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Abstract

We generalize a theorem of R. Thomas, which sometimes allows one to tell by inspection that a finitely
presented group G is infinite. Groups to which his theorem applies have presentations with not too many
more relators than generators, with at least some of the relators being proper powers. Our generalization
provides lower bounds for the ranks of the abelianizations of certain normal subgroups of GG in terms of their
indices. We derive Thomas’s theorem as a special case.

1. Introduction

There is a very simple theorem which states that any group with a presentation with at least one more
generator than relations is infinite. To see this, one simply abelianizes the group and uses linear algebra to
conclude that the abelianization is infinite. It is also classical that the (p, ¢, r) triangle group, given by the
presentation

(a,b|1=a? =b? = (ab)"),

is infinite when 1/p+1/g+1/r < 1. One sees this by realizing the triangle group as a group of transformations
of the Euclidean plane or the hyperbolic plane, and simply observing that the group is infinite. (See [3].)

It is remarkable that these two facts stem from the same source: In [4], R. Thomas showed that when a
certain technical condition applies, a relator which is a pth power only counts as “1/p of a relator” for the
purpose of comparing the number of generators with the number of relations. His theorem sometimes allows
one to conclude “at a glance” that a group is infinite. We will state his result precisely, as a corollary of our
main theorem.

We generalize Thomas’s theorem by obtaining information about the ranks of the abelianizations of certain
subgroups of a group G, if G has a presentation with at least one more generator than relators (when relators
which are powers are counted as “fractions of relators”). The proof is simple and geometric; our principal
tool is elementary homology theory.

In [2] G. Bergman has obtained a further generalization of Thomas’s theorem, which allows one to obtain
results similar to ours for groups with somewhat more complicated presentations than the ones we treat.
His techniques are algebraic and considerably more sophisticated than ours. He also surveys related results.

This paper is derived from part of the author’s Ph.D. dissertation [1].

2. Theorem and Proof

THEOREM. Let G be a group with presentation

ajy...0p = w = ... =qm
1 T I

where each w; is a word in the a; and their inverses. Suppose that H is a normal subgroup of G of index
N < oo and that for each j, w;“ & H for k=1,...,7; — 1. Then the rank of the abelianization of H is at

least
1
1+N —-1- — .
+ <n Z Ti)

7
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Proof. We begin by building the 2-dimensional CW complex K associated to the presentation. K has
one 0-cell, n 1-cells, and m 2-cells; the 1-cells are identified with the generators a; of G, and the 2-cells
are attached according to the relators w;j . The fundamental group of K is isomorphic to G. The Euler

characteristic x(K) is equal to 1 —n + m, and so the covering space K associated to the subgroup H of G
has Euler characteristic x(K) = N(1 —n 4 m). Since K is connected and only has cells in dimensions < 2,
Ho(K) = Z and H;(K) = 0 for k > 2. The abelianization of H is isomorphic to H;(K); we will estimate the
rank of Hy(K) and this will give us the needed information about the rank of Hy(K).

Take a close look at K. Its l-skeleton is a copy of the Cayley graph I' of G/H with respect to the
generating set {a,...,an}. Attached to it are Nm 2-cells, since there are N lifts of each 2-cell of K. For
each vertex v of I and for each j there is a 2-cell of K whose boundary is the closed edge-path beginning

at v and tracing out the path w;j . Fix 7 and observe that the 2-cells associated to the vertices v - w;? (as k

varies from 1 through r;) all have the same boundary. Furthermore, since wf & H for each k =1,...,7;,
these are distinct vertices and so we obtain r; disks all sharing a common boundary. There is one such set
of r; disks for every set {v - wf |k =1,...,r;}, so there are a total of N/r; such sets.

We may form a new complex L from K by removing r; — 1 two-cells from each such set of r;, for each
j=1,...,m. We can rebuild K from L by simply replacing the removed 2-cells. Since the boundary of
each adjoined disk is already a boundary in L, a simple Mayer-Vietoris argument shows that adjoining any
of these 2-cells to L increases the rank of the second homology of the complex. Therefore rank(Hy(K)) is at
least equal to the number of 2-cells added to L to obtain K. For each j, there are N /1; sets of disks, and so

after summing over j we obtain

rank (Hy(K)) > Z r_]\;(rj —1).

Since

X(K) = N(1 —n+m) = rank Hy(K) — rank H;(K) + rank Hy(K),

we see that

m
N(1=n+m)>1—rank H(K)+ Y N(1-1/r;).
j=1
Rearranging terms, we obtain the claimed result. |
COROLLARY [4]. Let G be a group with presentation
(a1...an |1 =w* = - =wm)

where each of the w; is a word in the a; and their inverses, and where the order in G of each w; is actually
r; (i-e., no collapsing takes place). Then G is infinite if

1 1
n>1+—4---4+—.
1

'm

Proof. If G were finite then the trivial subgroup would have finite index. The theorem would imply that
this subgroup had abelianization of positive rank, which is absurd.

3. Examples

We can use the theorem to study the groups (p,q,r) for 1/p+1/q+1/r < 1. A presentation for this group
G is
(a,b]1=aP =b? = (ab)").
The usual proof that |G| = oo involves realizing (p,q,r) as a group of isometries of either the Euclidean
plane or hyperbolic plane. We proceed instead by exhibiting a representation of (p,¢,r) to a finite group
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such that the images of a, b and ab have orders p, g and r, respectively. The corollary then yields the order
of G, and we can use the theorem to estimate the ranks of the abelianizations of subgroups of G. Let F be a
finite field containing primitive 2pth, 2¢th and 2rth roots of unity. (One can construct such a field by taking
a prime ¢ not dividing 2p, 2¢ or 2r, and then taking F' to be the field of order ™ where ¢" is congruent to 1
modulo each of 2p, 2¢ and 2r.) Let «, # and « be such roots. Let A and B be the matrices

A:(?; all) and B:(f ﬂ01>,

where we will choose z later. Since the roots of the characteristic equations for A and B lie in F' and are
distinct, the matrices are diagonalizable and have orders 2p and 2q. One checks that the characteristic
polynomial of AB is (as a polynomial in the symbol \)

M4+ A—aB—a 17 +1 - Az

We may obviously choose x so that 7 is a root of this polynomial, so AB has an eigenvalue v and thus is
conjugate to an upper-triangular matrix M. Since AB has determinant 1, the diagonal entries of M are
and 7~ !. Since these are distinct and lie in F, AB is diagonalizable and has order 2r. Working modulo
{£I}, we find that the images of A, B, and AB in PSLs(F) have orders p, ¢, and . Therefore the map
a — A and b — B defines a homomorphism from G to PSLy(F). We also see that a, b and ab have orders
p, ¢ and r in G, and by the corollary we conclude that (p, g, r) is infinite.

Now we use our theorem to estimate the ranks of abelianizations of subgroups of the kernel K of this
representation. If H C K is a normal subgroup of G then in the “Euclidean” case (1/p+1/q+1/r =1), we
find that the abelianization of H has rank at least 1, and that in the “hyperbolic” case (1/p+1/q¢+1/r < 1),
the estimate of the rank grows linearly with the index of the subgroup. One can show that in the Euclidean
case, K = Z? and so actually has rank 2; in the hyperbolic case, K is isomorphic to the fundamental group
of a surface of genus > 1 and so its proper subgroups are fundamental groups of surfaces of still larger genus,
and so have larger abelianizations. Our theorem provides a purely algebraic approach to this topological
fact.

For n > 3, the presentation {a,b|1 = a™ = a™™! = b" = b"*!) of the trivial group shows that the no-
collapsing hypothesis of the corollary is essential. In [4], Thomas gives a much more subtle presentation of
the trivial group that also shows the need for the the no-collapsing hypothesis.
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