we consider classifying the set
Q of ordered quadruples (p1, p2, p3, p4) of points in P1. It is a classical result
that, for any three distinct points (p1, p2, p3) of P1, there exists a unique auto-
morphism of P1 taking (p1, p2, p3) to (0, 1,∞) (and therefore, by applying two
such automorphisms, there exists a unique automorphism taking any three dis-
tinct points to any other triple of distinct points). Let ϕ ∈ Aut(P1) be the unique
automorphism taking (p1, p2, p3) in our quadruple to (0, 1,∞), and let λ = ϕ(p4).
λ ∈ P1 \ {0, 1,∞} is called the cross ratio of the quadruple, given more explicitly
in coordinates by

λ =
(x2 − x3)(x4 − x1)

(x2 − x1)(x4 − x3)

where pi = [xi : 1] with xi possibly infinite (by abuse of notation).

The cross ratio gives us a map λ : Q → M0,4 := P1 \ {0, 1,∞}; the variety M0,4

possesses additional structure that is important for our discussion. In particular,
the projection map π from the tautological family M0,4×P1 above M0,4 possesses
four natural (disjoint) sections τi which encode nontrivial information about the
structure of the moduli space:

U := M0,4 × P1

M0,4

π τi

For q ∈M0,4, the P1 component of τi(q) is given by (τ1, τ2, τ3, τ4)(q) = (0, 1,∞, q).
For i = 1, 2, 3, τi is a constant section, and for i = 4, it is the diagonal section.
The point of this construction is that above each q ∈ M0,4, we have a canonical
quadruple with cross ratio q furnished by the τi. The additional structure of these
sections provide a universal family overM0,4, and are necessary to show thatM0,4

is a fine moduli space; we will define these two terms after first defining families.
This definition is necessarily somewhat informal, as the specific requirements for
a family of a certain type of object will depend on the objects in question.
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Recall that f : X → B is flat if f] :

OB,f(x) → OX,x makes OX,x a flat
OB,f(x)-module for all x ∈ X.

A family X/M over the fine moduli
space is tautological if the fiber Xm

over m ∈M is an object in the equiva-
lence class corresponding to m. M0,4×
P1 over M0,4 and furnished with the
four sections defined above is tautolog-
ical since the fiber above q ∈ M0,4 is
the quadruple (0, 1,∞, q), which is in
the class defined by q.
The failure of representability (and
therefore the nonexistence of a fine
moduli space) for a moduli functor can
sometimes be resolved by changing the
target category for the moduli functor;
see the discussion about quotient stacks
below.

Definition I.1.1: Families, informally

Given a moduli problem, a family of objects in the moduli problem over a
base scheme B is a morphism X → B, where the family is denoted X/B
(and often equipped with some additional structure and restrictions) such
that the fiber above each b ∈ B is an object of our moduli problem. We
also require that families pullback along morphisms; in particular, for every
morphism ϕ : B′ → B, ϕ∗X is a family over B′. The morphism ϕ is almost
always required to be flat and projective.

The vagueness of this definition is due to the fact that the “additional structure”
satisfied by families X/B is specific to the moduli problem in question; in the case
of quadruples of points in P1, the extra structure is to require that our families
are given by projection maps B×P1 → B and come with four sections as above.

We may encode a moduli problem as a moduli functor F : SchOp → Set given by

B 7→ {equivalence classes of families over B}

where the contravariance arises from the definition of pullbacks (e.g, F (ϕ : B′ →
B) = ϕ∗ : F (B)→ F (B′)).

Definition I.1.2: Fine Moduli Spaces and Universal Families

A family U/M is universal if, for any other family X/B, there exists a
unique map f : B →M such that f∗U = B×M U and X are equivalent as
families over B. Equivalently, the families over B are (up to equivalence)
in bijection with the morphisms B → M . The base M of the universal
family is called a fine moduli space.

First note that if a fine moduli space exists, then the families above SpecC (which
is topologically a point) are in bijection with the set of morphisms SpecC→ M ,
which is clearly just the set of geometric (closed) points ofM . On the other hand,
a family above SpecC is just an object of our moduli problem, so the geometric
points of M classify the objects of our moduli problem up to equivalence, as
desired. The morphism B → M corresponding to a family X/B is called the
classifying map of the family, in that it sends b ∈ B to the point in M classifying
the fiber Xb. It follows from the universal property satisfied by a fine moduli space
that such a space is unique up to unique isomorphism (if it exists).

That families of objects (as opposed to objects themselves) are foregrounded in
the definition of a fine moduli space is an important and powerful perspective
that is essentially necessary in order to construct some sort of intersection theory
on moduli spaces; more immediately, however, this definition lends itself to an
elegant reformulation in terms of category theory. Given a scheme Y , we have
a contravariant functor hY : SchOp → Set known as the functor of points given
by hY (B) = Hom(B, Y ) (with the obvious action on morphisms). We say that a
moduli functor F is representable if there exists a natural isomorphism η : hM

∼−→
F for some scheme M . If such M exists, then M is the fine moduli space for our
moduli problem.
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To show the converse, that is, that the
base of a universal family represents the
functor F , is also relatively straightfor-
ward: if U/M is a universal family, then
the assertion that Hom(B,M)→ F (B)

given by ϕ 7→ ϕ∗U is a natural bijec-
tion amounts to the identity

(ϕ ◦ f)∗U ∼= f∗ϕ∗U

which is a property of pullbacks, for any
f : B′ → B.

It is easy to show that a fine mod-
uli space is automatically coarse; more-
over, if the coarse moduli space for a
moduli functor F is not fine, then by
the universal property of being initial,
no fine moduli space can exist (in the
given category/setting).

To see this, note that the Yoneda lemma tells us that there is a natural correspon-
dence Nat(hM , F ) ∼= F (M) between the natural transformations from hM to F
and the elements of F (M), if such a natural isomorphism η exists, it is canonically
identified with the element ηM (idM ) of F (M). ηM (idM ) is a family over M by
construction, and is in fact the universal family over M ; to see this, consider the
following commutative diagram, where ϕ : B →M is any morphism:

hM (M) F (M)

hM (B) F (B)

ηM

−◦ϕ ϕ∗

ηB

Starting with idM ∈ hM (M), commutativity implies that ηB(ϕ) = ϕ∗ηM (idM )

(this is the general construction that shows why we can reconstruct an entire
natural transformation from the data of ηM (idM )). Since the families over B are
in set bijection with maps B →M , for any family X/B ∈ F (M), we have a unique
morphism ϕ : B →M such that ϕ∗ηM (idM ) = X, from which the universality of
ηM (idM ) follows. Thus, we can see that the existence of a fine moduli space is
equivalent to the representability of the moduli functor.

When a moduli functor F is not representable, we may still define a certain best
approximation to the nonexistent fine moduli space; roughly speaking, when there
exists a spaceM as above whose geometric points classify the objects in our moduli
problem up to equivalence, but no corresponding universal family U , we say that
M is a coarse moduli space. More formally, we have the following:

Definition I.1.3: Coarse Moduli Spaces

For a moduli functor F : SchOp → Set, M is a coarse moduli space if
there is a natural transformation α : F → hM such that the pair (M,α)

is initial among all such pairs, and the set map αSpecC : F (SpecC) →
Hom(SpecC,M) is a bijection, e.g, the geometric points of M are in bijec-
tion with the objects of our moduli problem up to equivalence. Requiring
the pair (M,α) to be initial means that for any other pair (M ′, β), there
exists a unique morphism ψ : M → M ′ so that β = ψ ◦ α where ψ is
regarded as an natural transformation hM → hM ′ by the Yoneda lemma
and abuse of notation.

Example I.1.4

As an example of a coarse moduli space which is not fine, consider the mod-
uli problem of classifying one-dimensional vector spaces up to isomorphism.
Geometrically, the moduli space must be a point; however, the point does
not possess a universal family. Since a family of one-dimensional vector
spaces is a line bundle over some space X, and since there is only one
map from X to a point, if • is a fine moduli space, Pic(X) must be trivial
since, by universality, there must be exactly one line bundle above X, up
to equivalence. As many spaces possess nontrivial line bundles (such as
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It is a common slogan that the exis-
tence of nontrivial automorphisms is
what prevents the existence of a fine
moduli space; this is certainly the case
for this example of one-dimensional
vector spaces. The reason one expects
this to be true is that given a nontriv-
ial automorphism of some object, one
should be able to smear this automor-
phism out enough to produce a non-
trivial isotrivial family (a family whose
fibers are all isomorphic but which is
not globally isomorphic to a product of
the fiber and some space).
In view of this slogan, it is often natu-

ral to add some structure to the objects
of our study to eliminate nontrivial au-
tomorphisms. As unmarked curves are
what we really want to understand, the
marks themselves are an example of
structure added on to rigidify our ob-
jects of study (see the discussion of sta-
ble curves below).

For the example below, recall that the
degree of an algebraic variety of di-
mension n is defined as the number of
points of intersection of n hyperplanes
in general position (with respect to
some fixed embedding into Pn), where
a hypersurface is a subvariety of codi-
mension one, and a hyperplane is a de-
gree one hypersurface. A defining char-
acteristic of a hypersurface (of any de-
gree) is that it is cut out by the van-
ishing of a single homogeneous polyno-
mial.

P1 or S1 via twisting), this is clearly false, and the point is only a coarse
moduli space for this problem. See Example I.2.4 below for details on how
to salvage this moduli problem.

The definition of a fine moduli space requires all families of objects to pull back
from the universal family, which amounts to demanding that the universal family
possesses the appropriate structure to ensure that all “closeness” relations amongst
objects are reflected in the geometry of the moduli space. In our toy example of
quadruples, one can show thatM0,4 is the fine moduli space for the moduli problem
of quadruples of points in P1 up to equivalence, with universal family M0,4 × P1

and the accompanying four sections as structural data for the moduli problem.
Thus, M0,4 is not merely in set bijection with quadruples up to equivalence, but
in fact possesses nontrivial geometry that corresponds to the way that quadruples
vary in families. Since the universal family above M0,4 is tautological, this is not
hard to see (a family of equivalence classes of quadruples in M0,4 produces (with
the sections τi) a specific instance of that family, of the form (0, 1,∞, q)).

Note that the classification problem for n-tuples (of distinct points up to projective
equivalence) is no harder than the problem for quadruples; in particular, n-tuples
(p1, · · · , pn) and (q1, · · · , qn) of distinct points are projectively equivalent iff

λ(p1, p2, p3, pi) = λ(p1, p2, p3, qi)

for all i. This gives an isomorphism

M0,n
∼= (M0,4)n−3 \ {diagonals}

where M0,n is a fine moduli space (with tautological universal family furnished
with sections as when n = 4).

An important desideratum for a moduli space is compactness; the basic reason for
this is that when you have a compact moduli space, your solutions cannot “run
off to infinity.” For example, M0,4 (in fact, M0,n for all n) is non-compact, which
allows us to produce families of quadruples whose limit no longer lies in the moduli
space (specifically, quadruples where two points are equal appear as limits of
families of bona fide quadruples, as we will discuss further below). More generally,
the machinery of intersection theory only really works on compact spaces, so
picking the right compactification ofM0,4 will be an important step in our journey.

Compactifying will inevitably result in the introduction of degenerate configura-
tions, so in enumerative arguments involving these compactified spaces, one must
be sure to argue that our count does not include points in the boundary (often by
appeal to some sort of genericity of the supplied conditions).

Example I.1.5

A conic in P2 is the set of points satisfying the equation

Ax2 +Bxy + Cy2 +Dxz + Eyz + Fz2 = 0
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That the unique point in P5 in the in-
tersection of our hyperplanes will not
correspond to any degenerate conic fol-
lows from an analysis of the ways in
which a conic can degenerate; for ex-
ample, our conic cannot be the union of
two lines, since this would imply three
of our points are collinear, which would
not constitute a generic choice of five
points. The other cases follow similarly.
The genus-degree formula supplies an-
other way to see that 3d− 1 is the cor-
rect number of points to obtain a finite
number of curves (equivalently, the cor-
rect number of codimension one con-
straints to impose): a plane curve of
degree d with δ double points has genus

g =
(d− 1)(d− 2)

2
− δ

We need g = 0 for our curves to be
rational, so our rational plane curves
must have δ =

(d−1
2

)
double points,

and therefore lie in a subvariety of di-
mension

(d+2
2

)
− 1−

(d−1
2

)
= 3d− 1 in

the moduli space of (possibly degener-
ate) degree d plane curves.
Note that the six listed configurations
are not the only ones which can be
achieved as the limit of some family: for
example, we can simply make all four
points approach some fixed point and
achieve the configuration 1111. How-
ever, such further degenerate configu-
rations are of codimension greater than
one, since they can be achieved via a
sequence of limiting procedures of the
form 1234 → 1123 → 1122 → 1111, so
we do not include them. Finding the
canonical limits of such families is han-
dled more universally by the semistable
reduction theorem, but it is useful to
consider specifically why some limits
are included and others are not.

Therefore, the data of a conic is contained in the tuple (A,B,C,D,E, F )

up to an overall scale, e.g, in the point [A,B,C,D,E, F ] ∈ P5, so we
may naively take P5 to be the moduli space of conics. P5 is compact,
but also contains all sorts of degenerate configurations that one would
not necessarily consider a conic such as the union of two lines given by
[1, 0,−1, 0, 0, 0] corresponding to the equation x2−y2 = (x−y)(x+y) = 0,
or [0, 0, 0, 0, 0, 1] which corresponds to a single point.

Nevertheless, the bargain of allowing wildly degenerate configurations into
our moduli space for the sake of compactness is not Faustian, as we can
still extract useful information from this formalism, provided that we are
careful to avoid degenerate configurations. For example, we can now easily
determine N2, the number of rational conics through five generic points as
follows: let Pi = [xi, yi, zi] be coordinates for our five points, and note that
the set of conics in P5 passing through each Pi form a hyperplane carved
out by the linear constraint

Ax2
i +Bxiyi + Cy2

i +Dxizi + Eyizi + Fz2
i = 0

Thus, the desired locus of conics is the intersection of five hyperplanes,
which are in general position since our five points are in general position,
so N2 = deg(P5) = 1.

Note that one can form similar moduli spaces of (possibly degenerate) cubics (P9),
quartics, etc., and it is possible for small d to compute Nd in these spaces. The
reason that the difficulty rises with d has to do with rationality: all plane conics
are rational, but the same is not true for plane cubics, which have expected genus 1

by the genus-degree formula; therefore, our count of rational conics will take place
in the hypersurface defined by singular cubics. As d increases, the subvariety of
interest to us in the moduli space P(d+2

2 )−1 of possibly degenerate degree d plane
curves becomes increasingly complex, and this strategy becomes inviable.

As noted above, the M0,n are unfortunately non-compact; however, M0,4 = P1 \
{0, 1,∞} possesses an obvious compactification: M0,4 = P1. The way in which
we interpret the three missing points that we add back is essentially the key
insight to defining stable maps. In particular, naively, if we want to compactify
M0,4 by adding degenerate (codimension one) configurations back in, there are
six distinct degenerate configurations: 1123, 1213, 1231, 1223, 1232, and 1233

(where 1123, for example, refers to the degenerate configuration where the first
two points coincide, and the third and fourth are distinct). There are of course
more degenerate configurations (1122, for example, or 1111), but these six are the
most directly “reachable” by taking limits of non-degenerate configurations (e.g
the other degenerate configurations may all be reached by first going to one of
our six and further degenerating). Thus, we have six missing limit configurations
(each of which must be a point since three distinct points in P1 can be moved to
0, 1,∞ by a unique automorphism of P1) but only three points missing from our
moduli space.
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The way that one arrives at this geo-
metric description of the limit points
naturally is to first take M0,4 = P1

(the only possible compactification),
and note that the total space of the uni-
versal family over M0,4 cannot just be
P1×P1, since this would result in three
points where the sections τi are not dis-
joint. Instead, we must take the blowup
of P1 × P1 at three points, which is in
fact the universal family overM0,4; the
fibers above the three points we added
back in to obtainM0,4 are stable curves
with two twigs.

This definition (as with the rest of our
discussion) extends to positive genus,
and exists in several formulations - see
[FP97, DM69].

The resolution to this discrepancy is the fact that distinct degenerate configura-
tions may be “approached” by projectively equivalent families. As an example, let
Pt = (0, t, 1,∞), Qt = (0, 1, t−1,∞) be families of quadruples parameterized by
t ∈ P1, and let t→ 0. For each t ∈ P1 \ {0, 1,∞}, the quadruple Pt is projectively
equivalent to the quadruple Qt, but P0 = (0, 0, 1,∞), Q0 = (0, 1,∞,∞). As these
two families should represent the same curve in the moduli space M0,4, they must
have the same limit in any reasonable compactificationM0,4; thus, the degenerate
configurations 1123 and 1233 are identified as a single point in the boundary of
M0,4. The remaining degenerate conditions are similarly identified in pairs.

Thus, we can see that the situation of two points in a quadruple approaching
each other is, in some sense, indistinguishable from the “dual” situation where the
remaining two points approach each other. One geometric realization of this is
for our P1 to snap into two copies of P1, each containing two of the points which
approach each other; in particular, the families Pt and Qt have the following
mutual limit as t→ 0:

0

p1

← t

p2

1

p3

∞

p4

−→
p1

p3

p4

p2

←−
0

p1

1

p2

t−1

p3

→ ∞

p4

Thus, we have a geometric description for the three missing points M0,4 \M0,4:
they are not marked copies of P1, rather, they are marked trees of P1s. The
structure of M0,4 does not allow points to come together; instead, the curve
breaks into multiple components, distributing the offending points in a way that
corresponds to the relative rates of approach. More formally, we have the following
definition:

Definition I.1.6: Stable Curves

A tree of projective lines is a connected curve whose irreducible components
(called twigs) are all isomorphic to P1, such that the points of intersection
of the irreducible components are ordinary double points (nodes), and such
that there are no closed circuits (e.g, if any intersection point is removed,
the curve becomes disconnected). A tree C of projective lines with n

distinct marked points (called an n-pointed curve) that are smooth points
of C (e.g, not nodes) is stable if each twig contains at least three special
points, where a special point is a marked point or an intersection point
(equivalently, a node).

The mutual limit of the families above is clearly a stable curve, since each twig
contains two marked points a node. Our definition of stability is tied to prevent-
ing the existence of nontrivial automorphisms of twigs; in particular, we define
an isomorphism of n-pointed curves (C, p1, · · · , pn), (C ′, p′1, · · · , p′n) to be an iso-
morphism of curves ϕ : C

∼−→ C ′ such that p′i = ϕ(pi) for all i. Thus, roughly, an
automorphism of an n-pointed stable curve will need to fix at least three points of
each twig, and an automorphism of P1 is determined by its image on three points,
so such automorphisms are trivial on each twig, and therefore trivial. Stability
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can be equivalently defined as the absence of nontrivial automorphisms.

Thus,M0,4 may be better described as the moduli space of 4-pointed stable curves.
To see this, let (C, p1, p2, p3, p4) be a stable 4-pointed curve: if C has a sin-
gle irreducible component, then it corresponds to a point in M0,4, and if C has
two components, then the three ways to distribute the marked points across the
components to retain stability are (p1, p2|p3, p4), (p1, p3|p2, p4), and (p1, p4|p2, p3)

which correspond to the three points in M0,4. M0,4 is a fine moduli space for
this problem, with universal family U0,4 given by the blowup of P1 × P1 at three
points.

To sketch the construction of the M0,n (with their universal families U0,n) in
general, we need to introduce two important operations on stable curves which add
or remove points without destabilizing the curve (e.g, which give maps M0,n →
M0,n±1). In particular, given an n-pointed stable curve (C, p1, · · · , pn), and any
q ∈ C, if q is not a special point of C, then (C, p1, · · · , pn, q) is an n + 1-pointed
stable curve. If q is a special point, then there is a canonical way of stabilizing to
produce a stable curve. In particular, if q is the intersection point of two twigs,
then, we may simply pull the two twigs apart and connect them by a new twig
with mark pn+1 = q. Similarly, if q = pi for some existing mark pi, then we break
pi off into a new twig and add the mark pn+1 to this new twig. In either case, the
resulting curve is stable with n + 1 marks. In fact, this construction works just
as well in families, in the sense that the addition of a new section (corresponding
to a new point) to a family of stable n-pointed curves results in a family of stable
(n+ 1)-pointed curves which is unique, see [Knu83].

Similarly, there is a canonical way to forget marks. Given (C, p1, · · · , pn, pn+1),
remove pn+1. If the curve (C, p1, · · · , pn) has any unstable components, e.g a twig
with fewer than three special points, there are two cases: if the given twig is only
connected to one other twig, then we “snap” the unstable twig back to the stable
twig it is connected to (which cannot have become unstable since we have only
forgotten a single mark) along with the unstable twig’s marks. If the given twig
connects two other twigs, then it must connect exactly two twigs and have no other
marked points (since if either of these criteria fail, the twig cannot be unstable),
so we may contract this twig to a point and let the two twigs intersect. Either of
these procedures produces a stable n-pointed curve. As above, this construction
works well with families, in the sense that forgetting a section results in a unique
family of stable curves as above, see [Knu83] for details.

Thus, there is a forgetful map M0,n+1 →M0,n given by forgetting the last mark
(or any fixed mark) and contracting if necessary to stabilize. Composing these
maps, we have a map M0,n →M0,4 for any n ≥ 4 given by forgetting all but the
first four marked points.

These operations are crucial in the inductive construction of M0,n with its uni-
versal family U0,n via the key observation that U0,n

∼= M0,n+1. We will establish
this isomorphism only as an equality of sets, omitting the construction of the U0,n

via blowups. Let π : U0,n → M0,n be the universal family, Fq = π−1π(q) the
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Versions of this construction (and the
ones above) extend to the g > 0 case,
and there are alternative constructions
for the universal families, see [Kee92].

fiber passing through q ∈ U0,n. Since the fiber above π(q) belongs to the class
represented by π(q) (by the universal property of fine moduli spaces), Fq is a
stable n-pointed curve represented by π(q). The key insight is that the point q
itself identifies another marked point on Fq, which makes Fq (after stabilizing, if
necessary) a stable n+ 1-pointed curve, denoted Cq.

The induced map U0,n →M0,n+1 given by q 7→ Cq is injective (Cq ∼= Cq′ implies
that Fq ∼= Fq′ by forgetting the last point and stabilizing, in which case q = q′),
and surjective, since, given a n-pointed curve (C, p1, · · · , pn+1), we can forget pn+1

to obtain a stable n-pointed curve, go to the fiber above its class in U0,n and add
the last point back to obtain a point q mapping to the given curve.

Stable curves with only one twig form the open locus M0,n, and the boundary
M0,n\M0,n consists of reducible curves with multiple twigs. Of particular interest
are the curves with two twigs, since they form a codimension one subvariety of
M0,n. These subvarieties are called boundary divisors, and denotedD(A|B), where
A,B are a partition of the marking set {p1, · · · , pn}, so D(A|B) consists of all
stable curves with A-marks on one twig, B-marks on the other. When n ≥ 5,
these divisors themselves have boundaries corresponding to configurations that
are further degenerated (e.g, consisting of more than two twigs).

Proposition I.1.7

There is a canonical isomorphism

D(A|B) ∼= M0,A∪{•} ×M0,B∪{•}

where M0,S is the moduli space of stable maps with markings by the set
S ⊂ N.

This is fairly straightforward: the data of a stable curve with two twigs marked
by A and B is the same as the data of two copies of P1, marked by A and B, and
each with a marked point • that identifies where to glue the two P1s to recover the
original stable curve. Similar arguments hold for higher codimension boundary
cycles: you can split a stable curve up into its twigs, as long as you remember
where to glue. This recursive structure is generally very important to the study
of stable maps; in particular, on M0,4

∼= M0,{i,j,k,l}, the three boundary divisors
D(ij|kl), D(ik|jl), D(il|jk) are clearly all linearly equivalent (since any two points
on P1 are linearly equivalent).

i

k

l

j

≡
i

j

l

k

≡
i

j

k

l

Pulling this equivalence back under the forgetful map M0,n → M0,4, we obtain
the following crucial identity which will play a major role in the remainder of our
discussion:
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The notion of a groupoid is in some
sense a generalization of the notion of
an equivalence relation. Given a set
S with an equivalence relation ∼, we
can form the quotient S/ ∼ which col-
lapses equivalence classes into discrete
objects; a finer grain realization of this
is the corresponding quotient groupoid
S� ∼ whose objects are elements of
S, and whose arrows encode equiva-
lence under ∼. At the cost of being a
more complicated object, the quotient
groupoid generally makes sense even
when the quotient itself does not (as in
the case of a poorly behaved geometric
quotient).

The details of the definition of a pseud-
ofunctor are slightly more involved
than as presented here; in particular,
the isomorphisms F (f)◦F (g) ∼= F (g◦f)

and F (idX) ∼= idF (X) must be coher-
ent ; coherency is generally satisfied if
the isomorphisms in question arise in a
sufficiently general way (such as from a
universal property).

A good piece of intuition for principal
G-bundles comes from covering spaces:
in particular, a principal G-bundle over
X whose total space is connected is the
same as a covering space p : X̃ → X

whose deck transform group is G. By
the definition of a covering space, ev-
ery x ∈ X has a neighborhood U s.t
p−1(U) ∼= U ×G, and this construction
can be made to commute with projec-
tion to U and the G-action.

Proposition I.1.8∑
i,j∈A
k,l∈B

D(A|B) ≡
∑
i,k∈A
j,l∈B

D(A|B) ≡
∑
i,l∈A
j,k∈B

D(A|B)

We will require this identity both in our derivation of the recursive formula for
the Nd, and in defining the product structure on the big quantum cohomology
ring. Much more can be said here about the moduli spaces/stacks Mg,n which
have a fascinating theory in their own right; we have developed only enough of
it to construct M0,n(Pr, d). A foundational reference for the moduli of pointed
stable curves is [Knu83] (along with its prequel and sequel).

I.2 Quotient Stacks F

As an aside, we briefly and roughly describe how to obtain fine moduli spaces
(for some definition of “space”) when the moduli functor F : SchOp → Set is not
representable; we have mentioned that, heuristically, it is generally the presence of
nontrivial automorphisms of the objects in question that prevents the existence of
a fine moduli scheme, so it is natural to consider spaces whose points are allowed to
have nontrivial automorphisms as potential fine moduli spaces for a given problem.
To obtain such a space from our formalism, we have to alter our moduli functor.

A groupoid is a category whose morphisms are all isomorphisms; note that every
set is trivially a groupoid (with only identity arrows). The idea will be to modify
F so that its target category is Grpd, the category of groupoids, by taking a
scheme X to the groupoid of families over X (and isomorphisms amongst them),
and a morphism ϕ : X → Y to the corresponding pullback functor ϕ∗. Note that
collapsing equivalent families into equivalence classes recovers our original formu-
lation of a moduli functor. However, there is a small detail here to be resolved,
which is that the functoriality axioms F (f)◦F (g) = F (g◦f) and F (idX) = idF (X)

only hold up to isomorphism for the functors induced by pullbacks, so what we
have constructed is not precisely a functor, but a pseudofunctor, which is roughly,
as seen here, a functor whose action on morphisms is only defined up to isomor-
phism.

Pseudofunctors SchOp → Grpd are the key ingredient in defining general stacks,
together with some technical gluing criteria; we will not wander into such gener-
ality, rather, we will work with quotient stacks, which are comparatively simpler
to define, and pay quick dividends for many natural moduli problems.

Definition I.2.1: Principal G-bundles

A principal G-bundle is a fiber bundle π : E → X with a continuous right
action of G (a topological group) on E such that G preserves the fibers of
E (e.g, if y ∈ Ex for x ∈ X, then yg ∈ Ex for all g ∈ G) and the action
on each fiber is free (for y ∈ Ex, yg = yh =⇒ g = h) and transitive (for
y, z ∈ Ex, there exists g ∈ G s.t yg = z).
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Note that omitting the zero section of a
line bundle is the same as forming the
corresponding frame bundle since any
nonzero vector in a one-dimensional
vector space forms an ordered basis.

Example I.2.2

Consider Gm = SpecC[t, t−1] (which is roughly the algebraic analogue of
C× as a topological group in the same way that A1 = SpecC[t] is the
analogue of C); we claim that principal Gm-bundles carry the same data
as complex line bundles, over some fixed base space. More precisely, there
exists an equivalence of categories between the groupoid of line bundles on
X and the groupoid of principal Gm-bundles on X for any X.

The key construction in this equivalence is the associated bundle of a prin-
cipal Gm-bundle E on a schemeX, given by L := E×GmA1 = (E×A1)/Gm
where the equivalence relation by Gm action is given by [xg, y] ∼ [x, gy]. L
is a line bundle on X since the fiber above each point in X is isomorphic to
A1, and local triviality inherits from the definition of a principal G-bundle.
Similarly, given a line bundle L, one may produce a principal Gm-bundle
E := L \ 0X where 0X is the zero section. Thus, nothing is lost if we refer
to line bundles and principal Gm-bundles interchangeably.

More generally, given a principal G-bundle π : E → X, and a continuous left
action by isomorphisms G y F , one can form the space E ×G F = (E × F )/G

where the G-action quotient gives the equivalence relation [xg, y] ∼ [x, gy]; the
natural map E ×G F → X via projection gives E ×G F the structure of a fiber
bundle with fiber F .

In the case where G = GLn (regarded as the complement of the hypersurface
det = 0 ∈ An2

, and therefore an algebraic group), GLn acts on any n-dimensional
vector space by isomorphisms, so we may canonically associate to a principal GLn-
bundle a rank n vector bundle. As above, this is an equivalence of categories, with
the reverse map given by taking the frame bundle of a vector bundle, whose fiber
at any point is the set of ordered bases for the corresponding vector bundle fiber
(which is clearly in bijection with GLn).

Definition I.2.3: Quotient Stacks

Let G be an affine smooth group scheme over a scheme S, G y X where
X is a scheme over S. Then the quotient stack [X/G] is a pseudofunctor

[X/G] : (Sch/S)Op → Grpd

where, for U ∈ Sch/S, [X/G](U) is the category consisting of (as objects)
diagrams over S of the form

U
π←− E α−→ X

where π is a principal G-bundle and α a G-equivariant morphism, and
whose morphisms are isomorphisms E ∼−→ E′ of principal G-bundles s.t
the following diagram commutes:
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When a quotient stack has finite sta-
bilizers, it is Deligne-Mumford, other-
wise, it is an algebraic or Artin stack.

The above argument shows that [•/G]

classifies principal G-bundles, in a
sense that we will not make too precise.

E E′

X

∼

α
α′

For a morphism f : U ′ → U of schemes over S, [X/G](f) : [X/G](U) →
[X/G](U ′) is the functor (up to isomorphism) induced by pullbacks of
principal G-bundles along f .

Example I.2.4

Recall Example I.1.4, in which we showed that there does not exist a fine
moduli scheme for one-dimensional vector spaces up to isomorphism, essen-
tially due to the existence of nontrivial line bundles, and that the coarse
moduli space must be (topologically) a point, since all one-dimensional
vector spaces are isomorphic.

Consider the moduli pseudofunctor F (for the moduli problem of one-
dimensional vector spaces) which sends a scheme (over C) to the category
of principal Gm-bundles (equivalently C-line bundles) and isomorphisms
among them, and sends morphisms to pullback functors. It follows from
definitions that F = [•/Gm] (where • = SpecC, so no nontrivial infor-
mation is encoded by the maps to SpecC in [•/Gm](U)). Thus, we can
roughly see why [•/Gm] is a fine moduli stack for one-dimensional vector
spaces.

More generally, since principal GLn-bundles are equivalent to vector bun-
dles of rank n, [•/GLn] is the fine moduli stack for n-dimensional vector
spaces, of dimension −n2.

One can rigorously make sense of stacks geometrically using various Grothendieck
topologies (typically the étale topology), but it is generally largely correct to think
of a quotient stack as geometrically being the underlying quotient space, where
points are allowed to have nontrivial automorphisms. Thus, [•/GLn] makes sense
as a −n2 dimensional stack which is geometrically a point with n2 dimensions
of automorphisms. Good starting references for stacks and their applications are
[Voi04, Fan01].

I.3 Intersection Theory

Here, we develop some of the intersection theory that we will use. Aside from
standard definitions and facts about the Chow ring, the most important takeaway
from this section is that the Chow and cohmology rings of Pr (and in fact, for
all Grassmanians and flag varieties) are isomorphic up to a doubling of degrees,
so we will freely pass between A∗ and H∗ both in notation and in action in the
sections to come.
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The definition of rational equivalence in
terms of functions (as given above) is
useful in that it evokes the more famil-
iar notion of principal Weil divisors and
is quite concrete; an equivalent notion
of rational equivalence that is some-
what less familiar but provides better
geometric intuition is as follows: define
Rat(X) to be the group (of cycles) gen-
erated by

〈Φ ∩ ({t0} ∩X)〉 − 〈Φ ∩ ({t1} ∩X)〉

for any subvariety Φ of P1 × X (not
contained in any fiber {t} × X), any
t0, t1 ∈ P1. Then, we may define
A(X) = Z(X)/Rat(X), where Z(X)

is the group of cycles on X. Morally, in
this formulation, A,B ∈ Z(X) are ra-
tionally equivalent if there is a family of
cycles interpolating between them (pa-
rameterized by P1); this invites natural
comparisons to homotopy equivalence
and cobordism, and makes the defini-
tion of A(X) slightly more geometri-
cally natural. See [Ful98, EH16]

Note that if x ∈ A ∩ B is a reduced
point, e.g OA∩B,x is a reduced ring,
then A and B meet transversely at x
(see Proposition II.3.2).

This result is actually quite difficult
to show in full generality, see [Ful98,
EH16].

Definition I.3.1: Chow Groups

Let X be a scheme separated and of finite type over a field k. Then the
Chow group of X, A(X), is defined as

A(X) :=
⊕
k

Ak(X)

where Ak(X) is the free abelian group generated by dimension k integral
subschemes of X, whose formal sums are called k-cycles, up to rational
equivalence, where two k-cycles A,B are rationally equivalent if

A−B = (f) =
∑
Y

ordY (f)〈Y 〉

where f is a rational function on some k+1-dimensional integral subscheme
W of X, and the sum runs over all codimension-1 subschemes Y of W ,
ordY (f) the order of vanishing of f along Y .

In the above, 〈Y 〉 refers to the following construction: to regard arbitrary (not
necessarily reduced or irreducible) subschemes of X as elements of A(X), let
Y1, · · · , Yr be the irreducible components of Yred (of which there are finitely many
since schemes of finite type over a Noetherian ring are Noetherian), and define

〈Y 〉 =

r∑
k=1

liYi

where li is the length of the local ring OY,xi
at the unique generic point xi of Yi.

In the situations we are interested in, the Chow group is in fact a ring in a natural
way.

Definition I.3.2: Transversality

Let X be a variety. We say that subvarieties A,B intersect transversely at
a point p if A,B, and X are all smooth at p and TpA + TpB = TpX. We
say that A and B are generically transverse if they meet transversely at a
generic point of each component of A ∩B.

Theorem I.3.3: Chow Rings

LetX be a smooth variety (over C, for our purposes), then there is a unique
product structure on A(X) such that for any two generically transverse
subvarieties A,B of X,

[A][B] = [A ∩B]

In fact, the assumption of generic transversality may be omitted, as for all
α, β ∈ A(X), there exist A, B generically transverse such that [A] = α

and [B] = β. Moreover, the class [A ∩ B] is independent of the choice of
representative cycles A, B.

The Chow ring is functorial, in that it possesses natural pushforward and pullback
maps; in particular, if f : X → Y is proper, then there exists a map f∗ : A(X)→
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Here, we employ a common strategy of
passing from the subvariety of interest
to an incidence structure; e.g, it is eas-
ier to deal with pairs of hypersurfaces
and singular points on them than with
singular hypersurfaces themselves.

A(Y ) with f∗〈A〉 = n〈f(A)〉 if dim f(A) = dimA, where A ⊆ X is a subvariety,
and n is the degree of f |A (if dim f(A) < dimA, then f∗〈A〉 = 0). In fact, f∗ is a
graded map, in that it restricts to maps Ai(X)→ Ai(Y ) for all i.

Similarly, pullbacks are defined as f∗[A] = [f−1(A)] for maps f : X → Y of
smooth quasiprojective varieties, provided that f−1(A) is generically reduced and
codimX(f−1(A)) codimY (A) for subvarieties A ⊆ Y . f∗ is graded as above.

Example I.3.4: Bézout’s Theorem

A(Pn) ∼= Z[h]/(hn+1), where dhk ∈ A(Pn) corresponds to the class of a
variety X ⊆ Pn of degree d and codimension k, where h is the class of a
hyperplane. For subvarieties X1, · · · , Xk ⊆ Pn of codimensions c1, · · · , ck
with

∑
i ci ≤ n and which intersect transversely,

deg(X1 ∩ · · · ∩Xk) =
∏
i

deg(Xi)

This follows easily as a calculation in the Chow ring:

[X1 ∩ · · · ∩Xk] = h
∑

i ci
∏
i

deg(Xi)

Since the sum of the ci does not exceed n, the h term does not vanish, so
the result follows by taking degrees on both sides, where the degree here is
in the sense of varieties and is obtained by taking the degree (in the sense
of divisors) of the class in question multiplied by an appropriate power of
the hyperplane class (which corresponds to intersecting with some number
of general hyperplanes).

As an aside, we have already developed enough general theory to now calculate
N3, via the an understanding of the discriminant hypersurface. In analogy to the
way that we constructed the moduli space of possibly degenerate degree d plane
curves P(d+2

2 )−1 above, we may more generally construct PN where N =
(
n+d
n

)
−1,

the moduli space of possibly degenerate degree d hypersurfaces in Pn, by sending
the defining equation for said hypersurfaces to the tuple of their coordinates. Let
D ⊂ PN be the subvariety corresponding to singular hypersurfaces; we want to
understand D.

Consider Σ = {(S, p) ∈ PN × Pn : p ∈ Ssing}, where D = p(Σ), and where p the
first projection map. One can show that p is generically one-to-one onto its image
(essentially because a general singular hypersurface has only one singular point),
so p∗[Σ] = [D].

On the other hand, a pair (F, p) of a homogeneous degree d polynomial F and a
point p corresponds to a point of Σ iff F (p) = 0 and ∂F

∂xi
(p) = 0 for all i. We have

the following identity for any degree d polynomial:

F =
1

d

(
x0
∂F

∂x0
+ · · ·+ xn

∂F

∂xn

)
so the equation F (p) = 0 is automatically satisfied by any pair (F, p) satisfying
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As d increases, calculating Nd in the

naive moduli space P
(
d+2
2

)
−1 requires

increasing levels of detail in our analy-
sis of subvarieties corresponding to sin-
gular curves, a thorough understanding
of the various ways in which a curve can
become singular and the ways in which
these singularities can devolve into one
another.
This perspective was developed by Ful-
ton and MacPherson in order to define
the Chow ring for singular varieties; in
particular, the operational Chow ring
A∗(X) is defined for certain singular
varieties, where the ordinary Chow ring
A∗(X) is not. The Poincaré duality iso-
morphism described here is the natural
equivalence between A∗(X) and A∗(X)

when X is smooth.

the singularity conditions, and Σ is cut out by the equations ∂F
∂xi

(p) = 0. Each
such equation is of degree d−1 and is linear in the coefficients of F , and therefore
satisfies (for all i)

[Hi] :=

[
V

(
∂F

∂xi

)]
= α+ (d− 1)β ∈ A(PN × Pn) ∼= A(PN )⊗Z A(Pn)

where α and β are the pullbacks of hyperplane divisors in A(PN ) and A(Pn)

respectively. Since these n + 1 equations are independent (for generic F ), the
hyperplanes Hi are transverse, and therefore [Σ] = (α + (d − 1)β)n+1. One can
show that p∗(βi) = 0 for all i < n using the definition of pushforwards and
dimension arguments, and further that p∗(αβn) = ζ where ζ is the hyperplane
class in A(PN ), so that

[D] = p∗[Σ] = p∗(α+ (d− 1)β)n+1 = (d− 1)n(n+ 1)ζ

ThusD is a hypersurface of degree (d−1)n(n+1) (the aforementioned discriminant
hypersurface).

Example I.3.5

Let P9 be the moduli space of plane cubics (as above); since the set of cubics
passing through any fixed point forms a hyperplane in P9 corresponding
to h ∈ A(P9) = Z[h]/(h10), Bézout’s Theorem tells us that the number of
singular cubics (as rational cubics must be singular) passing through eight
general points is given by

deg(h8 · 12h) = 12

(where we have intersected with the discriminant hypersurface, which cor-
responds to 12h ∈ A(P9) by the above discussion).

Thus, N3 = 12 can be obtained using relatively elementary machinery. It is pos-
sible, though much more involved, to similarly calculate N4, as we must compute
the degree of the subvariety corresponding to quartic curves with three nodes
(since the expected genus of a degree four curve is three), and analyzing this sub-
variety requires understanding the “higher” strata corresponding to single nodes,
double nodes, and other related degenerations, see [Zin05] for the details of such
calculations.

Finally, note that the Chow ring possesses a natural grading by dimension, but
it is often also useful to work in terms of codimension; in particular, we define
Ak(X) = AdimX−k(X). Some authors prefer to think of elements of A∗(X) :=⊕

k A
k(X) as operators on A∗(X) (regarded as a group) via intersection, in which

case we have the Poincaré duality isomorphism A∗(X)
∼−→ A∗(X) given by

γ 7→ γ ∩ [X]

where [X] is the fundamental class.

This perspective on the Chow ring invites comparisons with integral cohomology
H∗(X), and in fact, we have a natural map A∗(X) → H2∗(Xan) where the dou-
bling of indices arises from the fact that k-dimensional subvarieties of X have real
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Specifically, Poincaré duality maps a
cohomology class γ ∈ Hk(X) (with
any coefficients) to γ _ [X] ∈
HdimX−k(X), when X is closed and
oriented (as will be the case for Pr and
our other target spaces of interest). For
[A] ∈ Hk(X) corresponding to a sub-
manifold A ⊆ X, [A]∗ is the unique
cohomology class s.t [A]∗ _ [X] = [A].

This definition generalizes in an obvi-
ous way when the target space of the
map µ is not Pr; in this special case,
however, the degree of µ turns out to
be the product of the degree of the im-
age curve µ(P1) with the degree of the
field extension [C(P1) : C(µ(P1))].

dimension 2k, and where Xan is the analytification of X (by assumption a smooth
variety over C) which gives X the structure of a complex analytic manifold. Usu-
ally this subtle distinction is ignored, and we will ignore it in our notation as
well. For certain varieties, including X = Pn (and in fact all Grassmanians and
flag varieties), this map is an isomorphism, so it suffices to work in H∗(X). Note
that this is an isomorphism (and for more general varieties, a homomorphism) of
graded rings, via the identity [A]∗ ^ [B]∗ = [A ∩ B]∗ ∈ H∗(X) where [A]∗, [B]∗

are the Poincaré dual classes of subvarieties/submanifolds [A], [B] ∈ H∗(X). We
will sometimes use A∗ and H∗ interchangeably in our discussion below.

Finally, note that the degree map H0(X) → Z is denoted
∫
, e.g, the degree

of [A] ∈ H0(X) (the sum of the multiplicities of the points in [A]) is written∫
X

[A]. The reason for this notation is essentially the de Rham isomorphism:
given γ ∈ HdimX(X), since integral cohomology embeds in real cohomology, we
may apply the de Rham isomorphism to obtain a form (referred to by abuse of
notation as γ again) s.t

∫
X
γ = [Γ] where [Γ] is the Poincaré dual cycle, in this

case, a finite set of points. Thus, the degree of a class in H0(X) is obtained by
integrating a top-degree cohomology class.

II. Stable Maps

We are ready to describe the construction of the moduli space of stable maps.
Specifically, we will be explicitly constructing the coarse moduli space of genus
zero stable maps with target space P2. It is possible to consider other target
spaces, and work in positive genus, but each of these generalizations introduces
several difficulties which we will avoid in favor of a more direct path to enumerative
results. A fairly thorough account of the construction in full generality for g = 0

is given in [FP97], along with some notes about how to alter the construction for
g > 0; it is this construction that we loosely follow here.

Our intention is to count rational plane curves, whose defining feature is that
they may be parameterized by P1. To that end, in this section, we will construct
a certain moduli space and its compactification which parameterize stable maps
from P1.

Definition II.0.1: Degree

The degree of a map µ : P1 → Pr is defined to be the degree of the
pushforward homology class µ∗[P1] ∈ H2(Pr). Equivalently, the degree is
given by the degree (in the sense of line bundles) of µ∗OPr (1).

Definition II.0.2: Kontsevich Stability

A map µ : C → Pr where C denotes a tree of projective lines with n

distinct marked (smooth) points is Kontsevich stable if any twig mapped
to a point is stable in the sense of Definition I.1.6, i.e, containing at least
three special points.
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This section is starred as it is by far
the most technical portion of our dis-
cussion, and understanding the details
of this construction is not strictly nec-
essary in order to obtain our main re-
sult.

We will generally write n-pointed maps as a tuple (C, p1, · · · , pn, µ) where µ :

C → Pr as above. It is important to note that the source curve of a stable map
need not be stable as a tree of projective lines (for example, every nonconstant
map P1 → Pr is Kontsevich stable with no marked points). The reason for this
definition is similar in motivation to our first definition of stability: to eliminate
automorphisms; in particular, we have the following result:

Proposition II.0.3

An n-pointed map is Kontsevich stable if and only if it has a finite number
of automorphisms.

Proof: Let µ be Kontsevich stable. Assume that the source curve (C, p1, · · · , pn)

is not stable as a tree of projective lines, since the result is clear in that case;
then, there exists a twig E in C with fewer than three special points, which is not
mapped to a point. We claim that there are only finitely many automorphisms
φ : P1 ∼−→ P1 such that µ|E = µ|E ◦ φ. This follows from the fact that the
automorphism group of µ|E is naturally identified with the automorphism group
of the field extension C(P1)/C(µ|E(P1)) which is finite by results from algebraic
geometry. This holds for every unstable twig E, from which the result follows.

Conversely, suppose that µ : C → Pr has finitely many automorphisms. If C
contains a twig with fewer than three special points which is mapped to a point,
then any automorphism of this twig leaves µ invariant, and there are infinitely
many automorphisms of this twig (e.g there are infinitely many automorphisms
of P1 which fix two points). Thus, no such twig may exist, and µ is Kontsevich
stable. �

An n-pointed map (not necessarily stable) is denoted (C, p1, · · · , pn, µ). From now
on, we will generally omit “genus zero” from our description, as we will only be
working in genus zero, and we will refer to maps as stable rather than Kontsevich
stable. Having defined stable maps, the immediate next step is to define families
of stable maps:

Definition II.0.4: Families of stable maps

A family of n-pointed stable maps (fixing the target space Pr) is a flat,
projective map π : X → B with n disjoint sections p1, · · · , pn and a map
µ : X → Pr such that each geometric fiber

(Xb, p1(b), · · · , pn(b), µb : Xb → Pr)

for b ∈ B is an n-pointed stable map. Two families (π : X → B, p1, · · · , pn, µ)

and (π′ : X ′ → B, p′1, · · · , p′n, µ′) above B are isomorphic if there exists a
scheme isomorphism X

∼−→ X ′ which carries pi to p′i for all i and µ to µ′.

II.1 Constructing M0,n(Pr, d) F

We will explicitly construct M0,n(Pr, d), following [FP97], as we will not be work-
ing with stable maps of greater generality than this. Towards this construction,
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Note that for any t-rigid stable fam-
ily of degree d maps from n-pointed
curves, there is a companion family of
m = n+d(r+1)-pointed stable curves,
which is obtained by forgetting the map
µ.

Naming (and therefore ordering) the
marks in the divisor µ∗ti is unneces-
sary when considering stable maps µ,
but we must name them in order to ob-
tain a unique companion curve with m
marks, and then forget these names to
avoid degeneracy.

we first define the following: let t = (t0, · · · , tr) be a basis for H0(Pr,O(1)), then
a t-rigid stable family of degree d maps from n-pointed curves to Pr consists of
the data

(π : X → S, {pi}1≤i≤n, {qij}0≤i≤r,1≤j≤d, µ : X → Pr)

where (π, {pi}, µ) is a family of stable n-pointed (genus 0) degree d maps and
(π, {pi}, {qij}) is a flat projective family of n + d(r + 1)-pointed stable curves,
such that there is an equality of Cartier divisors

µ∗ti = qi1 + · · ·+ qid

for all i.

Let F : (Sch/C)op → Set be the functor which sends a complex scheme S to the
set of isomorphism classes of t-rigid stable families over S of degree d maps from
n-pointed curves to Pr. Note that F only depends on the hyperplanes defined by
the ti, and not the expressions themselves.

Proposition II.1.1

There exists a nonsingular algebraic variety M0,n(Pr, d, t) representing the
functor F , and which is therefore a fine moduli space for t-rigid stable
maps.

The idea here is that, once we have constructed the spaces M0,n(Pr, d, t), we may
treat them as open sets with which to constructM0,n(Pr, d) by gluing (technically,
it will be a quotient of M0,n(Pr, d, t) by the action of a finite group which is truly
an open subset of M0,n(Pr, d)). For motivation, we will discuss the case where
r = 2, which will be the case of principal interest to us anyway.

Example II.1.2

Fix three lines in P2 defined by three independent linear forms t0, t1, t2 ∈
H0(P2,O(1)); we want to understand the open set ofM0,n(P2, d) consisting
of all maps transverse to these lines, e.g, maps µ : C → P2 such that
µ∗(t0 + t1 + t2) consists of 3d distinct smooth points of C. This open set is
preciselyM0,n(Pr, d, t)/S3

d where the action of Sd, the symmetric group on
d letters, is to permute the labels qij in each divisor µ∗ti. The statement
that these open sets cover M0,n(Pr, d) amounts to the fact that given any
map µ : C → P2, we can choose three lines which intersect the image
curve transversely. The lines themselves do not have any purpose beyond
this construction, they are just necessary for an intermediate step of the
construction.

We want to construct M0,n(Pr, d, t): to that end, let m = n + d(r + 1), and
note that a t-rigid stable family over a base scheme S yields a morphism S →
M0,m which sends s ∈ S to the equivalence class of the stable m-pointed curve
(Xs, {pi(s)}, {qij(s)}). The first step in our construction will be to identify a
universal, locally closed subscheme B of M0,m containing the image of S under
this correspondence.
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Note that the morphism S → B does not contain all of the data of the original
stable family; for example, when S is a point, our t-rigid stable family consists
of the data (C, {pi}, {qij}, µ) where omitting the {qij} yields a stable map and
omitting µ yields a stable curve. The corresponding point in B ⊆ M0,m is given
by the class of (C, {pi}, {qij}) (obtained by omitting µ); to reconstruct µ from
this data, let Di :=

∑
j qij for 0 ≤ i ≤ r, and pick isomorphisms between the line

bundles OC(Di). The canonical section si associated to each Cartier divisor Di

gives rise to sections s̃i of the identified line bundle (which is isomorphic to all of
the OC(Di) via fixed isomorphisms), and the s̃i define a map C → Pr of degree d
(given by [s̃0, · · · , s̃r]) since they do not simultaneously vanish.

Note that we did not have a canonical choice for isomorphisms between the
OC(Di), and by changing the choice of these isomorphisms, the map [s̃0, · · · , s̃r]
transforms to [λ0s̃0, · · · , λr s̃r] for λi ∈ C×; thus (taking λ0 = 1 without loss of
generality), we have that the map µ is determined by its image curve in M0,m up
to the diagonal torus action Grm y Pr. Accounting for this indeterminacy is a key
step in our construction of M0,n(Pr, d, t).

Let π : U0,m → M0,m be the universal family (sometimes referred to as the uni-
versal curve) with m sections pi and qij . Since U0,m is nonsingular (see [Knu83])
and the sections pi, qij are of codimension one, let

Li = OU0,m
(qi1 + · · ·+ qid)

for all 0 ≤ i ≤ r (with the qij regarded as sections rather than as points, as
they were above). The line bundles Li are (canonically) defined by the data of
a t-rigid stable family. For each i let si ∈ H0(U0,m,Li) be the canonical section
representing the Cartier divisor qi1 + · · ·+ qid.

For any morphism γ : X →M0,m, consider the following fiber product:

X ×M0,m
U0,m U0,m

X M0,m

Γ

Π π

γ

We say that γ is L-balanced if, for all 1 ≤ i ≤ r, Π∗Γ
∗(Li ⊗ L−1

0 ) is locally free
and the canonical map

Π∗Π∗Γ
∗(Li ⊗ L−1

0 )→ Γ∗(Li ⊗ L−1
0 )

is an isomorphism.

This definition is motivated by some very general results from algebraic geometry,
which we will briefly review. If π : X → S is a flat family of trees of projective
lines (not necessarily stable), by the theorem(s) of cohomology and base change,
there is a canonical isomorphism OS ∼= π∗OX . Therefore, for any line bundleN on
S, there is a canonical isomorphism N ∼= π∗π

∗N given by the unit of adjunction.
For any line bundles L,M on X, the existence of N on S s.t L ⊗M−1 ∼= π∗N
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For details on our application of coho-
mology and base change, see [Har77]
III.12, Theorem 12.11 and Exercise
12.4.

We omit the verification of this re-
sult, which follows from the Theorem
of the cube, see [FP97] and the refer-
ences therein.

is equivalent to local freeness of π∗(L ⊗M−1) together with the canonical map
π∗π∗(L⊗M−1)→ L⊗M−1 being an isomorphism. Thus, the condition of being
L-balanced amounts to the existence of Ni on X s.t Π∗Ni ∼= Γ∗(Li⊗L−1

0 ), which,
together with the result below, will ensure the existence of the subscheme B with
desired properties.

The multidegree of Ls (the restriction of a line bundle L on X to the geometric
fiber Xs) is the degree of Ls restricted to each irreducible component of Xs.

Proposition II.1.3

Let L,M be line bundles on X such that the multidegrees of Ls and
Ms coincide on each geometric fiber Xs. Then, there is a unique closed
subscheme T → S such that the following holds: there is a line bundle N
on T with LT ⊗M−1

T
∼= π∗N and for any pair (R→ S,N ) of a morphism

and a line bundle on R such that LR ⊗M−1
R
∼= π∗N , then R→ S factors

through T .

Note that if γ is L-balanced, the line bundles Γ∗Li are isomorphic on the fibers
of Π by the local freeness requirement, so, in particular, the Γ∗Li are equal in
multidegrees on each geometric fiber. Thus, the above proposition produces B ⊆
M0,m, a universal, locally closed subscheme such that ι : B ↪→M0,m is L-balanced
and every L-balanced morphism γ : X → M0,m factors uniquely through B. In
fact, B is a Zariski open subscheme of M0,m.

We have the following fiber product:

B ×M0,m
U0,m U0,m

B M0,m

ι

πB
π

ι

Let Gi = πB∗ι
∗(Li ⊗ L−1

0 ) for 1 ≤ i ≤ r, τi : Yi → B the total space of the
canonical C×-bundle associated to Gi (obtained from Gi by omitting the zero
section, see Example I.2.2). The bundles τ∗i Gi are canonically trivial since they
have tautological non-vanishing sections arising from the si.

Set Y = Y1 ×B Y2 ×B · · · ×B Yr with natural projections ρi : Y → Yi and a map
τ =

∏
i τi : Y → B. We have another Cartesian square:

U U0,m

Y B ⊆M0,m

τ

πY π

τ

The line bundles τ∗(Li) are canonically isomorphic to τ∗(L0) on U since

τ∗(Li ⊗ L−1
0 ) ∼= π∗Y ρ

∗
i τ
∗
i (Gi)
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via functoriality of pullbacks, and τ∗i (Gi) is canonically trivial as discussed above.
Thus, each τ∗(si) canonically corresponds to a section of L := τ∗(L0) (carried
along the canonical isomorphisms given above); since these r + 1 sections do
not vanish simultaneously (as the original si do not vanish simultaneously), they
determine a morphism µ : U → Pr.

The sections pi and qij pullback to sections of πY , so our claim is that (πY : U →
Y, {pi}, {qij}, µ) is a universal family of t-rigid stable maps, and therefore that
M0,n(Pr, d, t) = Y .

First, we must verify that this is a family of t-rigid stable maps at all. Omitting
the qij produces (πY , {pi}, µ) which is a family of stable n-pointed maps by con-
struction, since the geometric fibers of πY are m-pointed genus 0 stable curves by
construction. Omitting µ produces a family of m-pointed stable curves via the
same logic.

If E is a twig of some fiber C of πY with dim(µ(E)) = 0, the transversality
condition µ∗ti = qi1 + · · · + qid implies that none of the marks qij lie on E.
Since C is stable as an m-pointed curve, E has at least three special points on
it (amongst the pi and nodes), so µ is stable. By construction, we have a t-rigid
stable family.

To see that this family is universal, let (π : X → S, {pi}, {qij}, ν) be any family
of t-rigid stable maps. Since omitting ν produces a flat family of m-pointed
genus 0 stable curves, there is an induced map λ : S → M0,m, and universality
of U0,m → M0,m tells us that the pullback family S ×M0,m

U0,m is canonically
isomorphic to (π : X → S, {pi}, {qij}). We want to show that λ is L-balanced.
Let λ : S ×M0,m

U0,m → U0,m, then the pair (λ
∗
(Li), λ

∗
(si)) yields the Cartier

divisor qi1 + · · ·+ qid on X by construction of Li.

In a manner similar to our above construction of µ, ν is induced by a vector
space homomorphism ψ : H0(Pr,O(1)) → H0(X, ν∗O(1)); let zi = ψ(ti). By
the transversality criterion µ∗ti = qi1 + · · ·+ qid, we again have that (ν∗O(1), zi)

yields the Cartier divisor qi1 + · · ·+ qid on X. Since two pairs (L, s), (L′, s′) of a
line bundle and one of its sections are uniquely isomorphic if they correspond to
the same Cartier divisor, there are canonical isomorphisms λ

∗Li ∼= ν∗O(1), from
which it follows that λ is L-balanced. These isomorphisms yield canonical sections
of λ

∗Li.

By the universal property of B as constructed, λ factors through B, e.g, λ : S →
B → M0,m. For each i, there are canonical isomorphisms π∗λ

∗
(Li ⊗ L−1

0 ) ∼=
λ∗Gi by the above. Thus, the canonical sections of λ

∗Li obtained above pass to
canonical sections of λ

∗
(Li⊗L−1

0 ), and push forward to nowhere vanishing sections
of λ∗(Gi) over S. Thus, there is a canonical map S → Y , and the pullback of
U → Y along λ is a t-rigid stable family of maps, canonically isomorphic to our
original family.

Therefore, M0,n(Pr, d, t) is a fine moduli space for t-rigid stable families, as
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Here, we use the general fact that the
quotient of a quasiprojective scheme by
a finite group is again a quasiprojective
scheme; we omit the verification of this
fact.

We omit the proof of this proposition,
as it uses étale Galois covers; the proof
can be found in [FP97] as always.

In particular, for X a projective alge-
braic variety, the existence of a coarse
moduli space M0,n(X,β) is estab-
lished by constructing M0,n(X,β, t) ⊆
M0,n(Pr, d, t). For g > 0, the
spaces Mg,n(Pr, d, t) are not fine mod-
uli spaces, and the arguments become
even more technical.

claimed. It remains to construct M0,n(Pr, d) by gluing together quotients of
M0,n(Pr, d, t) for varying choices of t. In particular, a pointed stable map µ :

C → Pr will be t-rigid for some choice of basis t by Bertini’s theorem, since the
set of hyperplanes whose intersection with the image of µ is transverse is dense.

Set M(t) = M0,n(Pr, d, t), with universal family (π : U → M(t), {pi}, {qij}, µ).
Let Sd be the symmetric group on d letters, and G = Sr+1

d . GyM(t) by

(π, {pi}, {qij}, µ)
σ−→ (π, {pi}, {qi,σ(j)}, µ)

for any σ ∈ G, e.g, G permutes the ordering of the set {qi1, · · · , qid} for all
0 ≤ i ≤ r. The image family under the action of σ is clearly again t-rigid,
and, by the universal property of a fine moduli space, this action induces an
automorphism of M(t). Since M(t) is quasiprojective, M(t)/G is well-defined as
a quotient scheme.

Let t, t′ be different bases for H0(Pr,O(1)) as above, µ : U → Pr the universal
family over M(t), and let M(t, t′) ⊆ M(t) denote the open locus of t-rigid stable
maps over which the divisors µ∗t′0, · · ·µ∗t′r are disjoint, disjoint from the sections
pi, and étale. The induced action of G restricts to M(t, t′), and M(t, t′)/G is
again a quasiprojective scheme.

Proposition II.1.4

There is a canonical isomorphism

M(t, t′)/G ∼= M(t′, t)/G

To glue the M(t)/G together along the intersections M(t, t′)/G, we need only
verify the cocycle condition, which is immediate from the above proposition; the
scheme they form once glued is precisely M0,n(Pr, d), which is a scheme of finite
type over C. The universal family is obtained gluing the universal families above
the t-rigid fine moduli spaces. There is one small point which we have omitted,
which is that we must show that it suffices to glue a finite number of M(t)/G;
the details of this claim can be found in [FP97], along with proofs of the fact(s)
that M0,n(Pr, d) is separated, proper, projective (with hints about the extension
of these results to positive genus, and outlines of proofs for the analogous results
with target spaces other than Pr).

II.2 Properties of M0,n(Pr, d)

There are two important and natural classes of maps out of M0,n(Pr, d): the
evaluation maps and the forgetful maps. We first define the former: for each
mark pi, there is a map νi : M0,n(Pr, d)→ Pr given by

(C, p1, · · · , pn, µ) 7→ µ(pi)

called the ith evaluation map at which is a morphism of schemes.
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We omit the verification of this result.

Proposition II.2.1

The evaluation maps are flat.

Proof: νi is a map of finite type since M0,n(Pr, d)→ SpecC is of finite type and
Pr → C is of finite type, so the theorem of generic flatness applies and there is an
open dense subscheme U of Pr such that νi is flat on ν−1

i (U). Since Aut(Pr) acts
transitively on Pr, we can see that we may take U = Pr so that νi is flat. �

The evaluation maps are crucial in using M0,n(Pr, d), as they relate the geometry
of M0,n(Pr, d) to the geometry of Pr. One may also form ν := ν1× · · ·× νn which
acts by

(C, p1, · · · , pn, µ) 7→ (µ(p1), · · · , µ(pn)) ∈ (Pr)n

Note that ν is generally not flat.

The other important class of maps out of M0,n(Pr, d) are the forgetful maps. As
in the case of stable curves, there is a natural way to forget marks and contract
any unstable twigs if necessary. Given (C, p1, · · · , pn, pn+1, µ) ∈ M0,n+1(Pr, d),
we first delete pn+1. If any twig of C becomes unstable under this deletion, it
must be a degree zero twig (e.g, a twig mapped to a point) by the definition of
Kontsevich stability, so contracting this twig produces a stable map with n marks.
Therefore, we have morphisms M0,n+1(Pr, d) → M0,n(Pr, d) and more generally
morphisms M0,A(Pr, d) → M0,B(Pr, d) where A is some ordered set of marks, B
a subset of A, where the map is given by forgetting the marks in the complement
of B.

We may also glue stable maps together in a straightforward way; in particular,
let D(A,B; dA, dB) denote the boundary divisor consisting of stable maps whose
source curve has two twigs, with marks A and B respectively, and with degrees
dA and dB respectively. Then there is a natural isomorphism

D(A,B; dA, dB) ∼= M0,A∪{•}(Pr, dA)×Pr M0,B∪{•}(Pr, dB)

given by gluing two stable source curves together at the point •. See [FP97, KV07]
for details.

There are also forgetful maps M0,n(Pr, d) → M0,n given by forgetting µ, and
stabilizing as necessary (since positive degree twigs of the source curve C need
not be stable as twigs in order to be Kontsevich stable w.r.t µ).

Proposition II.2.2

For n ≥ 4, the map η : M0,n(Pr, d)→M0,n is flat.

The forgetful maps allow us to establish an analogue of Proposition I.1.8 for stable
maps:
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Proposition II.2.3∑
i,j∈A
k,l∈B

D(A,B; dA, dB) =
∑
i,k∈A
j,l∈B

D(A,B; dA, dB) =
∑
i,l∈A
j,k∈B

D(A,B; dA, dB)

where all sums are taken over partitions A ∪ B of the marking set S, and
over dA + dB = d in M0,S(Pr, d).

Finally, we may establish the dimension of M0,n(Pr, d); this count will be crucial
in establishing necessary conditions for certain Gromov-Witten invariants to be
nonzero.

Proposition II.2.4

dimM0,n(Pr, d) = rd+ r + d+ n− 3

Proof: To see this, we first establish M0,0(Pr, d) = rd + r + d − 3, from which
the result will follow by noting that the introduction of a mark increments the
dimension by one (as C is a curve and therefore one-dimensional). For this claim,
note that a map µ : P1 → Pr of degree d is given by r + 1 binary forms of degree
d (up to an overall scale) which defines an open subset W (r, d) with

W (r, d) ⊆ P

(
r⊕
i=0

H0(P1,O(d))

)

since H0(P1,O(d)) consists of degree d binary forms, and projectivizing takes care
of the overall scale. Dividing by automorphisms of P1, we obtainW (r, d)/Aut(P1)

which is an open dense subset of M0,0(Pr, d), and which therefore agrees in di-
mension with M0,0(Pr, d). dimW (r, d) = (r+ 1)(d+ 1)− 1 and dim Aut(P1) = 3,
from which the claim follows. �

As with stable marked curves, there is much more that can be said about the
moduli spaces of stable maps, but what has been established here will suffice to
prove our main result.

II.3 Kontsevich’s Formula

Having established some fundamental facts about the spaces M0,n(Pr, d), we are
nearly ready to establish the main enumerative result. In this section, we follow
the treatment in [KV07], and begin with the following useful result:

Theorem II.3.1: Kleiman

Let X be a variety (over an algebraically closed field k of characteristic 0)
with an action by G a group variety, such that the action of G on X is
transitive. Let f : Y → X and g : Z → X be morphisms of nonsingular
varieties Y,Z to X. Then, for any g ∈ G, let gY be Y considered as a
variety over X via the morphism g ◦ f . Then there is a nonempty open
subset V ⊆ G (which is dense in G if G is connected, as connected group
schemes are irreducible) such that for every g ∈ V , gY ×X Z is nonsingular
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The point of this theorem is that the
results of much more difficult and pow-
erful results such as Chow’s moving
lemma are relatively easy to see when
the variety in question has a sufficiently
large group of automorphisms, which
we can use to move cycles and make
them transverse. See [Har77, EH16].

Recall that X is smooth if dimxX =

dimTxX for all x ∈ X.

and either empty or of dimension exactly

dim(gY ×X Z) = dimY + dimZ − dimX

Proof: First consider h : G×Y → X given by composing f with the group action
G×X → X. G is nonsingular since it is a group variety, so G×Y is nonsingular.
Since we are working in characteristic 0, generic smoothness applies to h, and
we obtain U ⊆ X such that h : h−1(U) → U is smooth. G acts on G × Y by
left multiplication on G, G acts on X by assumption, and these two actions are
compatible with h by construction, so for any g ∈ G(k), h : h−1(gU)→ gU is also
smooth. Since the gU cover X, we may conclude that h is smooth everywhere.

Consider the following diagram:

(G× Y )×X Z Z

G× Y X

G

h′

g′ g

h

π1

Set W = (G × Y ) ×X Z. Since h is smooth, h′ is smooth by base extension,
and since Z is nonsingular, it is smooth over k, and the composition of smooth
maps is smooth, so W is smooth over k and therefore nonsingular. Consider
q = π1 ◦ g′ : W → G. Generic smoothness gives an open subset V ⊆ G such that
q : q−1(V ) → V is smooth, so for a closed point g ∈ V (k), the fiber Wg will be
nonsingular. Note that Wg = gY ×X Z by construction, so all that remains is to
check that Wg has the expected dimension.

Note that h is smooth of relative dimension dimG + dimY − dimX, and h′ has
the same relative dimension, so

dimW = dimG+ dimY − dimX + dimZ

If W is nonempty, then q restricted to q−1(V ) has relative dimension dimW −
dimG, so for g ∈ V (k),

dim(gY ×X Z) = dimY + dimZ − dimX

as claimed. �

We can use Kleiman’s theorem to show transversality as follows:

Proposition II.3.2

If A,B subvarieties of X (which is smooth) intersect properly at x ∈ X,
but not transversely, then A ∩ B is singular at x. Therefore, if A ∩ B is
nonsingular and proper, then the intersection is transverse.
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The cohomology classes of interest to
us on M0,n(Pr, d) will be those which
are pulled back from Pr via evaluation
maps.

Proof: Recall that an intersection as above is proper if for each irreducible com-
ponent Z of A ∩ B, codimZ = codimA + codimB, so this proposition tells us
that smooth intersections of the appropriate codimension are transverse. We may
assume that X is affine by finding an open affine containing x (since the problem
is local), and embed X into An for some n. Then A and B are carved out by
ideals I1, I2 respectively, and A∩B corresponds to the ideal I1 +I2. The Jacobian
matrix of I1 +I2 is the concatenation of the Jacobian matrices for I1 and I2 (since
the union of generators for I1 and I2 give generators for I1 +I2). Since the tangent
space is the kernel of the Jacobian, this implies that Tx(A ∩B) = TxA ∩ TxB.

Assuming that the intersection is not transverse, we have that TxA+TxB ( TxX,
so dimTx(A ∩ B) > dimTxA + dimTxB − dimTxX (this is just a fact about
vector spaces). Smoothness of X implies that dimTxX = dimX, and dimTxA ≥
dimxA (and similarly for B) which is an equality iff A (resp. B) is regular at x.
Substituting above, we have

dimTx(A ∩B) > dimTxA+ dimTxB − dimTxX ≥
dimxA+ dimxB − dimX = dimx(A ∩B)

Thus dimTx(A ∩B) > dimx(A ∩B), so A ∩B is singular at x. �

As an immediate consequence, we have the following result, which ensures that
we don’t have to worry about picking up boundary elements when intersecting on
M0,n(Pr, d):

Corollary II.3.3

For general choices of irreducible subvarieties Γ1, · · · ,Γn ⊆ Pr with codi-
mensions summing to dimM0,n(Pr, d), the scheme-theoretic intersection
γ :=

⋂n
i=1 ν

−1
i (Γi) consists of a finite number of reduced points, supported

in any chosen nonempty open set (typically in M∗0,n(Pr, d) ⊆ M0,n(Pr, d),
the locus of maps with smooth source and without automorphisms).

Proof: Let U be the specified nonempty open set of support, and let G :=

Aut(Pr) = PGLr+1(C) (which is connected). Since G acts transitively on Pr, Gn

acts transitively on (Pr)n. For notational convenience, let

Γ = Γ1 × · · · × Γn

and ν = ν1 × · · · × νn, with

γ = ν−1(Γ) = ν−1(Γ1) ∩ · · · ∩ ν−1
n (Γn)

U c is a closed subvariety of codimension at least one in M0,n(Pr, d), so applying
Kleiman to the maps ν|Uc : U c → (Pr)n and Γ ↪→ (Pr)n, with gΓ ×(Pr)n U

c

canonically identified with ν|−1
Uc (Γ), there exists an open dense subset V1 ⊆ Gn

such that, for g ∈ V1, ν|−1
Uc (gΓ) = ν−1(gΓ) ∩ U c = ∅ (since it has expected

codimension dimM0,n(Pr, d) which is larger than the dimension of U c). Therefore,
in general, the intersection is supported in U as stated.
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Let Y be the singular locus of Γ, and, applying Kleiman to the pair of maps ν|U and
Y ↪→ (Pr)n, we obtain an open dense set V2 ⊆ Gn on which ν|−1

U (gY ) = ∅ (again
identifying fibers with fiber products as above) since the expected codimension is
again negative (as codimY > codim Γ = dimU).

Finally, applying Kleiman with the variety Z = Γ \ Y ↪→ (Pr)n and ν|U as above,
we obtain V3 ⊆ Gn such that ν−1|U (gZ) = gZ ×(Pr)n U for all g ∈ V3 is of the
correct dimension (which is 0 since dimZ = dim Γ = codimM0,n(Pr, d)) or empty.
Since Z is smooth, so are the fiber translates gZ ×(Pr)n U , and hence consist of
a finite number of reduced points. It follows that the translates of V1 ∩ V2 ∩ V3

correspond to inverse images of the correct dimension, which are reduced and
supported in our chosen open set U , from which the result follows. �

With these technical results established, we are ready for the main result:

Theorem II.3.4: Kontsevich

The number Nd of rational plane curves of degree d passing through 3d−1

points in general position is given recursively by

Nd+
∑

dA+dB=d

(
3d− 4

3dA − 1

)
NdANdBd

3
AdB =

∑
dA+dB=d

(
3d− 4

3dA − 2

)
NdANdBd

2
Ad

2
B

Proof: We know that N1 = 1, that is, there is always exactly one line between
two distinct points in the plane. Our recursive calculation of Nd will take place
in M0,n(P2, d) with marks named m1,m2, p1, · · · , pn−2 where n = 3d. Consider
lines L1, L2 and points Q1, · · · , Qn−2 in general position in P2, and let

Y = ν−1
m1

(L1) ∩ ν−1
m2

(L2) ∩ ν−1
p1 (Q1) ∩ · · · ∩ ν−1

pn−2
(Qn−2)

Adjusting the lines and points (if necessary), we may assume that Y is a curve
intersecting the boundary transversely and wholly contained in M∗0,n(P2, d), es-
sentially because intersecting the boundary transversely is an open condition (and
we may apply the above corollary).

We want to exploit the equality

Y ∩D(m1,m2|p1, p2) ≡ Y ∩D(m1, p1|m2, p2)

that arises from pulling back the equality of boundary divisors along the forgetful
map M0,n(P2, d) → M0,4 which forgets the points p3, · · · , pn−2. For boundary
divisors D(A|B), let the A-twig refer to the twig with the A-marks, and similarly
for the B-twig, with corresponding curves CA, CB and degrees dA, dB respectively.

In the left hand side, only the A-twig may have partial degree zero (as the B-twig
having partial degree zero would imply that the image marks Q1, Q2 coincide), in
which case the remaining 3d− 4 marks p3, · · · , pn−2 fall on the B-twig (which is
of degree dB = d). The number of ways to draw this configuration is precisely Nd
by definition, since in this case, the 3d− 2 marks p1, · · · , pn all fall on the B-twig
as well as point L1 ∩ L2 = µ(CA) which is the image of the A-twig (which must
intersect with the B-twig).



quantum cohomology and counting curves 29

When dA, dB > 0, the A-twig must have exactly 3dA − 1 marks (any more, and
there are generally no such curves; any fewer, and the B-twig is similarly overde-
termined), and there are

(
3d−4

3dA−1

)
such components in D(m1,m2|p1, p2). Fixing

these marks, there are NdA ways to draw the image curve through the marks
by definition, and NdB ways to draw µ(CB); it remains only to account for the
marked points m1,m2. Since m1 must fall on a point of µ(CA) by construction,
by Bézout’s theorem, there are dA points of intersection between µ(CA) and L1,
any of which is an option for m1. Similarly, m2 must fall on L2 ∩ µ(CA), and
there are dA possible choices again, from which we obtain a factor of d2

A. The
single intersection point in CA ∩CB must go to an intersection point of the image
curves, of which there are dAdB (again by Bézout’s theorem), so the expression
obtained from the left hand side is

Nd +
∑

dA+dB=d

(
3d− 4

3dA − 1

)
NdANdBd

2
AdAdB

Examining the right hand side similarly, there is no contribution if dA or dB is
equal to zero since this would give Q1 ∈ L1 or Q2 ∈ L2 which does not constitute
a general choice of points and lines. For the remaining partitions dA + dB = d,
we must impose precisely 3dA − 2 of the remaining marks on CA (leaving the
remaining 3dB − 2 marks for CB) and there are

(
3d−4

3dA−2

)
ways to assign these

points. As before, the image curves µ(CA) and µ(CB) can be drawn in NdA and
NdB ways respectively, there are |µ(CA) ∩ L1| = dA choices for the mark m1,
|µ(CB) ∩ L2| = dB choices for the mark m2, and the intersection point of the
twigs must map to any of the dAdB = |µ(CA) ∩ µ(CB)| intersection points of the
image curves. Thus, the right hand side gives the expression∑

dA+dB=d

(
3d− 4

3dA − 2

)
NdANdBd

2
Ad

2
B

Since Y ∩D(m1,m2|p1, p2) ≡ Y ∩D(m1, p1|m2, p2), the two expressions obtained
are equal. �

Thus, an enumerative problem that was intractable for centuries is resolved via
the recursive structure of the moduli spaces of stable maps. There is a small
discrepancy in the above proof that we must account for; in particular, we have
to ensure that the stable maps we obtain in the above count correspond exactly
to ordinary curves:

Lemma II.3.5

For generic choices of irreducible subvarieties Γ1, · · · ,Γn ⊆ Pr with codi-
mensions summing to dimM0,n(Pr, d), we have that µ−1µ(pi) = {pi} for
all i and with multiplicity one for every µ in the intersection ν−1(Γ) (using
the notation of Corollary II.3.3).

Proof: By Corollary II.3.3, the intersection ν−1(Γ) for general translates of the
Γi consists of a finite number of reduced points, supported in the dense open set
M◦0,n(Pr, d) of immersions with smooth source. Let Ji be the locus of maps µ for
which the preimage of µ(pi) contains at least one point distinct from pi; we want
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to avoid the Ji, which we will be able to do if we show that they are of positive
codimension in M◦0,n(Pr, d).

To establish this, let us move to the space M◦0,n+1(Pr, d) with an additional mark
labeled p0, and consider the forgetful map ε : M◦0,n+1(Pr, d)→M◦0,n(Pr, d). Define

Qij = {µ ∈M0,n(Pr, d)|µ(pi) = µ(pj)} ⊆M0,n(Pr, d)

where M0,n(Pr, d) is the fine moduli space for classes of n-pointed maps P1 → Pr.
We claim that the codimension of Qij is r. Since we are working in M0,n(Pr, d) ∼=
M0,n×W (r, d), we may write µ as an r+ 1-tuple of degree d binary forms, where
the kth form is ak0x

d + ak1x
d−1y + · · · + akdy

d. Assume that p0 = [0, 1] and
p1 = [1, 0], so µ(pi) = µ(pj) amounts to [a00, · · · , ar0] = λ[a0d, · · · , ard] for some
λ ∈ C×. This gives r independent conditions on the aij , from which the claim
follows.

We now claim that ε(Qi0) = Ji. It is clear that ε(Qi0) ⊆ Ji since µ−1µ(pi) ⊇ {p0}.
Moreover, since ε is surjective, given µ ∈ Ji, we may set p0 to be some point such
that µ(p0) = µ(pi) (which we know exists) and obtain a map in Qi0 whose image
is µ. Since Qi0 has codimension r, Ji has codimension at least r − 1 ≥ 1. �

It follows that, given 3d − 1 general points Pi in P2, the number of stable maps
with µ(pi) = Pi for all i is equal to Nd, since by the above result, each such µ

passes through each point only once, so there is only one choice for the marks on
the source curve, e.g, there is no additional information in the marks, so we are in
fact counting rational curves. In fact, we can say more (though we will not need
this result, as we are not imposing incidence of our curves to anything larger than
a point):

Lemma II.3.6

Given Γi as above and each of codimension at least 2, for any µ ∈ ν−1(Γ),
the image curve µ(C) intersects each Γi at only the point µ(pi) with mul-
tiplicity one.

Proof: As above, we are working in M0,n(Pr, d) ∼= M0,n × W (r, d) since the
above lemma implies that µ ∈ ν−1(Γ) are rational for general Γi. Given such
a µ, we move up to M0,n+1(Pr, d) by adding a mark p0, and consider the open
set M ] := M0,n+1(Pr, d) \ Q10 of maps with µ(p1) 6= µ(p0). We claim that
ν−1

0 (Γ1) ∩ ν−1(Γ) ∩M ] is empty for a generic choice of the Γi.

Let G = Aut(Pr)n, and consider the action of G on (Pr)n+1 given by

(gi) · (x0, · · · , xn) = (g1 · x0, g1 · x1, g2 · x2, · · · , gn · xn)

where gi is the ith factor of g ∈ G, xi ∈ Pr. Let U01 ⊂ (Pr)n+1 be the complement
of the diagonal x0 = x1; restricting the action of G to U01 yields a transitive
action. Set Γ0 = Γ1 and consider ν̃ := ν0 × · · · × νn : M ] → U0,1. We have that

M ] ∩ ν−1
0 (Γ0) ∩ ν−1(Γ) = ν̃−1(Γ0 × Γ)
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We omit the proof of this result, see
[Ful98].

by the definition of ν̃. The codimension of Γ0 × Γ inside (Pr)n+1 is equal to
codim Γ1 +dimM0,n(Pr, d) > dimM ] by assumption, where the inequality is from
the fact that codim Γ1 ≥ 2 and dimM ] ≤ dimM0,n(Pr, d) + 1. Thus, applying
Kleiman’s theorem (II.3.1), there exists an open dense subset of G consisting of
g = (gi) satisfying ν−1

0 (g0 · Γ0) ∩ ν−1(g · Γ) ∩ M ] = ∅. Since the maps we’ve
identified will not lie in Q10 by construction, and do not lie in the boundary
M0,n+1(Pr, d) \M0,n+1(Pr, d), we may conclude that

ν−1
0 (g0 · Γ0) ∩ ν−1(g · Γ) ∩M0,n+1(Pr, d) = ∅

for all such g.

With the claim proven, consider ν−1(g · Γ) ⊆ M0,n(Pr, d) for some g in the open
subset of G provided by Kleiman’s theorem, and suppose that there exists µ ∈
ν−1(g · Γ) s.t which intersects Γ1 at a point q 6= µ(p1). Then putting the extra
mark p0 in µ−1(q) and stabilizing (if necessary) would provide an element of
M0,n+1(Pr, d) in the intersection ν−1

0 (g0 · Γ1) ∩ ν−1(g · Γ) ∩M0,n+1(Pr, d), which
is a contradiction, and from which the result follows. �

III. Perspectives from Physics

III.1 Gromov-Witten Invariants

The above computation of the Nd turns out to fit nicely into a larger picture of the
(genus zero) Gromov-Witten invariants and the quantum cohomology ring that
unites them, which we will attempt to explore in this section.

In the above calculation of Nd, we spoke of

ν−1(Γ) = ν−1
1 (Γ1) ∩ · · · ∩ ν−1

n (Γn)

On the level of scheme-theoretic intersection, this is well-defined, but sinceM0,n(Pr, d)

is generally singular, the intersection of cycle classes in the Chow ring may not be
well-defined. Thus, in the discussion that follows we will deal only with cohomo-
logical classes of ν−1

n (Γn). More specifically, we will be interested in classes of the
form [ν−1

i (Γi)] for subvarieties Γi of Pr. To avoid using the intersection product,
we associate to [Γi] ∈ H∗(Pr) the dual class γi ∈ H∗(Pr) (via Poincaré duality)
and consider instead

ν∗γ = ν∗1γ1 ^ · · ·^ ν∗nγn

where γ =: γ1×· · ·×γn as usual. For ease of notation, we will refer toM0,n(Pr, d)

as M when there is no risk of confusion.

Proposition III.1.1

For generic irreducible subvarieties Γ1, · · · ,Γn of Pr with
∑
i codim Γi =

dimM , the number of points in the intersection ν−1(Γ) is equal to∫
[ν−1(Γ)] =

∫
ν∗(γ) _ [M ]
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As is implicit in our notation, it is
possible to consider Gromov-Witten in-
variants in positive genus, and in fact
for target spaces other than Pr, in
which case the degree of the image
curve is interpreted as an element of
homology. It is often the case in
these more complicated settings that
Mg,n(Pr, d) has components of exces-
sive dimension, which can be resolved
by establishing the existence of the so-
called virtual fundamental class and
defining the Gromov-Witten invariants
to be the integral of ν∗γ against the
virtual fundamental class. See [Cla15]
for an overview.

This leads us to define the following:

Definition III.1.2: Gromov-Witten Invariants

The Gromov-Witten invariant of degree d on Pr associated with the classes
γ1, · · · , γn ∈ A∗(Pr) is

Id(γ1 · · · γn) = 〈γ1 · · · γn〉0,d =

∫
[M ]

ν∗(γ)

Note that Id(γ1 · · · γn) is invariant under permutation of the classes γi by defi-
nition, hence the reason its argument is written as a product. In the alternate
notation 〈γ1, · · · , γn〉0,n,d (where the commas may or may not be omitted), the
subscripts represent genus, number of subvarieties, and degree, in that order. Note
also that, by definition (as an integral), Id is linear in all of its arguments.

Proposition III.1.3

Let γ1, · · · , γn ∈ A∗(Pr) be homogeneous classes of codimension at least 2,
with

∑
i codim γi = dimM0,n(Pr, d). Then for general subvarieties Γi with

[Γi] = γi _ [Pr], the Gromov-Witten invariant Id(γ1 · · · γn) is the number
of rational curves of degree d that are incident to the subvarieties Γi.

Proof: By definition, Id(γ1 · · · γn) counts n-pointed stable maps; by Corollary II.3.3
these maps are of the form µ : P1 → Pr, with µ(pi) ∈ Γi. Thus, all rational curves
intersecting the Γi appropriately are accounted for in Id(γ1 · · · γn). Moreover,
by Lemmas II.3.5 and II.3.6, each such map µ intersects Γi only at µ(pi), with
multiplicity one, with precisely one point pi in the preimage. Therefore, for each
image curve counted by Id(γ1 · · · γn), there is no latitude in placing the marks on
the source curve, since there is exactly one point where each mark may lie, so
Id(γ1 · · · γn) counts the number of rational curves of degree d which are incident
to the Γi as claimed. �

As an immediate consequence of this result, we have the following:

Example III.1.4

For P2, Id(
∏3d−1
i=1 h2) = Nd where h is the hyperplane class of P2, h2 the

class of a point.

The recursive formula for the Nd obtained above is a recursive relation amongst
the Gromov-Witten invariants for P2; in fact, in this case, the Nd completely
determine the nonzero Gromov-Witten invariants of P2, as we will show. Our
goal is to situate this result within a broader theory of Gromov-Witten invariants
that allows us to compute all of the Gromov-Witten invariants for Pr from a
single datum. Henceforth, we will refer to the Gromov-Witten invariants of Pr as
Gromov-Witten invariants (without mentioning the target space).

In order to explicitly calculate some Gromov-Witten invariants, recall the pro-
jection formula (or naturality of the cup product) which, for f : X → Y , states
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that
f∗(f

∗(c) _ σ) = c _ f∗(σ)

for any σ ∈ H∗(X) and c ∈ H∗(Y ).

Proposition III.1.5

The only nonzero Gromov-Witten invariants with d = 0 are those with
three marks and

∑
i codim γi = r, in which case

I0(γ1γ2γ3) =

∫
Pr

γ1 ^ γ2 ^ γ3

Proof: Note that M0,n(Pr, 0) ∼= M0,n × Pr since the data of an n-pointed stable
map of degree zero is just an n-pointed stable curve and its image point. Moreover,
since M0,n is empty for n < 3 (there are no stable curves with fewer than three
points), so we must have that n ≥ 3. Let γ1, · · · , γn be as above, we have that

I0(γ1 · · · γn) =

∫
[M ]

ν∗1γ1 ^ · · ·^ ν∗nγn

By the isomorphism M0,n(Pr, 0) ∼= M0,n × Pr, note that the evaluation maps are
just components of the second projection map π2 : M0,n×Pr → Pr, so, the above
expression is equal to∫

[M0,n]

π∗2(γ1 ^ · · ·^ γn) =

∫
γ1 ^ · · ·^ γn _ π2∗[M0,n × Pr]

where we obtain the former expression via functoriality of pullbacks, and the latter
via the projection formula.

Note that for n > 3, π2∗[M0,n × Pr] = 0, since π2 has positive relative dimension,
so only for n = 3 can d = 0 Gromov-Witten invariants be nonzero. In the case
n = 3, we have (by the above discussion) that

I0(γ1γ2γ3) =

∫
γ1 ^ γ2 ^ γ3 _ [Pr]

as claimed. �

Thus, I0(hihjhk) is nonzero iff i+ j + k = r (where the hi are the standard basis
for A∗(Pr) given by powers of the hyperplane class as always), and in fact, by
Bézout’s Theorem, I0(hihjhk) = 1 (since this Gromov-Witten invariant counts
the number of points in the intersection of several degree one subvarieties). For
d = 1, we have a similar result:

Proposition III.1.6

For d > 0, Id(hi · hj · hk) 6= 0 iff d = 1 and i+ j + k = 2r + 1.

Proof: For the first part of the result, note that dimM0,3(Pr, d) = rd+ r + d+

3 − 3 ≥ 2r + 1 since d ≥ 1 (and n = 3); thus i + j + k = 2r + 1 is only possible
when d = 1, since for d ≥ 2 we instead have dimM0,3(Pr, d) ≥ 3r + 2, and i ≤ r,
so the codimensions of the hi cannot sum to 3r + 2. �
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In fact, one can show that, in this case, I1(hi ·hj ·hk) = 1, for example by inductive
application of the reconstruction theorem (stated below). The above two results
give a complete characterization of all nonzero Gromov-Witten invariants on Pr

with three marks.

Lemma III.1.7

The only nonzero Gromov-Witten invariants with fewer than three marks
are I1(hr · hr) = 1 corresponding to the fact that there is a unique line
passing through two distinct points.

Proof: Recall from Proposition II.2.4 that dimM0,n(Pr, d) = rd+r+d+n−3 ≥
2r + n − 2 where we assume that d ≥ 1 since the other case was handled above.
When r ≥ 2, note that the codimension of a single cohomology class (for n = 1)
is at most r < 2r+ 1− 2, so we must have that n = 2, in which case the the only
way that codim γ1 + codim γ2 = 2r is if codim γ1 = codim γ2 = r, and d = 1. �

The above results, together with the much more general result immediately below,
will allow us to completely determine the Gromov-Witten invariants for P2.

Lemma III.1.8: Divisor Axiom

Let d > 0, then
Id(γ1 · · · γn · h) = dId(γ1 · · · γn)

Proof: Consider the following diagram:

M0,n+1(Pr, d) Pr

M0,n(Pr, d)

ν̂i

ε νi

This diagram commutes for i ≤ n. Fix a hyperplane H in Pr such that ν̂∗n+1(h) _

[M0,n+1(Pr, d)] is the class of ν̂−1
n+1(H), which is the locus of maps s.t pn+1 goes

to H. Consider ε|ν̂−1
n+1(H) : ν̂−1

n+1(H) → M0,n(Pr, d) which is generically finite of

degree d since, for a general map µ ∈ M0,n(Pr, d), the image curve intersects H
in d points, any of which could be pn+1. Then

Id(γ1 · · · γn · h) =

∫
ν̂∗(γ) ^ ν̂∗n+1(h) _ [M0,n+1(Pr, d)] =

∫
ν̂∗(γ) _ [ν̂−1

n+1(H)]

where the first equality is by definition, the second by our choice of H. By the
projection formula (and the above diagram, which implies that ε∗ν∗ = ν̂∗), the
right hand side above is equal to∫

ν∗(γ) _ ε∗[ν̂
−1
n+1(H)] =

∫
ν∗(γ) _ d[M0,n(Pr, d)]

where the final equality follows form the observation that the restricted ε is generi-
cally finite of degree d. The right hand side is dId(γ1 · · · γn), from which the result
follows. �
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The full proof of this lemma can be
found in [KV07], though, beyond the
key observations discussed below, this
proof largely consists of formal manip-
ulations.

Note that this immediately implies that knowing Nd = Id(h
2 · · ·h2) with 3d − 1

factors of h2 is equivalent to knowing all the Gromov-Witten invariants of P2,
since the only classes in P2 are h0, h1, and h2; one can show that factors of h0

only appear in nonzero Gromov-Witten invariants in degree zero and with three
marks, and we can pull out factors of h1 by the divisor axiom. Thus, the recursion
developed above completely determines the Gromov-Witten invariants of P2 from
the single datum I1(h2 · h2) = 1. In fact, a similar result holds for r ≥ 2 as well:

Theorem III.1.9: Reconstruction Theorem [KM94, RT95]

All genus zero Gromov-Witten invariants for Pr can be constructed recur-
sively from the initial value of I1(hr · hr) = 1, the number of lines through
two points.

We will not prove this result here, though we will briefly explore the key lemma
required to establish this result:

Lemma III.1.10: Splitting Lemma

Recall that

D = D(A,B; dA, dB) ∼= M0,A∪{•}(Pr, dA)×Pr M0,B∪{•}(Pr, dB)

Set M := M0,a+b+1(Pr, d) where a = |A|, b = |B|, and similarly set
MA := M0,A∪{•}(Pr, dA), MB := M0,B∪{•}(Pr, dB). Let α : D ↪→ M and
ι : D ↪→ MA ×MB be the natural inclusions. Then for any γ1, · · · , γn ∈
A∗(Pr), the following identity holds (in H∗(MA ×MB)):

i∗α
∗ν∗(γ) =

∑
e+f=r

(∏
a∈A

ν∗a(γa) · ν∗xA
(he)

)
×

(∏
b∈B

ν∗b (γb) · ν∗xB
(hf )

)

where νxA
, νxB

are the evaluation maps at • the gluing point on MA and
MB respectively.

The key point of this is that evaluation maps are compatible with the recursive
structure (given by isomorphisms D = D(A,B; dA, dB) ∼= M0,A∪{•}(Pr, dA) ×Pr

M0,B∪{•}(Pr, dB)), along with some technical details about the Künneth decom-
position of D = (νxA

×νxB
)−1(∆) where ∆ is the diagonal in Pr×Pr. Integrating

the above equation, we obtain the following important corollary:

Corollary III.1.11∫
D

ν∗γ =
∑
e+f=r

IdA

(∏
a∈A

γa · he
)
· IdB

(∏
b∈B

γb · hf
)

The proof of the reconstruction theorem (sketched in [KV07] and given in full
detail in [KM94] and [RT95]) largely amounts to application of this identity, the
divisor axiom, and the various results shown above which eliminate the possibility
that certain edge-case Gromov-Witten invariants are nonzero. For r = 2, one
obtains Theorem II.3.4, but for r > 2, the algorithm supplied by the reconstruction
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This is the simplest toy model for quan-
tum field theory, and many variant def-
initions of varying usefulness to physi-
cists and mathematicians exist.

This is a somewhat imprecise defini-
tion; in particular, the natural isomor-
phisms giving associativity etc. must
be coherent, which roughly amounts to
demanding that they are “sufficiently
natural” or canonical. The precise defi-
nition is unnecessary for our discussion.

theorem results in a set of highly redundant recursive equations.

For the purposes of the next section, we define the collected Gromov-Witten in-
variants

I(γ1 · · · γn) =

∞∑
d=0

Id(γ1 · · · γn)

This is mainly a change of notation, since if the γi are homogeneous of degree
ci (which we assume, since we may split inhomogeneous classes via linearity),
Id(γ1 · · · γn) can be nonzero iff dimM0,n(Pr, d) = rd+ r+ d+ n− 3 =

∑
i ci, e.g,

if

d =

∑
i ci − r − n+ 3

r + 1

Thus, we can recover Id if we know I (and vice versa).

We note briefly that other reasonable targets for Gromov-Witten invariants in-
clude other homogeneous spaces, such as Grassmanians and flag varieties, see
[KV07] Section 4.5 for many references for further study (including to generaliza-
tions to g > 0 and for “nonconvex” varieties).

III.2 Topological Quantum Field Theory

The motivation for quantum cohomology rings, which we will develop in the next
subsection, came from deep ideas in physics, and we develop here the first order
approximation to some of those ideas. See [Wit91] for the original source of the
bulk of the mathematics that we will discuss here.

Recall that a manifold is closed if it has no boundary and is compact.

Definition III.2.1: TQFTs

An n-dimensional oriented closed topological quantum field theory (herein
simply a TQFT) is a symmetric monoidal functor Z : Cobn → Vectk for a
field k, where Cobn is the category whose objects are oriented closed n− 1

dimensional real manifolds and whose morphisms are equivalence classes of
oriented cobordisms amongst them (where the composition of cobordisms
is given by gluing, and where equivalence is up to orientation-preserving
diffeomorphism).

A symmetric monoidal category is, roughly, a category with commutative tensor
products. More specifically, we have the following:

Definition III.2.2: Monoidal Categories

Amonoidal category C is a category equipped with a bifunctor ⊗ : C×C →
C which is associative up to a natural isomorphism, and with an object
which is the left and right identity for ⊗, again up to natural isomorphism.
A monoidal category is symmetric if ⊗ is commutative up to natural iso-
morphism.
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We are intentionally vague here about
what it means for a monoidal category
to be tensor generated by a collection of
its objects, but this can be made very
precise; in particular, one can define
the symmetric monoidal category freely
generated by objects and morphisms,
subject to certain relations. See [CR17]
for details.

In fact, to deal with Cob3 with a finite
amount of data, it is useful to pass to a
symmetric monoidal 2-category, which
(roughly) allows for 1-morphisms which
are just cobordisms, and 2-morphisms
which are cobordisms between cobor-
disms. See [CR17] and the references
therein for further details.

The tensor product on Vectk is the usual tensor product, and the tensor product on
Cobn is the disjoint union, denoted t. A monoidal functor is a functor between
monoidal categoris which respects the identity element and the tensor product
(again, all up to natural isomorphism). The identity object in Cobn is the empty
manifold, so for a TQFT Z, Z(∅) ∼= k (where the isomorphism between Z(∅) and
k is supplied by the data of the symmetric monoidal functor Z), and Z(E tF ) ∼=
Z(E) ⊗k Z(F ) (where the isomorphism is again given by the data of Z). The
identity morphisms in Cobn are given by the trivial cobordism E × [0, 1], and by
the definition of a functor, Z(E × [0, 1]) = idZ(E).

Roughly, one motivates this definition by regarding the objects in Cobn as slices
of n-dimensional spacetime, and cobordisms represent time evolution between
these spacetime “slices.” The functor Z, then, assigns a vector space of possible
“states” to each slice of spacetime in such a way that the states on slices connected
by a cobordism are related by a linear transformation (supplied by Z); thus Z
turns geometric time evolution into the time evolution of states. More explicit
analogies to path integrals and Feynman diagrams are detailed in [CR17] and
[Bae04] respectively.

Note that Cobn is tensor generated by the equivalence classes of oriented closed
n− 1 dimensional manifolds, so Cob1 is generated by the classes of the positively
and negatively oriented point, Cob2 is generated by the class of S1 (which is
diffeomorphic to its opposite orientation by reflection), Cob3 is generated by the
classes of the genus g surfaces for all g ≥ 0, etc. The morphisms in Cob1 are
classes of lines amongst the points; we will discuss the morphisms in Cob2 below.
As Cob3 is generated by an infinite set of objects, it is much more difficult to
classify the morphisms in Cob3.

Note also that, for an n-dimensional TQFT Z, for any compact oriented n-
manifold M , we have an element Z(M) ∈ Z(∂M) obtained by regarding M as
a cobordism ∅ → ∂M which gives a map Z(∅) = k → Z(∂M); the image of 1

under this map is the element Z(M). When M has no boundary, Z(M) ∈ k is a
numerical invariant of the manifold.

The following result is a main reason that TQFTs are so manageable, and also a
main reason that they are often too weak to relate to real physics:

Proposition III.2.3

Let Z : Cobn → Vectk be a TQFT. Then Z(E) is finite-dimensional for
every E ∈ Cobn, and Z(E) ∼= Z(E)∗ where E refers to E with the opposite
orientation.

Proof: The key idea in establishing this result is to view the cylinder E × [0, 1]

as a variety of different cobordisms (with different domains and codomains). In
particular, the boundary of this cobordism can be regarded as either two copies of
E, two copies of E, or one copy of each, and we are additionally free to partition
this pair of boundary manifolds into domain and codomain. We are interested
in the case where we choose opposite orientations for the two boundary compo-
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nents, and consider given the cobordism from two different perspectives: as the
cobordism ϕ : E t E → ∅ and as the cobordism ψ : ∅ → E t E. Let U = Z(E),
V = Z(E); then Z(ϕ) : V ⊗K U → k is a pairing 〈−,−〉 and Z(ψ) : k → U ⊗k V
is a copairing γ.

Note that by taking the disjoint union with E × [0, 1], we can alter ψ to idE tψ :

E → E t E t E and similarly alter ϕ to ϕ t idE : E t E t E → E. Then, the
composition (ϕ t idE) ◦ (idE tψ) : E → E given by gluing is equal to idE by the
following:

(ϕ t idE)◦(idE tψ)

E

E

E

=

idE

The labels in the above diagram sit directly below the corresponding cobordisms,
and the symbol ◦ sits below the plane of gluing, with ϕ and ψ corresponding to
the two bent elbow shapes. Thus, the above identity becomes

(〈−,−〉 ⊗ idV ) ◦ (idV ⊗γ) = idV

under the functor Z (note that this is an equality, not an isomorphism, as Cobn is
a bona fide functor and assigns linear maps to equivalence classes of cobordisms).
Choose finitely many ui ∈ U and vi ∈ V such that γ(1) =

∑
i ui ⊗ vi; using the

above isomorphism, for all v ∈ V ,

v =
∑
i

〈v, ui〉 · vi

from which it follows that the finite set of vi spans V , so Z(E) is finite-dimensional
as claimed (and Z(E) is too finite-dimensional by replacing the roles of E and E
in this argument).

To see that V ∼= U∗ (where the isomorphism is natural in the sense that it comes
from the data of Z), note that v 7→ 〈v,−〉 is an isomorphism from V to U∗ (we
omit this verification). �

Thus, since S1 is the only compact oriented 1-manifold, if we can understand
all cobordisms between a disjoint union of circles, we can describe any two-
dimensional TQFT with a finite amount of data. Luckily, it is a classical result
(generally associated to Morse theory, but which can be shown without Morse
theory) that the morphisms of Cob2 can be obtained by composing and tensoring
the following elementary cobordisms (subject to the geometric relations among
them given by diffeomorphism invariance):
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Diagrammatic arguments for two-
dimensional TQFTs often rely on this
strategy of placing vectors at bound-
ary components and using the fact that
morphisms in Cobn are only defined up
to diffeomorphisms to prove identities
in Z(S1).

Let Z(S1) = A. The cylinder represents the identity morphism idS1 which goes to
idA, the cup and cap represent (under Z) morphisms ε : A→ k and η : k → A. The
pairs of pants supply morphisms µ : A⊗kA→ A, which is a bilinear multiplication
on A, and ∆ : A→ A⊗k A, which is a comultiplication on A. One can show that
the multiplication supplied by µ is unital, with unit η(1), via a diagrammatic
argument, and that comultiplication is counital (via ε). This multiplication is
associative, which we can see via the fact that diffeomorphic cobordisms must
give the same map:

∼=

a

a

b

c b ∗ c

a ∗ (b ∗ c)

a

b

a ∗ b

c

c (a ∗ b) ∗ c

These two cobordisms are equivalent as manifolds, and therefore must be equiva-
lent as maps A⊗k A⊗k A→ A under Z, from which we can see that a ∗ (b ∗ c) =

(a ∗ b) ∗ c in Z(S1). Moreover, the overlapping cylinders in Cobn represent the
braiding bordism βS1,S1 (more generally, the canonical diffeomorphism between
E t F and F t E induces a symmetric braiding βE,F on Cobn for all n by draw-
ing cylinders from E to E and F to F ); under Z, this gives commutativity of
our multiplication by a diagrammatic argument similar to the one above. Hav-
ing established these facts about two-dimensional TQFTs, we have the following
definition:

Definition III.2.4: Frobenius Algebras

A Frobenius algebra over k is a unital associative k-algebra A (with mul-
tiplication given by µ : A ⊗k A → A) which is simultaneously a counital
coassociative coalgebra (with comultiplication given by ∆ : A → A ⊗k A)
such that (µ⊗ id) ◦ (id⊗∆) = ∆ ◦ µ = (id⊗µ) ◦ (∆⊗ id).

Equivalently, one can show that a Frobenius algebra amounts to the data
of a unital associative k-algebra A together with a nondegenerate bilinear
form 〈−,−〉 : A×A→ k which satisfies

〈a ∗ b, c〉 = 〈a, b ∗ c〉

for all a, b, c ∈ A.

One can show that the data of a two-dimensional TQFT is equivalent to that
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An object A in a monoidal category
is dualizable if there exists A∗ in the
category and morphisms A∗ ⊗ A → 1

and 1→ A⊗A∗ (called the counit and
unit of the duality, respectively) which
satisfy a natural commutation relation.
In the category of vector spaces, the
counit is given by the evaluation map,
and the unit is given (in a basis vi)
by λ 7→ λ

∑
i vi ⊗ v∗i (all for finite di-

mensional vector spaces). In Cobn, the
counit and unit are given by regarding
E×[0, 1] as a morphism from EtE → ∅
and ∅ → E t E respectively.

Here, we will develop the basic the-
ory of the quantum cohomology ring(s),
which encode Gromov-Witten invari-
ants as structure constants for their
quantum product. Note that neither
version of quantum cohomology that
we discuss is actually functorial, so “co-
homology” is a bit of a misnomer, moti-
vated by the fact that the small quan-
tum cohomology ring (which was the
original quantum cohomology ring) is
a deformation of the ordinary cohomol-
ogy ring.

of a commutative Frobenius algebra, as motivated by the above discussion. More
specifically, it is a fact (whose verification we omit) that a natural monoidal trans-
formation between monoidal functors whose source categories are dualizable is an
isomorphism, so the set of n-dimensional TQFTs form a groupoid; in the case
n = 2, the groupoid of two-dimensional TQFTs is equivalent (as a category) to
the groupoid of commutative Frobenius algebras.

The latter definition above is more useful for us, as it corresponds to our discussion
of the general features of two-dimensional TQFTs, though we have yet to show that
〈a ∗ b, c〉 = 〈a, b ∗ c〉 (where the inner product 〈−,−〉 comes from the isomorphism
from an oriented S1 to its opposite orientation given by reflection, which induces
a map A→ A∗); in fact, more generally, we have that

〈a ∗ b, c〉 = 〈a, b ∗ c〉 = 〈a, b, c〉

i.e these inner products actually define three point functions that only depend on
the elements a, b, c, and not the order in which they are multiplied or entered into
the inner product. This follows from consideration of the following pair of pants:

a

b c

As in the diagrammatic arguments above, this can be regarded (under Z) as a
map from A⊗k A⊗k A→ k written 〈a, b, c〉 (which, by rotational and reflectional
symmetry of the above, is clearly invariant under permutation of the entries).
Alternatively, we can cut along some plane and first multiply along a pair of
pants, then take the inner product, which gives 〈a ∗ b, c〉 and 〈a, b ∗ c〉 (among all
other permutations of such terms).

III.3 Quantum Cohomology

The Frobenius algebra we are interested in for studying Gromov-Witten invari-
ants is the cohomology ring A = H∗(X) for X a smooth, projective, homogeneous
variety (though we will restrict our attention to X = Pr. The cup product (equiv-
alently, the wedge product on de Rham cohomology by de Rham’s theorem) gives
A the structure of a unital associative algebra over R, with nondegenerate pairing

〈α, β〉 =

∫
X

α ^ β

from Poincaré duality, hence A is a Frobenius algebra. Since α ^ β = (−1)pqβ ^

α (where α and β are in Hp(X) and Hq(X) respectively), A is not quite commu-
tative, but this can be handled by the braiding isomorphisms which introduce a
Koszul sign rule.

Note that by Proposition III.1.5, the three point functions for A = H∗(Pr) are
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For spaces X as above other than Pr,
gij is similarly defined after fixing a ba-
sis Ti for A∗(X) = H∗(X), see [FP97].

given by linear combinations of

〈hi, hj , hk〉 = 〈hi ^ hj , hk〉 =

∫
Pr

hi ^ hj ^ hk = I0(hihjhk)

Let

gij = 〈hi, hj〉 =

∫
Pr

hi ^ hj =

0 i+ j 6= r

1 i+ j = r

Thus, the ordinary cup product on Pr can be given in terms of degree 0 three
point Gromov-Witten invariants (which appear as structure constants):

hi ^ hj =
∑
e,f

I0(hihjhe)gefhf =
∑
e+f=r

I0(hihjhe)hf

where gij is the inverse matrix to gij , and where the latter equality follows by
notating that gij = gij , as both are the matrix with 1s on the non-main diagonal
and 0s elsewhere.

Thus, we can see that the ordinary cup product captures the degree 0 Gromov-
Witten invariants as structure constants with respect to the standard basis given
by the hi; seeing this, we want to deform the cup product in such a way that higher
level information than the degree 0 invariants are stored as structure constants.
There are two basic strategies towards this, which roughly lead to the so-called
“small” and “big” quantum cohomology rings.

Starting with the small quantum cohomology ring, by analogy to the above, we
want to define a product ∗ on A∗(Pr) such that

hi ∗ hj =
∑
e+f=r

I(hihjhe)hf

We know, however, that on Pr, the only nonzero Gromov-Witten invariants with
three marks are those in d = 0 and d = 1; by Propositions III.1.5 and III.1.6, we
have that I(hihjhk) = 1 if i + j + k = r or 2r + 1, and is 0 otherwise. Thus, we
have that

hi ∗ hj =

hi+j i+ j ≤ r
hi+j−r−1 else

So, for example, if i + j = r + 1, hi ∗ hj = h0 = 1. The resulting deformation
of H∗(Pr) ∼= Z[x]/(xr+1) is the ring Z[x](xr+1 − 1); this is precisely the ring
described as the “quantum cohomology ring” in [Wit91] which was the starting
point for much of the mathematics we have explored here. In modern convention,
what is commonly referred to as the small quantum cohomology ring is a small
variation of this, where the three point functions are weighted by a parameter q:
in particular, we replace the collected Gromov-Witten invariants I(γ1, γ2, γ3) =∑∞
d=0 Id(γ1, γ2, γ3) with the q-weighted collected Gromov-Witten invariants

I(γ1γ2γ3) =

∞∑
d=0

qdId(γ1γ2γ3)

Defining ∗ again as above (with the q-weighted invariants), and repeating the
analogous calculations, the small quantum cohomology ring of Pr is given by
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In [Wit91], everything is done with R
coefficients and using de Rham coho-
mology; in other sources, everything is
done with Q coefficients to avoid tor-
sion. As we are working with Pr, this
distinction does not really matter to us.

From the perspective of enumerative
combinatorics, this is a sensible thing
to do, although the original motivation
for this comes from a physical model
where Φ represents the “free energy,”
see [KM94].

Similar, but slightly less explicit equa-
tions for the Gromov-Witten potentials
of Pr exist, given by applying the divi-
sor axiom as above; see [KM94].

Z[x, q]/(xr+1 − q), where setting q = 1 returns our original quantum cohomology
structure, and setting q = 0 returns H∗(Pr). The small quantum cohomology ring
is again a Frobenius algebra, with the same unit as the cohomology ring. However,
for Pr, the small quantum cohomology ring does not encode that much informa-
tion, and it only is capable of giving information on the three point Gromov-Witten
invariants (the three point functions for this Frobenius algebra/TQFT).

The leap from small to big quantum cohomology is more substantial, and requires
some work. The starting point is to write down the Gromov-Witten potential,
which is the exponential generating function for all the Gromov-Witten invariants
of a space:

Φ(x0, · · · , xr) :=
∑

a0,··· ,ar

xa00 · · ·xarr
a0! · · · ar!

〈(h0)a0 , · · · , (hr)ar 〉

Introducing the multi-index notation xa := xa00 · · ·xarr and a! := a0! · · · ar! com-
mon to the study of generating functions, this can be more compactly written
as

Φ(x) =
∑
a

xa

a!
I(ha)

Example III.3.1: Gromov-Witten potential for P2

The degree 0 Gromov-Witten invariants of P2 are I0(h0h0h2) = 1 and
I0(h0h1h1) = 1 by results from the above section. We know that Id(h2 · · ·h2) =

Nd with 3d − 1 factors of h2; in fact, up to application of the divisor ax-
iom, these are the only nontrivial Gromov-Witten invariants for P2 (see the
discussion following Lemma III.1.8. More specifically, the nonzero Gromov-
Witten invariants are of the form Id(h

2 · · ·h2 · h · · ·h) = dkNd where there
are 3d− 1 copies of h2 and k copies of h. Since the corresponding term in
Φ is Nd

x3d−1
2

(3d−1)!d
k x

k
1

k! , we may sum over all possible k and collect these into

a single term Nd
x3d−1
2

(3d−1)!e
dx1 . Putting this together, we have the following

expression for the Gromov-Witten potential of P2:

Φ(x0, x1, x2) =
1

2
x2

0x2 +
1

2
x0x

2
1 +

∞∑
d=1

Nd
x3d−1

2

(3d− 1)!
edx1

Fix the notation Φi = ∂
∂xi

Φ, e.g,

Φi =
∑
a

xa

a!
I(ha · hi)

via standard manipulations of exponential generating functions. In particular, we
have

Φijk =
∂3Φ

∂xi∂xj∂xk
=
∑
a

xa

a!
I(ha · hi · hj · hk)

In the literature, one subsequently defines

hi ∗ hj :=
∑
e+f=r

Φijeh
f
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Even without any knowledge of why
this is a sensible operation, note that
setting x0 = x2 = · · · = xr = 0 and
letting x1 = x, we have

Φijk(x) =
∞∑

n=0

xn

n!

∑
d≥0

Id((h1)n·hi·hj ·hk) =

∞∑
n=0

xn

n!

∑
d≥0

dnId(hi · hj · hk)

using the definition of Φijk and the
divisor axiom. Moreover, the sum∑∞

d=0 d
nId(hi · hj · hk) is precisely

the collected Gromov-Witten invariant
I(hi · hj · hk) with weight d. By the
above, we know that there is only a
contribution from d = 0 and d = 1,
so setting q = ex, we have that

Φijk = I0(hihjhk) + qI1(hihjhk)

which are precisely the structure con-
stants of the q-weighted small quantum
cohomology ring as above. Thus, we
can recover the small quantum coho-
mology ring from the big one.
Associativity for the quantum prod-
uct holds for any homogeneous X as
above, and the proof is actually not
much more difficult; it is mostly a series
of formal manipulations, with the only
real content being the linear equiva-
lence of boundary divisors as in Propo-
sition I.1.8.

as the quantum product on A∗(Pr)⊗ZQ[[x]]; establishing various properties of this
quantum product results in nontrivial information about Gromov-Witten invari-
ants. There is some amount of motivation in [Wit91] for why one might come up
with such an operation, largely stemming from Witten’s conjecture that (roughly)
two different models of two-dimensional quantum gravity should have the same
partition functions.

The quantum product is manifestly commutative since Φijk is symmetric in its
indices (by the equality of mixed partials for formal power series), and unital with
identity h0 (to see this, note that Φ0jk =

∫
Pr h

j ^ hk and expand the definition).
The major result is that ∗ is associative as well; in particular, associativity of
the quantum product encodes recursive relations amongst the Gromov-Witten
invariants in the vein of the splitting lemma and its corollary above.

Theorem III.3.2

The big quantum product on A∗(Pr)⊗Z Q[[x]] is associative.

Proof: Expanding the sums for the equation (hi ∗ hj) ∗ hk = hi ∗ (hj ∗ hk), and
equating the coefficients of hi on both sides (since these are linearly independent
elements of H∗(Pr)), the claim amounts to the identity∑

e+f=r

ΦijeΦfkl =
∑
e+f=r

ΦjkeΦfil

for all i, j, k, l. Introduce for concision the term γ =
∑r
i=0 xih

i and note that

Φ = I(eγ) =

∞∑
n=0

1

n!
I(γ•n)

where I(γ•n) is a formal expression (where Φ = I(eγ) follows from formal ex-
pansion of eγ as a power series and applying linearity of I). Then, the above
differential equation becomes

∑
e+f=r

∑
nA+nB=n

n!

nA!nB !
I(γ•nA · hi · hj · he)I(γ•nB · hf · hk · hl) =

∑
e+f=r

∑
nA+nB=n

n!

nA!nB !
I(γ•nA · hj · hk · he)I(γ•nB · hf · hi · hl)

after expanding the products as formal power series. This equality, in turn, will
follow directly from Proposition I.1.8. Fix d, n, and consider M0,n+4(Pr, d) where
the extra four marks are labeled p1, p2, p3, p4. Consider four classes hi, hj , hk, hl,
and take their pullbacks along the evaluation maps corresponding to the pi (in
order). We know that D(p1p2|p3p4) ≡ D(p2p3|p1p4), so, integrating over the two
equivalent boundary divisors, we have(∫

D(p1p2|p3p4)

−
∫
D(p2p3|p1p4)

)
ν∗(γ) ^ ν∗1 (hi) ^ ν∗2 (hj) ^ ν∗3 (hk) ^ ν∗4 (hl) = 0

D(p1p2|p3p4) is made up of several components which correspond to the ways in
which we can distribute the n remaining marks and split the degree between the



44 abhishek shivkumar

two twigs. Clearly, there are
(
n
nA

)
= n!

nA!nB ! ways to distribute the remaining marks
among the twigs; then, applying Corollary III.1.11, and summing over the ways in
which we can distribute the degrees, the integral corresponding to D(p1p2|p3p4)

is equal to∑
dA+dB=d
nA+nB=n

n!

nA!nB !

∑
e+f=r

IdA(γ•nA · hi · hj · he)IdB (γ•nB · hk · hl · hf )

Summing over d to collect the Gromov-Witten invariants, we obtain precisely the
left-hand side of the equality to be shown. A similar analysis of the right-hand
side produces the right-hand side of the equality to be shown, from which the
result follows. �

The big quantum cohomology ring is much more complicated to construct than the
small quantum cohomology ring (indeed, for target spaces other than Pr, most of
the literature seems to be mostly related to the small quantum cohomology), but
this extra difficulty pays dividends via the fact that the quantum product encodes
all of the Gromov-Witten invariants for Pr in essentially the same manner as
prescribed by the reconstruction theorem. In particular, when r = 2, we can
recover the recursive formula for the Nd; a rough sketch of the proof (found in full
detail in [FP97] and [KV07]) is as follows: we split the potential Φ into classical
and quantum parts: Φ = Φclassical + Γ, where the classical part corresponds to
d = 0 Gromov-Witten invariants, and Γ (the quantum part) corresponds to d > 0

Gromov-Witten invariants. The utility in this is that

Φclassical =
∑
i,j,k

xixjxk
3!

I0(hihjhk) =⇒ Φclassical
ijk = I0(hihjhk)

(since the only nonzero degree zero Gromov-Witten invariants are those with
three marks) so the third partial derivatives of Φclassical are precisely the structure
constants for our original cup product, e.g,

hi ^ hj =
∑
e+f=r

Φclassical
ije hf =

∑
e+f=r

I0(hihjhe)hf

Thus, Φclassical recovers the original cup product, and Γ can be regarded in some
sense as the source of new information, e.g,

hi ∗ hj = hi ^ hj +
∑
e+f=r

Γijeh
f

We may then compute the multiplication table for the hi, and then study the
equality (h1 ∗ h1) ∗ h2 = h1 ∗ (h1 ∗ h2). Equating the coefficients of h0 on both
sides, we obtain the equation

Γ222 = Γ2
112 − Γ111Γ122

By Example III.3.1, we can write

Γ(x) =

∞∑
d=1

Nd
x3d−1

2

(3d− 1)!
edx1

Evaluating the partial derivatives of Γ and comparing coefficients under the above
differential equation result in precisely Theorem II.3.4.
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