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Abstract. We study the problem of finding generators for the fundamental

group G of a space of the following sort: one removes a family of complex
hyperplanes from Cn, or complex hyperbolic space CHn, or the Hermitian
symmetric space for O(2, n), and then takes the quotient by a discrete group

PΓ. The classical example is the braid group, but there are many similar
“braid-like” groups that arise in topology and algebraic geometry. Our main
result is that if PΓ contains reflections in the hyperplanes nearest the base-
point, and these reflections satisfy a certain property, then G is generated by

the analogues of the generators of the classical braid group. We apply this to
obtain generators for G in a particular intricate example in CH13. The interest
in this example comes from a conjectured relationship between this braid-like
group and the monster simple group M , that gives geometric meaning to the

generators and relations in the Conway-Simons presentation of (M ×M) : 2.

1. Introduction

The braid group was described by Fox and Neuwirth [FN] as the fundamental group
of Cn, minus the hyperplanes xi = xj , modulo the action of the group generated
by the reflections across them (the symmetric group Sn). The term “braid-like”
in the title is meant to suggest groups that arise by this construction, generalizing
the choices of Cn and this particular hyperplane arrangement. Artin groups [Br]
and the braid groups of finite complex reflection groups [Be] are examples. The
problem we address is: find generators for groups of this sort. We are mainly
interested in the case that there are infinitely many hyperplanes, for example coming
from hyperplane arrangements in complex hyperbolic space CHn. Our specific
motivation is a conjecture relating the monster finite simple group to the braid-like
group associated to a certain hyperplane arrangement in CH13. By our results and
those of Heckman [H], this conjecture may now be within reach. We also suggest
some applications to algebraic geometry.

The general setting is the following: Let X be complex Euclidean space, or
complex hyperbolic space, or the Hermitian symmetric space for an orthogonal
group O(2, n). Let M be a locally finite set of complex hyperplanes in X, H their
union, and PΓ ⊆ IsomX a discrete group preserving H. Let a ∈ X −H. Then the
associated “braid-like group” means the orbifold fundamental group

Ga := πorb
1

(

(X −H)/PΓ, a
)

See section 3 for the precise definition of this. In many cases, PΓ acts freely on
X − H, so that the orbifold fundamental group is just the ordinary fundamental
group.
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Our first result describes generators for π1(X −H, a). This is a subgroup of Ga,
since X −H is an orbifold covering space of (X −H)/PΓ. For H ∈ M we define in

section 2 a loop aH that travels from a to a point c ∈ X−H very near H, encircles
H once, and then returns from c to a. We pronounce the notation “a loop H”. See
section 2 for details and a generalization (theorem 2.1) of the following result:

Theorem 1.1. The loops aH, with H varying over M, generate π1(X −H, a).

If a is generic enough then this follows easily from stratified Morse theory
[GM]. But in our applications it is very important to take a non-generic, be-
cause choosing it to have large PΓ-stabilizer can greatly simplify the analysis of
πorb
1

(

(X −H)/PΓ, a
)

. So we prove theorem 1.1 with no genericity conditions on a.

This lack of genericity complicates even the definition of aH. For example, aH
may encircle some hyperplanes other than H, and this difficulty cannot be avoided
in any natural way. One can view theorem 1.1 as a first step toward a version of
stratified Morse theory for non-generic basepoints.

Next we consider generators for Ga. In our motivating examples, PΓ is generated
by complex reflections in the hyperplanes H ∈ M. (A complex reflection means an
isometry of finite order > 1 that pointwise fixes a hyperplane, called its mirror.)
So suppose H ∈ M is the mirror of some complex reflection in PΓ. Then there is a
“best” such reflection RH , characterized by the following properties: every complex
reflection in PΓ with mirror H is a power of RH , and RH acts on the normal bundle
of H by exp(2πi/n), where n is the order of RH .

For each hyperplane H, we define in section 3 an element of Ga which is the
natural analogue of the standard generators for the classical braid group. Recall

that the definition of aH referred to a point c ∈ X −H very near H, and a circle
around H based at c. We define µa,H to go from a to c as before, then along the
portion of this circle from c to RH(c), then along the RH -image of the inverse of
the path from a to c. This is a path in X − H, not a loop. But RH sends its
beginning point to its end point, so we may regard it as a loop in (X −H)/PΓ. So
we may regard µa,H as an element of Ga. (Because a may have nontrivial stabilizer,
properly speaking we must take the ordered pair (µa,H , RH) rather than just µa,H ;
see section 3 for background on the orbifold fundamental group.)

In the case of the braid group, the standard braid generators correspond to the
µa,H for which H is closest possible to a. (Here we choose the basepoint a in the
Weyl chamber, equidistant from its facets.) The same holds for any Artin group.
Under a certain hypothesis on the mirrors nearest a, the following theorem shows
that this also holds in our more general situation. It is the source of the term
“geometric generators” in our title.

Theorem 1.2. Suppose C ⊆ M are the hyperplanes closest to a, and that the

complex reflections RC generate PΓ, where C varies over C. Suppose that for each

H ∈ M − C, some power of some RC moves a closer to p, where p is the point of

H closest to a. Then the (µa,C , RC) generate Ga = πorb
1

(

(X −H)/PΓ, a
)

.

We mentioned that our main motivation is a conjectural relation between a
particular braid-like group and the monster simple group. Here are minimal details;
see section 4 for more background. We take X = CH13 and PΓ to be a particular
discrete subgroup of AutCH13 = PU(13, 1) generated by complex reflections of
order 3. We take M to be the set of mirrors of the complex reflections in PΓ. It
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turns out that any two mirrors are PΓ-equivalent, so the image of H in X/PΓ
is irreducible. The positively-oriented boundary, of a small disk transverse to a
generic point of this image, determines a conjugacy class in πorb

1

(

(X − H)/PΓ
)

.
We call the elements of this conjugacy class meridians.

Conjecture 1.3 ([A3]). The quotient of πorb
1

(

(X−H)/PΓ
)

, by the normal subgroup

generated by the squares of the meridians, is the semidirect product of M ×M by

Z/2, where M is the monster simple group and Z/2 exchanges the factors in the

obvious way.

Presumably, any proof of this will require generators and relations for πorb
1

(

(X−
H)/PΓ

)

, which is the motivation for the current paper. In [Ba1] the second author

found a point τ ∈ CH13 (called ρ̄ there), such that the set C of mirrors closest to τ
has size 26, and showed that their complex reflections generate PΓ. Because τ has
nontrivial PΓ-stabilizer, the corresponding meridians are ordered pairs (µτ,C , RC)
rather than just bare paths µτ,C . Taking τ as our basepoint, we announce the
following result, which we regard as a significant step toward conjecture 1.3.

Theorem 1.4. The 26 meridians (µτ,C , RC), with C varying over the 26 mirrors

closest to τ , generate πorb
1

(

(X −H)/PΓ, τ
)

.

We wish this were a corollary of theorem 1.2. Unfortunately the hypothesis of
theorem 1.2 about moving τ closer to the various p ∈ H fails badly. Instead, we
first prove theorem 1.5 below, which is an analogue of theorem 1.4 with a different
basepoint ρ in place of τ . Then we identify the fundamental groups based at τ and
ρ by means of a path from τ to ρ, and study how the generators based at τ and
ρ are related under this identification. The proof of theorem 1.5 follows that of
theorem 1.2, although considerable work is required. The change-of-basepoint ar-
gument is complicated and delicate, of a different character, and of more specialized
interest. Therefore it will appear separately.

The main reason we prefer theorem 1.4 to theorem 1.5, i.e., we prefer the base-
point to be τ rather than ρ, is that the 26 meridians µτ,C are closely related to
the coincidences that motivated conjecture 1.3. In particular, by [Ba2], they sat-
isfy the braid and commutation relations specified by the incidence graph of the
points and lines of P 2(F3). The 26 generators in the Conway-Simons presentation
of (M ×M) : 2 in [CS] satisfy exactly the same relations. The “deflation” relations
in this presentation appear to also have a good geometric interpretation in terms of
the µτ,C ’s. Heckman has developed ideas [H] aimed at showing that these relations
account for all relations in πorb

1

(

(X −H)/PΓ
)

.

Another reason to prefer τ is that ρ is not actually in CH13; rather, it is an ideal
point. So extra care is required when defining the meridians “based at ρ”. One can
proceed as follows. There turns out to be a closed horoball A centered at ρ that
misses H; we choose any basepoint a inside A. We call the mirrors that come closest
to A the “Leech mirrors”. The name comes from the fact that they are indexed by
the elements of (a central extension of) the complex Leech lattice Λ; in particular
there are infinitely many of them. If C is a Leech mirror, let bC ∈ A be the point of
A nearest it. Then µa,A,C is defined to be the geodesic abC ⊆ A followed by µbC ,C

followed by RC(bCa). See figure 1 for a picture. These are meridians in the sense
of conjecture 1.3, and we call them the Leech meridians. (As before, because a may
have nontrivial PΓ-stabilizer, the meridian associated to C is really the ordered
pair (µa,A,C , RC) rather than just µa,A,C .)
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Theorem 1.5. The Leech meridians (µa,A,C , RC) generate πorb
1

(

(X −H)/PΓ, a
)

.

We hope that our techniques will be useful more generally. For example, they
might be used to give generators for the fundamental group of the moduli space of
Enriques surfaces. Briefly, this is the quotient of the Hermitian symmetric space
for O(2, 10), minus a hyperplane arrangement, by a certain discrete group. See [Na]
for the original result and [A2] for a simpler description of the arrangement. The
symmetric space has two orbits of 1-dimensional cusps, one of which is misses all
the hyperplanes. Taking this as the base “point”, the hyperplanes nearest it are
analogues of the Leech mirrors. It seems reasonable to hope that the meridians
associated to these mirrors generate the orbifold fundamental group.

There are many spaces in algebraic geometry with a description (X − H)/PΓ
of the sort we have studied. For example, the discriminant complements of many
hypersurface singularities [L1][L2], the moduli spaces of del Pezzo surfaces [ACT1]
[Ko1][HL], the moduli space of curves of genus four [Ko2], the moduli spaces of
smooth cubic threefolds [ACT2][LS] and fourfolds [L4], and the moduli spaces of
lattice-polarized K3 surfaces [Ni][D]. The orbifold fundamental groups of these
spaces are “braid-like” in the sense of this paper, and we hope that our methods
will be useful in understanding them.

The paper is organized as follows. In section 2 we study the fundamental group
π1(X−H, a), in particular proving theorem 1.1. The proof relies on van Kampen’s
theorem. In section 2 we study πorb

1

(

(X −H)/PΓ, a
)

, in particular proving theo-
rem 1.2. The core of that proof is lemma 3.1, which is more general than needed
for theorem 1.2. The extra generality is needed for our application to CH13. Sec-
tion 4 gives background on complex hyperbolic space and the particular hyperplane
arrangement referred to in conjecture 1.3 and theorems 1.4–1.5. Finally, section 5
proves theorem 1.5. Most of the proof consists of tricky calculations verifying the
hypothesis of theorem 1.2 that the basepoint can be moved closer to the various
points p ∈ H. In a few cases this is not possible, so we have to do additional work.

The first author is very grateful to RIMS at Kyoto University for its hospitality
during two extended visits while working on this paper. The second author would
like to thank Kavli-IPMU at University of Tokyo for their hospitality during two
one-month visits while working on this paper.

2. Loops in arrangement complements

For the rest of the paper we fix X = one of three spaces, M = a locally finite
set of hyperplanes in X, and H = their union. The precise assumption on X is
that it is complex affine space with its Euclidean metric, or complex hyperbolic
space, or the symmetric space for O(2, n). To understand the general machinery
in this section and the next, it is enough to think about the affine case. In our
application in section 5 we specialize to the case that X is complex hyperbolic
13-space. Most of the other potential applications mentioned in the introduction
would use the O(2, n) case. What we need about X is that it is a simply-connected
complex manifold equipped with a complete positive-definite Hermitian metric of
nonpositive sectional curvature, that there is a good notion of the “complex line”
containing a given nontrivial geodesic segment, and that there is a good notion of
a “complex hyperplane”. These lines and hyperplanes should be totally geodesic.
We don’t know any interesting examples besides the three listed, so we haven’t
attempted to formulate our results in greater generality.
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For b, c ∈ X we write bc for the geodesic segment from b to c. Now suppose
b, c /∈ H. It may happen that bc meets H, so we will define a perturbation bc of bc in
the obvious way. The notation may be pronounced “b dodge c” or “b detour c”. We
write bcC for the complex line containing bc. By the local finiteness ofM, bcC∩H is a
discrete set. Consider the path got from bc by using positively oriented semicircular
detours in bcC, around the points of bc∩H, in place of the corresponding segments
of bc. After taking the radius of these detours small enough, the construction
makes sense and the resulting homotopy class in X −H (rel endpoints) is radius-

independent. This homotopy class is what we mean by bc.
At times we will need to speak of the “restriction of H at p”, where p is a point

of X. So we write Mp for the set of hyperplanes in M that contain p, and Hp for
their union.

Now suppose b ∈ X − H and H ∈ M. We will define a homotopy class bH of
loops in X −H based at b; the notation can be pronounced “b loop H”. We write
p for the point of H nearest b. Let U be a ball around p that is small enough that
U ∩ H = U ∩ Hp, and let c be a point of (U − H) ∩ bp. Consider the circular

loop in bpC centered at p, based at c, and traveling once around p in the positive
direction. It misses H, because under the exponential map TpX → X, the elements

of Mp correspond to some complex hyperplanes in TpX, while bpC corresponds to
a complex line. And the line misses the hyperplanes except at 0, because b /∈ H.

Finally, bH means bc followed by this circular loop, followed by reverse( bc ).

Remark (Caution in the non-generic case). This definition has some possibly un-
expected behavior when b is not generic. For example, take M to be the A2 ar-
rangement in X = C2, let H be one of the three hyperplanes, and take b ∈ X −H

orthogonal toH. It is easy to see that bH encircles all three hyperplanes, not justH.
Furthermore, this phenomenon cannot be avoided by any procedure that respects
symmetry. To explain this we note that π1(X − H, b) ∼= Z × F2 where the first

factor is generated by bH and the second is free on bH1 and bH2, where H1 and H2

are the other two hyperplanes. Let f be the isometry of X that fixes b and negates

H. It exchanges H1 and H2. So f ’s action on π1(X −H, b) fixes bH and swaps the
other two generators. It follows that the group of fixed points of f in π1(X −H, b)

is just the first factor Z. So any symmetry-respecting definition of bH must give
some multiple of our definition.

The main result of this section, theorem 2.1, shows that the various bH generate
π1(X − H, b). But for our applications to CH13 in section 5, it will be useful to
formulate the fundamental group with a “fat basepoint” A in place of b. This is
because we will want to choose a boundary point of CH13 as our basepoint. Strictly
speaking this is not possible, since a boundary point is not a point of CH13. So we
will use a closed horoball A centered at that boundary point in place of a basepoint.
For purposes of understanding the current section, the reader may take A to be a
point.

We add to our standing assumptions: A is a nonempty closed convex subset
of X, disjoint from H. To avoid some minor technical issues we will also assume
two additional properties. First, for every H ∈ M, there is a unique point of
A closest to H. Second, some group of isometries of X preserving M and A acts
cocompactly on the boundary ∂A. Under our sectional curvature assumption on X,
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the first property holds automatically if A is strictly convex. The second assumption
is natural in our intended applications because H is always invariant under an
arithmetic group.

Because A − H = A is simply connected (even contractible), the fundamental
groups of X − H based at any two points of A are canonically identified. So we
write just π1(X −H, A). If c ∈ X then we define Ac and Ac as bc and bc, where b

is the point of A nearest c. Similarly, if H ∈ M then we define AH as bH, where b

is the point of A closest to H. We sometimes write b, c and b, c and b,H for bc and

bc and bH, and similarly for A, c and A, c and A,H .

Theorem 2.1 (π1 of a ball-like set minus hyperplanes). Let Br be the open r-

neighborhood of A, where r ∈ (0,∞]. Then π1(Br−H, A) is generated by the AH’s

for which d(A,H) < r.

The rest of the section is devoted to the proof, beginning with two lemmas.

Lemma 2.2. Suppose X is complex Euclidean space, every H ∈ M contains the

origin 0, and c ∈ X − H. Write 1
2X for the open halfspace of X that contains c

and is bounded by the real orthogonal complement to c0. (In the trivial case M = ∅
we also assume c 6= 0, so that 1

2X is defined.)

(1) If c is not orthogonal to any element of M, then π1(X −H, c) is generated

by π1(
1
2X −H, c).

(2) If c is orthogonal to some H ∈ M, then π1(X − H, c) is generated by

π1(
1
2X − H, c) together with any element of π1(X − H, c) having linking

number ±1 with H, for example cH.

Proof. (2) Write H ′ for the translate of H containing c. Every point of X − H

is a nonzero scalar multiple of a unique point of H ′ − H. It follows that X − H

is the product of H ′ − H ⊆ 1
2X − H with C − {0}. The map π1(X − H, c) → Z

corresponding to the projection to the second factor is the linking number with H.

All that remains to prove is that cH has linking number 1 with H. In fact more is
true: essentially by definition, this loop generates the fundamental group of one of
the fibers C− {0}.

(1) We define H as the complex hyperplane through 0 that is orthogonal to c0.
We apply the previous paragraph to M

′ = M ∪ {H} and H
′ = H ∪ H. Using

1
2X −H = 1

2X −H
′ yields

(*) π1(X −H
′, c) = π1(

1
2X −H

′, c)×
〈

cH
〉

= π1(
1
2X −H, c)×

〈

cH
〉

.

Let γ be any element of π1(X − H
′, c) that is freely homotopic to the boundary

of a small disk transverse to H at a generic point of H. It dies under the natural
map π1(X −H

′, c) → π1(X −H, c). Because γ has linking number ±1 with H, the
product decomposition (*) shows that every element of π1(X−H

′, c) can be written
as the product of a power of γ and an element of π1(

1
2X−H, c). It is standard that

π1(X−H
′, c) → π1(X−H, c) is surjective. Since this map kills γ, it must send the

subgroup π1(
1
2X −H, c) of π1(X −H

′, c) surjectively to π1(X −H, c). �

Lemma 2.3 (π1 of a ball-like set with a bump, minus hyperplanes). Assume p ∈ X
lies at distance r > 0 from A and write B for the open r-neighborhood of A. Assume

U is any open ball centered at p, small enough that U ∩H = U ∩Hp.
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(1) If no H ∈ Mp is orthogonal to Ap, then π1

(

(B ∪ U) −H, A
)

is generated

by the image of π1(B −H, A).
(2) If some H ∈ Mp is orthogonal to Ap, then π1

(

(B ∪U)−H, A
)

is generated

by the image of π1(B −H, A), together with any loop of the following form

αλα−1, for example AH. Here α is a path in B − H from A to a point

of (B ∩ U) −H and λ is a loop in U −H, based at that point and having

linking number ±1 with H.

Proof. For uniformity, in case (1) we choose a random path α in B −H beginning
in A and ending in (B ∩ U) − H. In both cases we write c for the final endpoint
of α; without loss of generality we may suppose c ∈ Ap − {p}. Van Kampen’s
theorem shows that π1

(

(B ∪U)−H, c
)

is generated by the images of π1(B −H, c)

and π1(U −H, c). We claim that π1(U −H, c) is generated by the image of π1

(

(B∩
U)−H, c), supplemented in case (2) by λ.

Assuming this, we move the basepoint from c into A along reverse(α). This
identifies π1(B − H, c) with π1(B − H, A), λ with αλα−1, and the elements of
π1

(

(B ∩U)−H, c
)

with certain loops in B−H based in A. It follows that π1

(

(B ∪
U) − H, A

)

is generated by the image of π1(B − H, A), supplemented in case (2)

by αλα−1. This is the statement of the theorem.
So it suffices to prove the claim. We transfer this to a problem in the tangent

space TpX by the exponential map and its inverse (written log). So we must
show that π1(logU − logHp, log c) is generated by the image of π1

(

log(B ∩ U) −
logHp, log c

)

, supplemented in case (2) by log λ. The key to this is that the vertical
arrows in the following commutative diagram are homotopy equivalences.

log(B ∩ U)− logHp −−−−→ logU − logHp




y





y

1
2TpX − logHp −−−−→ TpX − logHp

Here 1
2TpX is as in lemma 2.2: the open halfspace containing log c and bounded by

the (real) orthogonal complement of log(cp) = log c, 0.
The right vertical arrow is a homotopy equivalence by a standard scaling argu-

ment. The same argument works for the left one, because the boundary of logB is
tangent to the boundary of 1

2TpX at 0. It follows that any compact subset of 1
2TpX

can be sent into log(B ∩ U) by multiplying it by a sufficiently small scalar. Since
scaling respects logHp, this establishes a weak homotopy equivalence. Homotopy
equivalence then follows from Whitehead’s theorem (or one could refine the scaling
argument).

By these homotopy equivalences, it suffices to show that π1(TpX − logHp, log c)
is generated by the image of π1(

1
2TpX − logHp, log c), supplemented in case (2) by

log λ. This is just lemma 2.2, completing the proof. �

Proof of theorem 2.1. Let R be the set of r ∈ (0,∞] for which the conclusion of the
theorem holds. By the cocompactness assumption on A, the distances d(A,H) are
bounded away from 0, as H varies over M. That is, for any sufficiently small r we
have Br ∩H = ∅ and therefore r ∈ R. So R 6= ∅. Since Br0 = ∪r<r0 Br we see that
(0, r0) ⊆ R implies (0, r0] ⊆ R. By a connectedness argument it suffices to show
that if r ∈ (0,∞) and (0, r] ⊆ R, then (0, r + δ) ⊆ R for some δ > 0.
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So we fix r ∈ (0,∞), abbreviate Br to B, assume the conclusion of the theorem
holds for B, and define S as the “sphere” ∂B. For each p ∈ S there is an open ball
Up centered at p such that Up ∩H = Up ∩Hp. By the cocompactness hypothesis,
there exists δ > 0 such that Br+δ is covered by them and B.

To prove (0, r + δ) ⊆ R we suppose given some r′ ∈ (r, r + δ) and write B′ for
Br′ . Since B′ is covered by B and the Up’s, every mirror that meets B′ either
meets B or is tangent to S. So we must prove that π1(B

′ −H, A) is generated by

π1(B − H, A) and the AH’s with H ∈ M tangent to S. For p ∈ S we define Vp

as (B ∪ Up) ∩ B′. It is easy to see that Vp − H → (B ∪ Up) − H is a homotopy
equivalence. (Retract points of Up −B′ along geodesics toward p.) It follows from

lemma 2.3 that π1(Vp −H, A) is generated by π1(B −H, A), supplemented by AH
if p is the point of tangency of S with some H ∈ M.

Because B′ = ∪p∈SVp, repeatedly using van Kampen’s theorem shows that
π1(B

′ −H, A) is generated by the π1(Vp −H, A), finishing the proof. This use of
van Kampen’s theorem requires checking that every set got from the Vp’s by finite
unions and intersections is connected. We call a subset Y of X star-shaped (around
A) if it contains A and the geodesics Ay for all y ∈ Y . Nonpositive curvature shows
that B ∪ Up is star-shaped. Intersecting with B′ preserves star-shapedness and
yields Vp. Since unions and intersections of star-shaped sets are again star-shaped,
our repeated application of van Kampen’s theorem is legitimate. �

3. Loops in quotients of arrangement complements

We continue using the notation X, M and H from the previous section. We also
suppose a group PΓ acts faithfully, isometrically and properly discontinuously on
X, preserving H. At this point we have no group Γ in mind; the notation PΓ is
just for compatibility with sections 4–5. Our goal is to understand the orbifold
fundamental group of (X −H)/PΓ. We use the following definition from [L3] and
[Ba2]; more general formulations exist [R][Ka].

Fixing a basepoint a ∈ X−H, consider the set of pairs (γ, g) where g ∈ PΓ and γ
is a path in X−H from a to g(a). We regard one such pair as equivalent to another
one (γ′, g′) if g = g′ and γ and γ′ are homotopic in X −H, rel endpoints. The orb-
ifold fundamental group Ga := πorb

1

(

(X −H)/PΓ, a
)

means the set of equivalence
classes. The group multiplication is (γ, g)·(γ′, g′) = (γ followed by g ◦ γ′, gg′). Pro-
jection of (γ, g) to g defines a homomorphism Ga → PΓ. The kernel is obviously
π1(X −H, a), yielding the exact sequence

(1) 1 → π1(X −H, a) → Ga → PΓ → 1

Although we don’t need it, we remark that if a has trivial PΓ stabilizer then there
is a simpler PΓ-invariant description of the orbifold fundamental group. Writing o
for a’s orbit, we define Go := πorb

1

(

(X −H)/PΓ, o
)

as the set of PΓ-orbits on the
homotopy classes (rel endpoints) of paths in X −H that begin and end in o. The
PΓ-action is the obvious one: g ∈ PΓ sends a path γ to g ◦ γ. To define γγ′, where
γ, γ′ ∈ Go, one translates γ′ so that it begins where γ ends, and then composes
paths in the usual way. Well-definedness of multiplication, and the identification
with the definition of Ga, uses the fact that every path starting in o has a unique
translate starting at a.

A complex reflection means a finite-order isometry of X whose fixed-point set
is a complex hyperplane, called its mirror. In our applications, PΓ is generated



GEOMETRIC GENERATORS FOR BRAID-LIKE GROUPS 9

a b

c
p
RH(c)

RH(b)

RH(a)
A RH(A)

Figure 1. The path µa,A,H goes from left to right. Here RH is the
complex reflection of order 3, acting by counter-clockwise rotation
by 2π/3. The hyperplane H is not shown except for its point p
closest to A. The small semicircles indicate that the path from b
to c may detour around some points of H.

by complex reflections whose mirrors are hyperplanes in M. This leads to certain
natural elements of the orbifold fundamental group: for H ∈ M we next define a

loop µa,H ∈ Ga which is a fractional power of aH. Write p for the point of H closest
to a and nH for the order of the cyclic group generated by the complex reflections
in PΓ with mirror H. Write RH for the complex reflection of PΓ with mirror H,
that acts on the normal bundle to H by exp(2πi/nH). (In the special case that no
complex reflection in PΓ has H as its mirror, this yields nH = 1 and RH = 1.)

Recall that the definition of aH involved a point c of ap very near p, and a
circular loop in apC centered at p and based at c. We define µa,H as ac followed by
the first (1/nH)th of this loop (going from c to RH(c)), followed by RH(reverse(ac)).
This is a path from a to RH(a), so the pair (µa,H , RH) is an element of the orbifold
fundamental groupGa. Using the definition of multiplication, the first component of
(µa,H , RH)nH is the path got by following µa,H , then RH(µa,H), then R2

H(µa,H), . . .

and finally RnH−1
H (µa,H). It is easy to see that this is homotopic to aH. So we

have (µa,H , RH)nH = aH.
At this point we have defined everything in the statement of theorem 1.2. But

before proving it, we will adapt our construction to accomodate the “fat basepoints”
of the previous section. This is necessary for our application to CH13. So we
fix A as in section 2, and assume it contains our basepoint a. We will use A
as the base “point” when discussing π1(X − H), and a as the basepoint when
discussing πorb

1

(

(X − H)/PΓ
)

. In particular, the left term of (1) could also be
written π1(X −H, A). The analogue of µa,H is defined as follows, in terms of the

point b of A that is closest to H. We define µa,A,H to be ab followed by µb,H

followed by RH(ba). See figure 1 for a picture. Essentially the same argument as

before shows that (µa,A,H , RH)nH = AH ∈ π1(X −H, A).
In applications one typically has some distinguished set of µa,H ’s or µa,A,H ’s in

mind and wants to prove that they generate Ga. Theorem 1.2 in the introduction is
a result of this sort. The following lemma is really the inductive step in the proof,
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p

y

H

AH λ

a

R(a)

C
c

µ1

µ2

A

R(A)

b

γ

∂B

∂R(B)

∂U

Figure 2. Illustration for the proof of lemma 3.1.

so the reader might prefer to read the theorem’s proof first. Also, theorem 1.2 uses
only case 1 of the lemma; the other cases are for our application to CH13.

Lemma 3.1. Suppose C ⊆ M are the hyperplanes closest to A, and let G be the

subgroup of Ga generated by the (µa,A,C , RC) ∈ Ga with C ∈ C. Suppose H ∈
M, write p for the closest point of H to A, r for d(A, p), and B for the open r-
neighborhood of A. Suppose G contains π1(B−H, A) and that there exists a complex

reflection R ∈ PΓ with mirror in C, such that one of the following holds:

(1) R moves A closer to p.
(2) R moves A closer to H, and no farther from p.
(3) There exists an open ball U around p such that U∩H = U∩Hp, B∩R(B)∩

U 6= ∅, and R(B) ∩ U ∩H 6= ∅.
Then G contains AH.

Proof. In every case we have R(B) ∩ H 6= ∅, so R−1(H) is closer to A than H
is. Therefore H /∈ C, or in other words: the hyperplanes in C lie at distance < r
from A. We will prove the conclusion under hypothesis (3), and then show that the
other two cases follow. We hope figure 2 helps the reader. First we introduce the
various objects pictured. We write b for the point of A closest to H. Under our

identification of π1(X −H, A) with π1(X −H, a), the loop AH corresponds to ab

followed by bH followed by ba.
The complex reflection R equals Ri

C for some C ∈ C. The point marked C in
the figure represents the point of C nearest to A. It lies inside B by our remark
above that the elements of C are closer to A than H is. Since it is fixed by R, this
point lies inside R(B) too.

Consider the first component of (µa,A,C , RC)
i. After a homotopy it may be

regarded as a path µ1 in B−H from a to a point c ∈
(

B ∩R(B)
)

−H, followed by
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a path µ2 in R(B)−H from c to R(a). These paths are marked in the figure. So
(µa,A,C , RC)

i = (µ1µ2, R) in Ga.
We have assumed that B ∩ R(B) ∩ U is nonempty, so choose a point in it but

not in H, say y. Let λ be a loop in (R(B) ∩U)−H, based at y, which has linking
number 1 with H. Such a loop exists because H meets R(B) ∩ U by hypothesis.
Finally, let γ be a path in (B ∩R(B))−H from c to y.

Our goal is to prove that G contains AH. Lemma 2.3 shows that this loop lies
in the subgroup of π1(X−H, a) generated by π1(B−H, a) and µ1γλγ

−1µ−1
1 . This

uses our hypothesis U ∩H = U ∩Hp. Since we assumed G contains the image of

π1(B −H, a), it suffices to show that G contains µ1γλγ
−1µ−1

1 , or equivalently the
homotopic loop (µ1µ2)

(

µ−1
2 γλγ−1µ2

)

(µ−1
2 µ−1

1 ).
An element of the orbifold fundamental group Ga is really a pair, so we must

prove
(

(µ1µ2)(µ
−1
2 γλγ−1µ2)(µ

−1
2 µ−1

1 ), 1
)

∈ G. One checks that this equals

(µ1µ2, R) ·
(

R−1
(

µ−1
2 γλγ−1µ2

)

, 1
)

·
(

R−1
(

µ−1
2 µ−1

1

)

, R−1
)

The last term is the inverse of the first, which G contains by definition. So it suffices
to show that the middle term lies in G, which is obvious: the loop µ−1

2 γλγ−1µ2 lies
in R(B)−H, so its image under R−1 lies in B −H. This finishes case (3).

Next we claim that (1) implies (3). Take U to be any ball around p with U∩H =
U ∩Hp. Then the remaining hypotheses of (3) follow immediately from p ∈ R(B).

Finally we claim that (2) implies (3). By the previous paragraph it suffices to
treat the case that p ∈ ∂R(B). Take U to be any ball around p with U∩H = U∩Hp.

The hypothesis d(R(A), H) < r says that H is not orthogonal to R(A), p. It follows
that R(B) contains elements of H arbitrarily close to p, so U ∩ R(B) ∩ H 6= ∅.
Similarly, d(R(A), H) < r implies the non-tangency of ∂B and ∂R(B) at p. From
this it follows that B ∩ R(B) has elements arbitrarily close to p, hence in U . This
finishes the proof. �

Proof of theorem 1.2. We will apply lemma 3.1 with A = {a}, noting that µa,A,H =
µa,H for all H ∈ M. Write G for the subgroup of Ga generated by the (µa,C , RC)’s.
By the exact sequence (1) and the assumed surjectivity G → PΓ, it suffices to show
that G contains π1(X − H, a). By theorem 1.1 (really, theorem 2.1) it suffices to

show that it contains every aH. We do this by induction on d(a,H).

The base case is H ∈ C, for which we use the fact that aH is a power of
(µa,H , RH). So suppose H ∈ M − C and set r := d(a,H). We may assume, by
theorem 2.1 and the inductive hypothesis, that G contains π1(B −H, a), where B
is the open r-neighborhood of a. Then case (1) of lemma 3.1 shows that G also

contains aH, completing the inductive step. �

4. A monstrous(?) hyperplane arrangement

In this section we give background information on the conjecturally-monstrous hy-
perplane arrangement in CH13 which is the subject of conjecture 1.3 and theorems
1.4 and 1.5. For more information, see [A3][Ba1][Ba2][A4][H].

We write Cn,1 for a complex vector space equipped with a Hermitian form 〈· | ·〉 of
signature (n, 1). The norm v2 of a vector v means 〈v | v〉. Complex hyperbolic space
CHn means the set of negative-definite 1-dimensional subspaces. If V,W ∈ CH13
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are represented by vectors v, w then their hyperbolic distance is

(2) d(V,W ) = cosh−1

√

∣

∣〈v |w〉
∣

∣

2

v2w2
.

If s is a vector of positive norm, then s⊥ ⊆ Cn,1 defines a hyperplane in CHn, also
written s⊥, and

(3) d(V, s⊥) = sinh−1

√

−
∣

∣〈v | s〉
∣

∣

2

v2s2
.

These formulas are from [Go], up to an unimportant factor of 2.
A null vector means a nonzero vector of norm 0. If v is one then it represents a

point V of the boundary ∂CHn. For any vector w of non-zero norm we define the
height of w with respect to v by

(4) htv(w) := −
∣

∣〈v |w〉
∣

∣

2

w2
.

This is invariant under scaling w, so it descends to a function on CHn, which is
positive. The height h horosphere (with respect to v) means the set of W ∈ CHn

with htv(W ) = h. We define open and closed horoballs the same way, replacing
= by < and ≤. (More abstractly, one can define horospheres as the orbits of the
unipotent radical of the PU(n, 1)-stabilizer of V .)

We think of V as the center of these horospheres and horoballs and h as a sort
of generalized radius, even though strictly speaking the distance from any point
of CHn to V is infinite. In particular, if W,W ′ ∈ CHn then we say that W is
closer to V than W ′ is, if htv(W ) < htv(W

′). To see that this notion depends
on V rather than v, one checks that replacing v by a nonzero scalar multiple of
itself does not affect this inequality. (It multiplies both sides by the same positive
constant.) Another way to think about this, at least for points outside some fixed
closed horoball A, is to regard “closer to V ” as alternate language for “closer to A”.
In any case, in our application there will be a canonical choice for v, up to roots of
unity.

Now we describe the particular hyperplane arrangement we will study. We write
ω for a primitive cube root of unity and define the Eisenstein integers E as Z[ω].
The Eisenstein integer ω− ω̄ =

√
−3 is so important that it has its own name θ. An

E-lattice means a free E-module L equipped with a Hermitian form taking values
in E ⊗ Q = Q(

√
−3), denoted 〈· | ·〉 and assumed linear in its first argument and

antilinear in its second. Sometimes we think of lattice elements as column vectors
and 〈· | ·〉 as specified by a matrixM equal to the transpose of its complex conjugate.
Then 〈v |w〉 = vTMw̄.

We define L as the E-lattice Λ⊕
(

0 θ̄
θ 0

)

, where Λ is the complex Leech lattice at
the smallest scale at which all inner products lie in E. (At this scale, Λ has minimal
norm 6 and all inner products are divisible by θ. At the scale used by Wilson [W]
it has minimal norm 9.) Because L has signature (13, 1), we may regard L ⊗E C

as a copy of C13,1. This is just one concrete description of L; see [A4, §3] for
another one. Also, one may describe L abstractly as the unique E-lattice that has
this signature and is equal to θ times its dual lattice. See [Ba1] for a proof of this
uniqueness.



GEOMETRIC GENERATORS FOR BRAID-LIKE GROUPS 13

We define Γ as the isometry group of L, meaning the E-linear automorphisms
that respect the inner product. We write PΓ for the quotient by scalars. It acts
faithfully on CH13. A root of L means a lattice vector of norm 3. If s is a root
then Rs means the ω-reflection in s, which fixes s⊥ pointwise and multiplies s by
ω. Its general formula is

x 7→ x− (1− ω)
〈x | s〉
3

s

and it preserves L because both (1 − ω) and 〈x | s〉 are divisible by θ. One can
replace ω by ω̄ to get the ω̄-reflection R−1

s . We call these triflections since they
are complex reflections of order 3. In [Ba1], it was proved that Γ is generated by
the Rs’s with s varying over the roots of L, and in [Ba2] that a certain set of 14
of them suffices. The hyperplane s⊥ ⊆ CH13 orthogonal to a root s is called its
mirror. We define M as the set of all these mirrors, and H as their union.

If V ∈ ∂CH13 can be represented by a lattice vector v, then we always choose
v to be primitive, i.e., generate the 1-dimensional sublattice representing V . This
defines v up to multiplication by a sixth root of unity, and the corresponding height
function is independent of this factor. Therefore we may regard the function htv as
intrinsic to V . In particular, if p ∈ CH13, and both V, V ′ ∈ ∂CH13 are represented
by lattice vectors, then we sometimes say that p is closer to V than to V ′. This
means htv(p) < htv′(p).

Our goal in section 5 is to find generators for the orbifold fundamental group of
(CH13 − H)/PΓ. We fix the null vector ρ := (0; 0, 1). We would like to use the
corresponding point of ∂CH13 as our basepoint, but cannot because it is not in
CH13. Instead we will use a “fat basepoint”: a closed horoball A centered there
which misses H. Such a horoball exists by the following lemma.

Lemma 4.1. The open horoball
{

W ∈ CH13
∣

∣ htρ(W ) < 1
}

is disjoint from H,

and the mirrors that meet its boundary are the orthogonal complements of the roots

s that satisfy
∣

∣〈ρ | s〉
∣

∣

2
= 3.

Proof. The special property of ρ we need is that it is orthogonal to no roots. This
is clear because ρ⊥ ∼= Λ ⊕ (0) has no vectors of norm 3. Now, if s is a root then
the point of s’s mirror nearest to ρ is represented by the vector projection of ρ to

s⊥, namely p = ρ− 1
3 〈ρ | s〉s. One computes htρ(p) =

∣

∣〈ρ | s〉
∣

∣

2
/3. This is at least 1,

with equality just if
∣

∣〈ρ | s〉
∣

∣

2
= 3. �

5. The Leech meridians generate

The purpose of this section is to prove theorem 1.5, giving generators for the orbifold
fundamental group of (CH13−H)/PΓ, withM,H and PΓ as in the previous section.
We call the following roots of L the Leech roots:

(5) l =

(

λ; 1, θ
(λ2 − 3

6
+ νl

)

)

with λ ∈ Λ and νl ∈ ImC chosen so that the last coordinate lies in E. The set of
possibilities for νl is

1
θ (

1
2 +Z) if 6 divides λ2 and 1

θZ otherwise. What is important

about the Leech roots is that their mirrors l⊥, called the Leech mirrors, are the
elements of M coming closest to ρ. By lemma 4.1, these are tangent to the height 1
horoball.
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It follows from the same lemma that there exists a closed horoball A centered at
ρ = (0; 0, 1) which misses H. Fix any basepoint a ∈ A. By the Leech meridians we
mean the elements of Ga = πorb

1

(

(CH13 − H)/PΓ, a
)

corresponding to the Leech
mirrors, namely the pairs (µa,A,l⊥ , Rl) with l varying over the Leech roots. Here
we are using the notation of section 3. We write G for the subgroup of Ga they
generate. Theorem 1.5 is the assertion that G is all of Ga.

Here is an overview of the proof, which follows that of theorem 1.2. It amounts to
showing that the mirror of any non-Leech root s satisfies one of the hypotheses (1)–

(3) of lemma 3.1. It turns out (lemma 5.2) that if
∣

∣〈ρ | s〉
∣

∣

2
> 21 then the simplest

hypothesis (1) holds. If
∣

∣〈ρ | s〉
∣

∣

2
> 3 then the same method shows that the next

simplest hypothesis (2) holds (lemmas 5.2 and 5.3). For the case
∣

∣〈ρ | s〉
∣

∣

2
= 3 we

enumerate the orbits of roots (?; θ, ?) under the Γ-stabilizer of ρ (lemma 5.1). There
are three orbits, satisfying hypotheses (1), (2) and (3) of lemma 3.1, respectively.
The last orbit is especially troublesome (lemma 5.4). The proof of theorem 1.5 is
basically a wrapper around these results.

A general vector in L⊗ C not orthogonal to ρ has the form

(6) s =

(

σ;m,
θ

m̄

(σ2 −N

6
+ ν

)

)

where σ ∈ Λ ⊗ C, m ∈ C − {0}, N is the norm s2, and ν ∈ ImC. Restricting the
first coordinate to Λ and the others to E gives the elements of L − ρ⊥. Further
restricting N to 3 gives the roots of L, and finally restricting m to 1 gives the
Leech roots. For vectors of any fixed negative (resp. positive) norm, the larger the
absolute value of the middle coordinate m, the further from ρ lie the corresponding
points (resp. hyperplanes) in CH13.

One should think of s from (6) as being associated to the vector σ/m in the
positive-definite Hermitian vector space Λ ⊗E C. By this we mean that the most
important part of 〈s | s′〉 is governed by the relative positions of σ/m and σ′/m′.
Namely, by completing the square and patiently rearranging, one can check
(7)

〈s | s′〉 = mm̄′
[

1

2

(

N ′

|m′|2 +
N

|m|2 −
( σ

m
− σ′

m′

)2
)

+Im
〈 σ

m

∣

∣

∣

σ′

m′

〉

+3
( ν′

|m′|2 −
ν

|m|2
)

]

.

In the rest of this section, s will always denote a root. Caution: we are using the
convention that the imaginary part of a complex number is imaginary; for example
Im θ is θ rather than

√
3.

Lemma 5.1. Suppose λ6, λ9 are fixed vectors in Λ with norms 6 and 9. Then under

the Γ-stabilizer of ρ, every root with m = θ is equivalent to (0; θ,−ω) or (λ6; θ, ω)
or (λ9; θ,−1).

Proof. The Γ-stabilizer of ρ contains the Heisenberg group of “translations”

(l; 0, 0) 7→
(

l; 0, θ̄−1〈l |λ〉
)

Tλ,z : (0; 1, 0) 7→
(

λ; 1, θ−1(z − λ2/2)
)

(0; 0, 1) 7→ (0; 0, 1)

where λ ∈ Λ and z ∈ ImC is such that z − λ2/2 ∈ θE. Suppose s ∈ L has the form
(6) with N = 3 and m = θ. Applying Tλ,z to s changes the first coordinate by θλ.
By [W, p. 153], every element of Λ is congruent modulo θΛ to a vector of norm
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0, 6 or 9, so we may suppose σ has one of these norms. Since AutΛ fixes ρ and
acts transitively on the vectors of each of these norms [W, p. 155], we may suppose
s = 0, λ6 or λ9. That is, s is one of

(0; θ,
1

2
− ν) (λ6; θ,−

1

2
− ν) (λ9; θ,−1− ν).

In each of the three cases, the possibilities for ν differ by the elements of ImE.
Applying T0,z (z ∈ ImE) adds z to the third coordinate of s. Therefore we may
take ν = θ/2, θ̄/2 and 0 in the three cases, yielding the roots in the statement of
the lemma. (These roots are inequivalent under the Γ-stabilizer of ρ, but we don’t
need this.) �

Lemma 5.2. Suppose s is the root (0; θ,−ω) or a root with |m| = 2 or |m| >
√
7,

and define p as the point of s⊥ nearest ρ. Then there is a triflection in a Leech root

that moves ρ closer to p.

Proof of lemma 5.2. This proof grew from simpler arguments used for [A1, thm.
4.1] and [Ba1, prop. 4.2].

We have p = ρ − 1
3 〈ρ | s〉s = ρ + 1

θ m̄s. We want to choose a Leech root l, and

ζ = ω±1, such that the ζ-reflection in l (call it R) moves ρ closer to p. This is
equivalent to 〈p |R(ρ)〉 being smaller in absolute value than 〈p | ρ〉. We will write
down these inner products explicitly and then choose l and ζ appropriately. Direct
calculation gives 〈p | ρ〉 = −|m|2. Also,

R(ρ) = ρ− (1− ζ)
〈ρ | l〉
〈l | l〉 l = ρ+

1− ζ

θ
l.

It turns out that the necessary estimates on 〈p |R(ρ)〉 are best expressed in terms
of the following parameter:

y :=
θ

|m|2 〈p | l〉 =
θ

|m|2
〈

ρ+
m̄

θ
s
∣

∣

∣
l
〉

= − 3

|m|2 +
1

m
〈s | l〉(8)

∈ − 3

|m|2 +
1

m
θE.(9)

First one works out

(10)

∣

∣

∣

∣

〈p |R(ρ)〉
∣

∣〈p | ρ〉
∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

〈p |R(ρ)〉
|m|2

∣

∣

∣

∣

=
∣

∣

1
3 (1− ζ̄)y − 1

∣

∣.

Our goal is to choose l and ζ so that this is less than 1. This is equivalent to
|y − (1− ζ)| <

√
3. Because the choices for ζ are ω±, this amount to being able to

choose l so that y lies in the union V of the open balls in C of radius
√
3 around

the points 1−ω and 1− ω̄. So our goal is to choose l such that y lies in the shaded
region in figure 3.

Now we examine how our choice of l affects y. Choosing l amounts to choosing
λ ∈ Λ, and then choosing νl ∈ ImC subject to the condition that the last coordinate
of (5) is in E. Specializing (7) to the case that s has norm N = 3 and s′ is the
Leech root l gives

〈s | l〉 = m

[

3

2|m|2 +
3

2
− 1

2

( σ

m
− λ

)2

+ Im
〈 σ

m

∣

∣

∣
λ
〉

+ 3
(

νl −
ν

|m|2
)

]

.



16 DANIEL ALLCOCK AND TATHAGATA BASAK

v1 v2

v3v4

v5

−2δ

√
3/|m|

ω
1−ω̄

0
1

ω̄
1−ω

ω

− 1
0 1

ω̄

Figure 3. See the proof of lemma 5.2. V is the union of the gray
(open) disks, which have radius

√
3 and centers 1− ω±1. We seek

a Leech root l so that y lies in this region. U is the closed region
bounded by the solid line, and is where we can arrange for y to
be. U varies with |m|; we have drawn the case |m| =

√
7, when v5

is on the boundary of V , and the case |m| =
√
3, when v4 and v5

coalesce at ω̄. Hollow circles indicate Eisenstein integers.

Plugging this into formula (8) gives

(11) y = − 3

2|m|2 +
3

2
− 1

2

( σ

m
− λ

)2

+ Im
〈 σ

m

∣

∣

∣
λ
〉

+ 3
(

νl −
ν

|m|2
)

.

The covering radius of a lattice in Euclidean space is defined as the smallest
number such that the closed balls of that radius around lattice points cover Eu-
clidean space. The covering radius of Λ is

√
3, because the underlying real lattice

has norms equal to 3/2 times those of the usual Leech lattice, whose covering radius

is
√
2 by [CPS]. Therefore we may take λ so that 0 ≤ (σ/m − λ)2 ≤ 3. It follows

that the real part of (11) lies in [−δ, 3/2− δ] where δ := 3/2|m|2.
Next we choose νl. The only constraint on it is that the last component of

l = (λ; 1, ?) must lie in E. As mentioned after (5), this amounts to: νl ∈ 1
θ (

1
2 +Z) if

λ2 is divisible by 6, and νl ∈ 1
θZ otherwise. In either case, referring to (11) shows

that changing our choice of νl allows us to change y by any rational integer multiple
of θ. So we may take Im y ∈ [−θ, θ]. After these choices we have

(12) Re y ∈ [−δ, 3/2− δ
]

and Im y ∈ [−θ, θ].

There is an additional constraint on y. We have y 6= −2δ since −2δ is not in
the rectangle (12), and since y ∈ −2δ + θ

mE by (9), y lies at distance ≥
√
3/|m|

from −2δ. We define U as the closed rectangle (12) in C minus the open (
√
3/|m|)-

disk around −2δ. We have shown that we may choose a Leech root l such that
y ∈ U . We have indicated U in outline in figure 3; as |m| increases, the rectangle
moves to the right, the center of the removed disk approaches zero, and its radius
approaches zero more slowly than the center does.

Now suppose |m|2 > 7. We claim U ⊆ V . Since we may choose l such that
y ∈ U , and once y is in V we may choose ζ = ω±1 so that ζ-reflection in l moves ρ
closer to p, this will finish the proof in this case. To prove the claim it will suffice
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− 3
4

θ
2 − 3

4

− θ
2 − 3

4

ω

1−ω̄

0
1

ω̄

1−ω

Figure 4. The analogue of figure 3 for the special case |m| = 2 in
the proof of lemma 5.2. The proof shows that y lies in U (bounded
by the solid path) but outside two open disks (indicated by the
dashed arcs), hence in V (the shaded region).

to show that the lower half of U lies in the open
√
3-ball around 1− ω. Obviously

it suffices to check this for the points marked v1, . . . , v5 in figure 3. These are
v1 = −2δ +

√
3/|m|, v2 = 3

2 − δ, v3 = 3
2 − δ − 1

2 i
√
3, v4 = −δ − 1

2 i
√
3 and

v5 = −δ − i

√

3

|m|2 − 9

4|m|4 .

Using |m|2 > 7, one can check that each of these lies at distance <
√
3 from 1− ω.

This finishes the proof of the |m|2 > 7 case. (If |m|2 = 7 then v5 lies in the boundary
of V . If |m|2 = 4 then v4 and v5 are outside the boundary; see figure 4. If |m|2 = 3
then v1 = 0 is on the boundary while v4 = v5 = ω̄ is outside it; see the second part
of figure 3.)

Next we treat the special case s = (0; θ,−ω). Choosing λ = 0 gives Re y = 1 by

(11). Then choosing νl as above, so that Im y lies in i[−
√
3/2,

√
3/2], yields y ∈ V .

So we can move ρ closer to p just as in the |m|2 > 7 case.
Finally, we suppose |m| = 2; we may take m = 2 by multiplying s by a unit.

Recall that once we proved that y lies in the rectangle (12), we could use (9) to
show that y lies outside the open disk used in the definition of U . In fact this
argument shows more. Since δ = 3

8 when |m| = 2, (9) shows y ∈ − 3
4 + θ

2E. Since

− 3
4 ± θ

2 lie in − 3
4 +

θ
2E but not in the rectangle (12), y lies at distance ≥

√
3/2 from

each of them, just as it lies at distance ≥
√
3/2 from − 3

4 . It is easy to check that U

minus the open
√
3/2-balls around − 3

4 ± θ
2 lies in V ; see figure 4. Therefore y ∈ V ,

finishing the proof as before. (One can consider the analogues of these extra disks
for any m. They are unnecessary if |m|2 > 7, and turn out to be useless if |m|2 = 3
or 7.) �

Lemma 5.3. Suppose s is the root (λ6; θ, ω) or a root with |m| =
√
7, and define p

as the point of s⊥ nearest ρ. Then there is a triflection in a Leech root that either

moves ρ closer to p, or else moves ρ closer to s⊥ while preserving ρ’s distance

from p.
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Proof. Suppose first |m| =
√
7. Then the proof of lemma 5.2 goes through unless y

is v5 in figure 3, or its complex conjugate. So suppose y = v5 or v̄5, and take ζ = ω
or ω̄ respectively. The argument in the proof of lemma 5.2, that R moves ρ closer
to p, fails because

∣

∣y− (1− ζ)
∣

∣ equals
√
3 rather than being strictly smaller. But it

does show that R(ρ) is exactly as far from p as ρ is. This is one of our claims, and
what remains to show is that R moves ρ closer to s⊥.

To do this we first solve (8) for 〈s | l〉 in terms of y, obtaining 〈s | l〉 = (3 +
|m|2y)/m̄. Then one works out

∣

∣

∣

∣

〈s |R(ρ)〉
〈s | ρ〉

∣

∣

∣

∣

=

∣

∣

∣

∣

〈s | ρ〉 − 1
θ (1− ζ̄)〈s | l〉
〈s | ρ〉

∣

∣

∣

∣

=

∣

∣

∣

∣

1− 1

3
(1− ζ̄)

( 3

|m|2 + y
)

∣

∣

∣

∣

.

We want this to be less than 1. By copying the argument following (10), this is

equivalent to y + 3/|m|2 lying in open
√
3-disk around 1− ζ. This is obvious from

the figure because y + 3/|m|2 is 3/7 to the right of y = v5 or v̄5. This finishes the

|m| =
√
7 case.

The case s = (λ6; θ, ω) is similar. In this case U appears in figure 3. Taking
λ = 0 leads to Re y = 0, so either y ∈ V (so the proof of lemma 5.2 applies) or else

y = 0 ∈ ∂V . In this case the argument for |m| =
√
7 shows that R(ρ) is just as

close to p as ρ is, and that R moves ρ closer to s⊥. �

Lemma 5.4. Let s = (λ9; θ,−1), define p as the point of s⊥ nearest ρ, and B as

the open horoball centered at ρ, whose bounding horosphere is tangent to s⊥ at p.
Then there exists an open ball U around p with U ∩H = U ∩Hp, and a triflection

R in one of the Leech mirrors, such that B∩R(B)∩U 6= ∅ and R(B)∩U ∩ s⊥ 6= ∅.
Proof. Since we are verifying hypothesis (3) of lemma 3.1, we will use that lemma’s
notation H for s⊥. By definition,

p = ρ− 1
3 〈ρ | s〉s = (−λ9; θ̄, 2).

This has norm −3 and lies in L. One computes htρ(p) = 3, so B is the height 3

open horoball around ρ. We take U to have radius sinh−1
√

1/3. To check that

U ∩H = U ∩Hp, consider a root s′ not orthogonal to p. Then
∣

∣〈p | s′〉
∣

∣ ≥
√
3 since

p ∈ L, so

d(p, s′
⊥
) = sinh−1

√

−
∣

∣〈p | s′〉
∣

∣

2

p2s′2
≥ sinh−1

√

1/3,

as desired.
Next we choose R to be the ω-reflection in the Leech root l = (0; 1,−ω). (We

found l by applying the proof of lemma 5.2 as well as we could. That is, we choose l
so that y in that proof equals the lower left corner ω̄ of the second part of figure 3.)
This yields R(ρ) = (0; ω̄, 0). We must verify R(B)∩U∩H 6= ∅ and B∩R(B)∩U 6= ∅.

Our strategy for R(B) ∩ U ∩ H 6= ∅ is to define p′ as the projection of R(ρ)
to H, parameterize p′p ⊆ H, find the point x where it crosses ∂U , and check
that x ∈ R(B). Here are the details. Computation gives p′ = (ω̄λ9/θ; 2ω̄,−ω̄/θ).
One checks 〈p′ | p〉 = 2ω̄θ̄, so −ωθp′ and p have negative inner product. Therefore
p′p − {p} is parameterized by xt = −ωθp′ + tp with t ∈ [0,∞). One computes
〈xt | p〉 = −3t− 6 and x2

t = −3t2 − 12t− 3, yielding

d(xt, p) = cosh−1

√

∣

∣〈xt | p〉
∣

∣

2

x2
tp

2
= cosh−1

√

t2 + 4t+ 4

t2 + 4t+ 1
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Now, xt lies in ∂U just when this equals sinh−1
√

1/3, yielding a quadratic equation

for t. There is just one nonnegative solution, namely t = 2
√
3− 2. So x = x2

√
3−2.

Then one computes 〈R(ρ) |x〉 = ω̄θ̄(4
√
3− 3), so

htR(ρ)(x) = −
∣

∣〈R(ρ) |x〉
∣

∣

2

x2
= −3

(

57− 24
√
3
)

−27
< 3.

That is, x ∈ R(B) as desired.
Our strategy for B ∩R(B) ∩ U 6= ∅ is to parameterize the geodesic xρ, find the

point y where it crosses ∂B, and check that y lies in R(B) and U . Here are the

details. Computation shows 〈x | ρ〉 = −6
√
3 < 0, so xρ − {ρ} is parameterized by

yu = x + uρ with u ∈ [0,∞). Further computation shows 〈yu | ρ〉 = −6
√
3 and

y2u = −27 − 12u
√
3, so htρ(yu) = 36/(9 + 4u

√
3). Setting this equal to 3 yields

u =
√
3/4, so y = y√3/4. Now one checks that htR(ρ)(y) < 3, so that y ∈ R(B). A

similar calculation proves y ∈ U . (In fact this calculation can be omitted, because
y, p are the projections to ∂B of the two points x, p outside B, but not both in ∂B.
By the negative curvature of CH13 we have d(y, p) < d(x, p) = sinh−1

√

1/3.) �

Proof of theorem 1.5. We will mimic the proof of theorem 1.2 (see the end of sec-
tion 3), using lemmas 5.2–5.4 in place of the “moves a closer to p” hypothesis of
that theorem. Write G for the subgroup of Ga = πorb

1

(

(CH13 −H)/PΓ, a
)

gener-
ated by the Leech meridians, i.e., the pairs (µa,A,l⊥ , Rl) with l a Leech root. We
must show that G is all of Ga. It is known [Ba1] (or [A4] for a later proof) that the
Rl’s generate PΓ. By the exact sequence (1), it therefore suffices to show that G
contains π1(CH

13−H, a). By theorem 2.1 it suffices to show that G contains every

AH, with H varying over M. We do this by induction on the distance from H to
ρ, or properly speaking, on

∣

∣〈ρ | s〉
∣

∣ where s is a root with H = s⊥. The base case is

when s is a Leech root, i.e.,
∣

∣〈ρ | s〉
∣

∣ =
√
3, and we just observe AH = (µa,A,s⊥ , Rs)

3.

Now suppose s is a root but not a Leech root, H = s⊥, p is the point of H
closest to ρ, and B is the open horoball centered at ρ and tangent to H at p. We

may assume by induction that G contains every A, s′⊥ with s′ a root satisfying
∣

∣〈ρ | s′〉
∣

∣ <
∣

∣〈ρ | s〉
∣

∣. It follows from theorem 2.1 that G contains π1(B −H, a).

The smallest possible value of
∣

∣〈ρ | s〉
∣

∣ for a non-Leech root s is 3, occurring when

|m| =
√
3 in (6). In the cases s = (0; θ,−ω), (λ6; θ, ω), resp. (λ9; θ,−1), hypothesis

(1), (2), resp. (3) of lemma 3.1 is satisfied, by lemma 5.2, 5.3, resp. 5.4. If s is
any root with 〈ρ | s〉 = 3 then it is equivalent to one of these examples under the
Γ-stabilizer of ρ, by lemma 5.1. Therefore lemma 3.1 applies to s⊥ for every root s

with
∣

∣〈ρ | s〉
∣

∣ = 3. It follows that G contains the corresponding loops AH.

The next possible value of
∣

∣〈ρ | s〉
∣

∣ is 2
√
3, occurring when |m| = 2 in (6). In

this case lemma 5.2 verifies hypothesis (1) of lemma 3.1, which tells us that G

contains AH. The next possible value of
∣

∣〈ρ | s〉
∣

∣ is
√
21, occurring when |m| =

√
7.

In this case lemma 5.3 verifies hypothesis (2) of lemma 3.1, which tells us that G

contains AH. The general step of the induction is essentially the same. If
∣

∣〈ρ | s〉
∣

∣

is larger than
√
21, then |m| is larger than

√
7, so lemma 5.2 verifies hypothesis (1)

of lemma 3.1. This tells us that G contains AH, completing the inductive step. �
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