
MAXIMAL INTEGRAL ORTHOGONAL GROUPS

DANIEL ALLCOCK

Abstract. Consider a nondegenerate quadratic space V over the
rational or p-adic numbers. Over the rational numbers, suppose
V is indefinite of dimension at least 3. Among the orthogonal
groups of lattices in V , we determine which are maximal under
inclusion. For each maximal group, we find all the elementary
lattices it preserves.

1. Introduction

Suppose V is a nondegenerate quadratic space over Q resp. Qp. Among
the subgroups of its orthogonal group O(V ) are the orthogonal groups
of lattices in V . Such a subgroup will be called maximal if it is maximal
under inclusion among all such subgroups. This is the only notion of
maximality we will consider; in the p-adic case it is equivalent to being
maximal among compact subgroups of O(V ). In this paper we find all
of O(V )’s maximal subgroups, unconditionally in the local case, and
under the assumption that V is indefinite of dimension ≥ 3 in the
global case.

A lattice in V means a Z- resp. Zp-submodule L for which the natural
map from L⊗Q resp. L⊗Qp to V is an isomorphism. The dual lattice
L∗ means the sublattice of V consisting of all vectors having integral
(ie Z- resp. Zp-valued) inner products with all elements of L. We call
L integral if L ⊆ L∗. In this case, the finite group L∗/L is called the
discriminant group of L and written ∆(L). We call L elementary if it
is integral and ∆(L) is a direct sum of cyclic groups of prime order.

If L is any lattice in V , then it is standard that its orthogonal group
O(L) preserves an elementary lattice in V . (Following Watson [7], first
scale L to make it integral. Then, supposing ∆(L) has an element of
order p2 with p a prime, enlarge L by adjoining pL∗ ∩ 1

p
L. This gives

an integral lattice with smaller discriminant group. Repeating this
process gives a sequence of integral lattices, with ascending isometry
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groups, terminating with an elementary lattice.) Therefore we may
restrict attention to elementary lattices when searching for the maximal
subgroups of O(V ).

Theorem 1.1 (Elementary Zp-lattices with maximal isometry groups).
Suppose p is a prime, E is an elementary Zp-lattice, and V = E ⊗Qp.

(1) If p is odd, then O(E) is maximal, and preserves no elementary
lattice in V other than E.

(2) If p = 2, then O(E) is maximal if and only if E is one of

(1.1) 1odd··· 2odd··· 1···II2
···
II

1odd··· 2···II

1···II2
odd
···

1···±22
···
II

1···II2
···
±2

(1+1
±1 or 1

−1
±3)2

···
0

1···0 (2
+1
±1 or 2

−1
±3)

1···0

2···0 .

We assume a command of 2-adic lattices in the language developed
by Conway and Sloane; see section 2 for details and references. The
notation “· · · ” means “any/all possible values that are consistent with
the data given explicitly”. The next theorem describes when several
elementary 2-adic lattices share the same maximal orthogonal group.
The lattices Eeven, Eex and Eex appearing in the statement are the
even sublattice of E and the “exceptional” sublattice and superlattice.
When relevant, the last two are defined in lemmas 4.4 and 4.5.

Theorem 1.2 (Maximal orthogonal groups over Z2). Suppose V is a
nondegenerate quadratic space over Q2. Then each maximal subgroup of
O(V ) coincides with O(E) for exactly one lattice E in V with isometry
type among

(1.2) 1odd··· 2odd··· 1···II2
···
II 1odd··· 2···II 1···II2

odd
··· 1···±22

···
II

Furthermore, O(E) preserves no elementary lattice in V other than E,
except as follows:

E from (1.2) elementary lattice with same orthogonal group

1···II2
+2
II Eex ∼= 1···0

1+2
II 2

···
II Eex

∼= 2···0

(1+3
±1 or 1

−3
±3)2

···
II Eex

∼= (1+1
±1 or 1

−1
±3)2

···
0

1···II(2
+3
±1 or 2

−3
±3) Eex ∼= 1···0 (2

+1
±1 or 2

−1
±3)

1±d
t∈{2,−2}2

···
II Eeven

∼= 1
+(d−2)
II 2···±t

In particular, only if E ∼= 1+2
II 2

+2
II does O(E) preserves more than two

elementary lattices in V . In that case it preserves exactly three, the
other two being isometric to 1+4

0 and 2+4
0 .

Corollary 1.3 (Maximal compact subgroups). Suppose p is a prime
and V is a nondegenerate quadratic space over Qp. If p is odd, define
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M as the set of elementary lattices in V . Otherwise, define M as the
set of lattices in V having one of the forms (1.2). Then E 7→ O(E) is a
bijection from M to the set of maximal compact subgroups of O(V ). □

Our final results shows that the global situation is a simple combina-
tion of the local situations. If E is an elementary Z-lattice, such that
one of the 2-adic operations E2 7→ (E2)even, (E2)ex or (E2)

ex appearing
in theorem 1.2 is defined, then we regard that operation as also acting
on E. It alters E2 as before and leaves Ep unchanged for all odd p.

Theorem 1.4 (Elementary Z-lattices with maximal isometry groups).
Suppose L is an indefinite elementary Z-lattice of dimension ≥ 3, and
V = L ⊗ Q. Then O(L) is maximal in O(V ) if and only if O(L2) is
maximal in O(V2), ie if and only if L2 appears in (1.1).
Furthermore, in this case

(1) M 7→ M2 is a bijection from the O(L)-invariant elementary
lattices in V to the O(L2)-invariant elementary lattices in V2.

(2) There is a unique O(L)-invariant elementary lattice E whose
completion at 2 appears in (1.2).

(3) The elementary lattices in V , that are preserved by O(L) =
O(E), are E and whichever of Eeven, Eex and Eex arise by al-
tering E2 as in theorem 1.2

(4) There are at most two O(L)-invariant elementary lattices in V ,
except that there are exactly three if L2

∼= 1+2
II 2

+2
II , 1

+4
0 or 2+4

0 .

Corollary 1.5 (Maximal orthogonal groups over Z). Suppose V is an
nondegenerate quadratic space over Q, indefinite of dimension ≥ 3. Let
M be the set of elementary lattices E in V for which E2 appears in
(1.2). Then E 7→ O(E) is a bijection from M to the set of maximal
subgroups of O(V ). □

We summarize the paper; details and additional background appear
in the indicated sections. As preparation for the local case at a fixed
prime p, section 3 considers the action of O(V ) on a simplicial com-
plex E whose vertices are the elementary lattices in V . This complex
is CAT(0), a metric space property that implies: the fixed-point set,
of any compact group of isometries, is nonempty and convex. For ex-
ample, affine buildings are well-known to be CAT(0). The complex E
resembles the affine Bruhat-Tits building for SO(V ), but is different if
p = 2. It seems likely that its full subcomplex, on the vertices corre-
sponding to the set M of lattices from corollary 1.3, coincides with the
Bruhat-Tits building.
Theorem 3.6 shows that the neighbors in E of a given elementary

lattice E are indexed by certain subspaces of E/pE∗ and ∆(E). This
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makes it possible to understand how O(E) permutes them. Section 4
is devoted to working out which ones are O(E)-invariant. When there
are none, it follows that O(E) is maximal; see the argument after
lemma 3.4. This always applies if p is odd, but the p = 2 case is
complicated and requires much more work.

Section 4 also examines the neighbors which are invariant under the
spinor norm 1 subgroup Θ(E) of SO(E). This lets us use the strong
approximation theorem in section 5 to study the global case. In most
cases this is easy, but sometimes Θ(E) is “not big enough” and addi-
tional effort is required.

Our motivation for this work is the classification problem of integer
lattices L, of Lorentzian signature, whose isometry groups are gener-
ated up to finite index by reflections. The resulting Coxeter groups
act on hyperbolic space with finite-volume fundamental domains, and
are interesting from many perspectives. The cases with O(L) maximal
are the most interesting. As described on p. 9 of Scharlau’s proposed
classification in the rank 4 case [6], we need to be able to recognize the
maximal groups and distinguish them from each other. We wrote this
paper so that we could rigorously prove his classification and extend it
to higher rank.

2. Background

The norm r2 of a vector r means the self inner product r · r.
We will follow the convention that ⊆ and ⊂ indicate containment

and strict containment respectively. And similarly for ⊇ and ⊃.
In this paper, all vector spaces are finite-dimensional with ground

field Q, Qp or Fp. A Z- resp. Zp-lattice means a free Z- resp. Zp-
module equipped a symmetric bilinear form taking values in Q resp.
Qp. Unfortunately, “lattice” has another common meaning that we will
also need. In a clearly marked passage at the beginning of section 3,
a lattice in a given vector space V over Q resp. Qp, means a Z- resp.
Zp-submodule that spans V . Usually V will be a quadratic space, in
which case the definitions are equivalent.

If d1, . . . , dn are numbers, then ⟨d1, . . . , dn⟩ means the lattice having
inner product matrix with d1, . . . , dn down the main diagonal and 0’s
elsewhere. Otherwise, the brackets ⟨· · · ⟩ contain lattice vectors, resp.
elements and/or subgroups of a group. Then the notation means the
sublattice resp. subgroup that they generate.

We already defined the dual L∗ of a nondegenerate lattice L, inte-
grality, and (for integral lattices) the discriminant group ∆(L). The
determinant det(L) of L means the determinant of the inner product
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matrix of any basis for L. This lies in Q resp. Qp, and is well-defined
up to squares of units in Z resp. Zp. For p a prime and L a Z- or Zp-
lattice, we write detp(L) for the power of p involved in det(L). When
L is integral we also write ∆p(L) for the subgroup of ∆(L) consisting
of elements with p-power order; it is standard that |∆p(L)| = detp(L).

We also defined elementary lattices and what we mean by a maximal
subgroup of O(V ), and explained why every lattice stabilizer preserves
an elementary lattice. A lattice over Z or Z2 is called even if all its
elements have even norm, and odd otherwise.

A root of a lattice L means a primitive lattice vector, of nonzero
norm, whose reflection x 7→ x− 2x·r

r2
r preserves L. This reflection fixes

pointwise its “mirror” v⊥, and negates v. Given a primitive vector
r ∈ L, it is standard that r is a root of L if and only if r ·L ⊆ 1

2
r2Z. In

lemma 5.2 we give a sufficient local condition for the existence of roots
of given norms in Z-lattices.

Suppose L is integral. Then ∆(L) has a nondegenerate symmetric
bilinear pairing taking values in Q/Z resp. Qp/Zp. Given two elements
of ∆(L), one chooses vectors in L∗ representing them, evaluates their
inner product, and reduces mod Z resp. Zp. Similarly, vectors in L/pL
have well-defined inner products mod p. Two special phenomena occur
for p = 2. First, if L is integral, then the norm of an element of L/2L,
a priori well-defined mod 2, is actually well-defined mod 4. Second, if
L is even, then norms of elements of ∆(L), a priori well-defined mod 1,
are actually well-defined mod 2.

We use a superscript × to indicate the group of units of a ring, eg Z×
p

and Q×
p . The spinor norm is a homomorphism SO(V ) → Q×/(Q×)2

resp. Q×
p /(Q×

p )
2; see [4, Cor. 3 of Thm. 10.3.1]. If g ∈ SO(V ) is

expressed as the composition of the reflections in r1, . . . , rk ∈ V , then
its spinor norm is the square class of r21 · · · r2k. That this is a well-
defined homomorphism is standard (albeit non-obvious). The kernel
of the spinor norm homomorphism is written Θ(V ). If L is a lattice
in V , then O(L) and Θ(L) are defined as the subgroups of O(V ) and
Θ(V ) that preserve L. If L is a Z-lattice in V , then we write Lp for
L⊗Zp and Vp for V ⊗Qp. We will need the following form of the strong
approximation theorem [4, Cor. to Thm. 10.7.1]: if L is indefinite with
dimension ≥ 3, then Θ(L) is dense in each Θ(Lp).
The Conway-Sloane calculus for p-adic lattices is explained in [5]

and (in more detail for p = 2) in [2]. Briefly, for odd p, an isometry
type of unimodular p-adic lattice L is represented by a symbol 1±d,
where d = dimL and the sign is the Kronecker symbol (detL

p
). In

particular, the superscript is not a signed integer but two separate
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pieces of information. Each isometry type of unimodular 2-adic lattice
is represented by a symbol 1±d

II or 1±d
t , where II is a formal symbol

and t ∈ Z/8. The superscript has the same meaning as for odd p.
The type of L is defined as I or II according to whether L is odd or
even. A subscript II means L has type II. The two-dimensional even
unimodular lattices are 1+2

II
∼=

(
0 1
1 0

)
, and 1−2

II
∼=

(
2 1
1 2

)
. Otherwise, L

has type I and is diagonalizable over Z2, and the subscript is the sum
(mod 8) of the norms of any orthogonal basis. It is called the oddity
of L. When we wish to indicate that L has type I, but do not need to
name the subscript, we sometimes write it as I.

Now suppose L is got by scaling the inner product on a unimodular
Zp-lattice by pk. The type (I or II) and symbol of L are defined to
be that of the unimodular lattice, except that the central “1” in the
symbol is replaced by the scale factor pk. For example, 2+2

II
∼=

(
0 2
2 0

)
over

Z2 and 49−2 ∼=
(
49 0
0 −49

)
over Z7. A chain of such symbols, for example

1−7
3 2+2

2 or (1
7
)+149−2, indicates the direct sum of those lattices. Every

Jordan decomposition of a Zp-lattice yields such a chain, which we call
the Conway-Sloane symbol (of that Jordan decomposition). For odd p,
any two Jordan decompositions are equivalent by a lattice isometry, so
one can speak of the Conway-Sloane symbol of the lattice.

The direct sum of two scaled unimodular p-adic lattices, with the
same scale, is easy to express in terms of the notation: dimensions
add, signs multiply, and subscripts add (when present). The addition
of subscripts includes the formal rules II + II = II and II + t = t. For
example, 1+2

II 2
+2
2 4−2

II ⊕ 1−3
5 2+3

5 4+2
II

∼= 1−5
5 2+5

−14
−4
II .

Over Z2, a lattice may have inequivalent Jordan decompositions,
hence several distinct symbols. Two symbols represent isometric lat-
tices if and only if they are related by sequences of certain “moves”.
These are called sign walking (example: 1+3

5 2+2
II

∼= 1−3
1 2−2

II ) and oddity
fusion (example: 1−7

3 2+2
2

∼= 1−7
5 2+2

0 ). See the references for details, in-
cluding an alternate notation (example: [1−72+2]5) in which all oddity
is already fused.

When we include “· · · ”, or other ambiguous notations in one of these
symbols, we mean “any/all possible values that are consistent with
data given explicitly”. Multiple ambiguities in the same context are
not assumed to have any particular relationship with each other, except
that all ambiguous signs ± and ∓ are linked in the standard way. For
example, in (1.1), 1odd··· 2odd··· means “any elementary Z2-lattice whose
Jordan constituents are odd-dimensional”. The signs may be arbitrary,
and the subscripts may be arbitrary subject to the constituents being
legal (ie that such a lattice exists). Legality amounts to:
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(i) type II constituents have even dimension,
(ii) every constituent’s subscript and dimension have the same parity,
(iii) all scalings of 1+1

±3, 1
−1
±1, 1

+2
4 , 1−2

0 are illegal, and
(iv) every 0-dimensional constituent has sign + and type II.

For a more complex example, the last line in the table in theorem 1.2
applies to all 2-adic lattices E ∼= “1±d

t∈{2,−2}2
···
II ”. That is, to all E ∼=

1δdt 2εeII , where t ∈ {2,−2} ⊆ Z/8 (by hypothesis), d is a positive even
integer (even because t is, nonzero because its constituent has type I),
e is a nonnegative even integer (since its constituent has type II), and
the signs δ, εmay be chosen arbitrarily (except that ε = + when e = 0).
The illegality of constituents 1+2

4 and 1−2
0 is irrelevant because t ̸= 0, 4.

The table says “Eeven
∼= 1

+(d−2)
II 2···±t”. See (4.3) for the computation of

even sublattices; here we consider only the meaning of the notation.

We will deduce that it means Eeven
∼= 1

+(d−2)
II 2

δε(e+2)
δt . The subscript δt

reflects that δ is our name for the sign written “±” in the table. The
second constituent’s sign is δε, because the product of all signs is an
invariant of quadratic spaces. The second constituent has dimension
e + 2, because the total dimension is also invariant. This finishes the
“decryption” of the notation. If d > 2, then sign walking allows the

alternate description Eeven
∼= 1

−(d−2)
II 2

(−δε)(e+2)
δt+4 . But when d = 2, this

would include the illegal constituent “1−0
II ”.

Next we recall an operation on p-adic lattices called “rescaled dual-
ity”. For our purposes, it turns out that understanding an elementary
lattice is equivalent to understanding its rescaled dual. Attaching a
superscript in brackets to a lattice (resp. quadratic space), eg L[p], in-
dicates the same underlying module (resp. vector space) with all inner
products scaled by that factor. If L is a nondegenerate p-adic lattice,
then its “rescaled dual” L′ means the lattice in (L⊗Qp)

[p] defined by
L′ = L∗[p]. If a lattice L has index pk in another lattice M , then L′

contains M ′, also with index pk. This follows immediately from the
corresponding property of dual lattices.

Jordan decompositions of a p-adic lattice L will always be expressed

in the form L = ⊕L
[pi]
i where the Li are unimodular and i varies over

a finite subset of Z. Given such a Jordan decomposition, we have

L∗ = ⊕ p−iL
[pi]
i and therefore L′ = ⊕ p−iL

[p1+i]
i

∼= ⊕L
[p1−i]
i

(Note that p−iLi
∼= L

[p−2i]
i .) It follows that L′′ ∼= L. Furthermore, if L

is elementary, ie L = L0 ⊕ L
[p]
1 , then L′ ∼= L1 ⊕ L

[p]
0 . That is, priming

“swaps” the unimodular and non-unimodular Jordan constituents of
an elementary lattice. For example, (1+5p−3)′ ∼= 1−3p+5 when p is odd,
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and (1−6
II 2

+3
3 )′ ∼= 1+3

3 2−6
II , and (1−7

3 )′ ∼= 2−7
3 for p = 2. We record this for

later use:

Lemma 2.1 (Rescaled duality). Suppose V is a nondegenerate qua-
dratic space over Qp. Then the rescaled duality operation L 7→ L′

sends the elementary lattices in V bijectively to those in V [p], reverses
inclusions, and preserves indices of inclusion. □

Rescaled duality has some additional interesting properties that are
not essential for us; see the end of section 3.

3. The simplicial complex E of elementary lattices

Fix a prime p and a vector space V overQp of dimension n. In this para-
graph and the next, a lattice means a finitely generated Zp-submodule
of V which spans V . The homothety classes of lattices in V are the
vertices of a certain (n − 1)-dimensional simplicial complex B, called
the affine Bruhat-Tits building for SL(V ). For each lattice L, we write
vL for the vertex of B it represents. Two vertices are joined by an edge
just if they are represented by lattices L,M satisfying L ⊃ M ⊃ pL.
(This is a symmetric relation.) More generally, a set of vertices span
a simplex just if they are represented by lattices L0, . . . , Lk for which
L0 ⊃ L1 ⊃ · · · ⊃ Lk ⊃ pL0. See [1, Sec. 6.9] for background.

We metrize B in the standard way, identifying each (n− 1)-simplex

with a fixed simplex of Coxeter type Ãn−1 in Euclidean space Rn−1.
The recipe is that if lattices L0 ⊃ · · · ⊃ Ln−1 ⊃ pL0 represent the
vertices v0, . . . , vn−1 of an (n − 1)-simplex σ, then the facets opposite
vi, vi+1 make dihedral angle π/3, where we read subscripts mod n. All
other dihedral angles are π/2. This makes B into a complete CAT(0)
metric space [1, Thm. 11.16(2)] [3, Thm. II.10A.4], on which GL(V )
acts by isometries. ([3] is a standard reference for CAT(0) spaces.)

Now suppose V is equipped with a nondegenerate inner product.
Then the lattices of the previous two paragraphs are lattices in this
paper’s usual sense. We write δ for the duality map δ(L) = L∗ on the
set of lattices in V , and also for the induced automorphism vL 7→ vL∗

of B. Because B is CAT(0), geodesics (isometric embeddings of inter-
vals) are unique given their endpoints. It follows that the fixed-point
set E is nonempty, convex (a geodesic lies in E if its endpoints do) and
CAT(0). The orthogonal group O(V ) acts on E , because orthogonal
transformations respect duality.

Except in degenerate cases, E is not a subcomplex of B. But it still
has a natural simplicial complex structure. The simplices are the fixed-
point sets of δ inside the δ-invariant simplices of B. The following easy
lemma shows that these fixed-point sets are simplices:
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Lemma 3.1. Suppose a group acts on a simplex. Then its fixed point
set is also a simplex.

Proof. Writing σ for the simplex and v0, . . . , vn−1 ∈ Rn−1 for its ver-
tices, every point of σ has a unique expression as a convex combination
of the vi, ie as

∑
aivi where the ai are nonnegative and sum to 1.

The point is invariant if and only if ai = aj whenever vi and vj lie in
the same orbit. Therefore the fixed-point set is the convex hull of the
barycenters of the orbits of the vi. No point in this convex hull has
more than one expression as a convex combination of the barycenters,
or else that point would have more than one expression as a convex
combination of the vi. Therefore the barycenters are the vertices of
a nondegenerate (k − 1)-simplex in Rn−1, where k is the number of
barycenters. □

Lemma 3.2 (Vertices of E).
(1) A vertex v of B is δ-invariant just if it is represented by a lat-

tice E satisfying E = E∗ or pE∗.
(2) A vertex v of B is adjacent (or equal) to δ(v) just if {v, δ(v)} =

{vE, vE∗} for some elementary lattice E.
(3) The vertices of E are in bijection with the elementary lattices

in V , with such a lattice E corresponding to

wE =

{
vE if vE = vE∗

the midpoint of the edge vEvE∗ otherwise.

Proof. (1) follows from (2), because an elementary lattice E and its
dual represent the same vertex of B if and only E = E∗ or E = pE∗.

(2) Suppose E is elementary, with Jordan decomposition E = E0 ⊕
E

[p]
1 . Then E∗ = E0 ⊕ 1

p
E

[p]
1 lies between E and 1

p
E, so vE∗ is adjacent

(or equal) to vE. Now suppose a vertex v of B is adjacent (or equal) to

δ(v). Represent v by a lattice L with Jordan decomposition ⊕i≥0 L
[pi]
i .

Let m resp. M be the smallest resp. largest i for which Li ̸= 0. Then

L∗ = ⊕M
i=m p−iL

[pi]
i , and the smallest multiple of L∗ that lies in L is

pML∗ = ⊕M
i=m pM−iL

[pi]
i . Since v and δ(v) are adjacent (or equal),

this must contain pL, which forces m = M − 1 or M . That is, L
has at most 2 constituents, and if there are 2 then their scales are
consecutive powers of p. By replacing L by a homothetic lattice, we

may suppose L = L0 ⊕ L
[p]
1 or L

[1/p]
−1 ⊕ L0. (Note: piL ∼= L[p2i].) We

define E as L or L∗ respectively. Then E is an elementary lattice with
{vE, vE∗} = {v, δ(v)}.

(3) We apply lemma 3.1 to the subgroup Z/2 of Aut(B) generated
by δ. This shows that the vertices of E are (i) the δ-invariant vertices
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of B, and (ii) the midpoints of segments v δ(v), where v is a vertex of
B that is not equal to δ(v) but is adjacent to it. Now we may quote
(1)–(2). □

Lemma 3.3. For every g ∈ O(V ), g acts trivially on every simplex of
E that it preserves.

Proof. Suppose the given simplex has vertices wE1 , . . . , wEk
, where E1,

. . . , Ek are elementary lattices. By the definition of E , this simplex is
the fixed point set of δ in some δ-invariant simplex of B. Every simplex
of B containing wEi

contains vEi
and vE∗

i
, so collectively the vEi

and
vE∗

i
form the vertices of the smallest simplex σ of B that contains all

the wEi
. Obviously δ acts on σ, with fixed point set equal to the given

simplex of E . Because g permutes the wEi
, it permutes the vertices of σ.

So it is enough to prove that g acts trivially on σ. This is essentially a
standard fact about how GL(V ) permutes the SL(V )-orbits of vertices
in B. (The key property is that every orthogonal transformation has
determinant in Z×

p .) But we give a direct proof.
Choose any vertex of σ, say vL0 with L0 a lattice in V ; we must show

that g(L0) is homothetic to L0. Choose additional lattices L1, . . . , Ll,
that represent the other vertices of σ and satisfy L0 ⊃ L1 ⊃ · · · ⊃
Ll ⊃ pL0. Writing pci for [L0 : Li], we have det(Li) = p2ci det(L0), and
for i ̸= 0 we also have 0 < ci < n = dimV . The determinants of the
lattices homothetic to Li are p2ci+2nj det(L0), where j varies over Z.
Observe

det(g(L0)) = det(g)2 det(L0) = (±1)2 det(L0) = det(L0).

Because g(L0) is homothetic to some Li, we have 0 = 2ci + 2nj for
some i and j, which forces i = j = 0. □

Lemma 3.4. If G is a subgroup of O(V ) with compact closure, for
example the isometry group of a lattice in V , then the fixed-point set of
G in E is nonempty, and is the convex hull of the G-invariant vertices
of E.
Proof. Any compact group, acting on any complete CAT(0) metric
space, has nonempty convex fixed-point set. (See [1, Thm 11.23] for
the existence of a fixed point; convexity follows from the uniqueness
of geodesics.) Now suppose G fixes a point of E , and write σ for the
unique smallest simplex of E that contains it. Lemma 3.3 shows that
each vertex of σ is G-invariant, proving the last claim. □

We can now explain our strategy for proving theorems 1.1 and 1.2.
We are searching for the lattice stabilizers in O(V ) that are maximal
among lattice stabilizers. By lemma 3.4, this is the same as looking for
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the vertex-stabilizers in O(V ), under its action on E , that are maximal
among vertex-stabilizers. It is elementary that a vertex-stabilizer is
maximal in this sense if, and only if, it is the full stabilizer of each
vertex that it fixes. So our problem is reduced to the following: for
each elementary lattice E in V , determine whether O(E) is the full
O(V )-stabilizer of every O(E)-invariant vertex in E .

By lemma 3.4, any two O(E)-invariant vertices of E are joined by
a chain of such vertices. Therefore we may find all O(E)-invariant
elementary lattices by first examining the O(E)-invariant neighbors
of wE, then their O(E)-invariant neighbors, and so on. If at any point
in this exploration process we find that O(E) fixes some vertex wF , but
is strictly smaller than O(F ), then we recognize O(E) as non-maximal,
and stop. Otherwise, we will eventually find all O(E)-invariant vertices.
And in the process of finding them, we will have checked that O(E) is
the full stabilizer of each, proving O(E) maximal.

We carry out this procedure in section 4, and happily, it terminates
almost immediately. On one hand, non-maximality of O(E) can always
be detected after one step. On the other, if O(E) is maximal then its
fixed point set turns out to be small: a vertex, an edge (only over Z2),
or a triangle (in a single case, over Z2). The calculations require a de-
scription of the neighbors of wE, in which the O(E)-action is manifest.
Theorem 3.6 gives such a description.

Lemma 3.5 (Simplices of E). A set of elementary lattices in V repre-
sent the vertices of a simplex of E if and only if they are totally ordered
under inclusion.

We will sometimes say that elementary lattices E and F are adjacent,
as shorthand for wE and wF being adjacent. By the lemma, this is
equivalent to one of E and F strictly containing the other.

Proof. Write E0, . . . , Ek for the lattices. If E0 ⊃ E1 ⊃ · · · ⊃ Ek, then

E∗
k ⊃ · · · ⊃ E∗

0 ⊇ E0 ⊃ · · · ⊃ Ek ⊇ pE∗
k ,

the first ⊇ using the integrality of E0 and the second using that Ek

is elementary. So the vEi
and vE∗

i
are the vertices of a δ-invariant

simplex of B. By definition, the corresponding simplex of E has vertices
wE0 , . . . , wEk

.
Next we prove the key ingredient for the converse: if E and F are

elementary lattices with vE and vF adjacent, then one of them contains
the other strictly. By adjacency, E ⊃ piF ⊃ pE for some i ∈ Z. If
i = 0 then E ⊃ F , while if i = 1 then F ⊃ E. Otherwise, we obtain a
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contradiction by taking determinants and recalling n = dimV :

(3.1) detp(E) < p2ni detp(F ) < p2n detp(E).

That E and F are elementary gives detp(E), detp(F ) ∈ {1, p, . . . , pn}.
If i < 0 then the first inequality in (3.1) is a contradiction, while if
i > 1 then the second one is.

Now suppose wE0 , . . . , wEk
are the vertices of a simplex of E . By

definition, this simplex is the set of δ-fixed points in some δ-invariant
simplex σ of B. Like every simplex of B containing the wEi

, σ contains
the vEi

and vE∗
i
. In particular, the vEi

are mutually adjacent in B. So
the previous paragraph shows that the Ei are totally ordered under
inclusion. □

Our next step is to describe the elementary lattices adjacent to a
given elementary lattice E. We will express the answer in terms of
canonical bilinear forms on ∆(E) and E/pE∗. Because E is elementary,
the natural (Qp/Zp)-valued nondegenerate pairing on ∆(E) = E∗/E
takes values in 1

p
Zp/Zp. There is also a natural (Zp/pZp)-valued bi-

linear pairing on E/pE∗, got by reducing mod p the inner products
of lattice vectors. This is nondegenerate because E is elementary. If
W is either of these inner product spaces, and S a subspace, then S⊥

means the subspace of W whose elements pair trivially with all ele-
ments of S. By nondegeneracy, S⊥⊥ = S. We call S totally isotropic
if S ⊆ S⊥. (Caution: when discussing isotropic vectors and totally
isotropic subspaces in the case p = 2, we consider only the bilinear
pairings, not any related quadratic forms. For example, if E is even
then every 1-dimensional subspace of E/2E∗ is totally isotropic.)

Theorem 3.6 (Links in E). Suppose E is an elementary lattice. Then
the link of wE in E is the join of the flag complexes of the nonzero
totally isotropic subspaces of ∆(E) and E/pE∗.

In more detail, the vertices adjacent to wE are represented bijectively
by the following elementary lattices:

(1) the preimages in E∗ of the nonzero totally isotropic subspaces
of ∆(E), and

(2) the preimages in E of the orthogonal complements of the non-
zero totally isotropic subspaces of E/pE∗.

Furthermore, given some nonzero totally isotropic subspaces of ∆(E)
and E/pE∗, the corresponding elementary lattices represent the ver-
tices, of a simplex in the link of wE, if and only if the given subspaces
of ∆(E) resp. E/pE∗ are totally ordered under inclusion.
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Remarks 3.7. (i) A flag in a vector space means a set of subspaces that
are totally ordered under inclusion. The flag complex of any set Z of
subspaces means the simplicial complex with vertex set Z, where a set
of these subspaces spans a simplex if and only if they form a flag.

(ii) Given simplicial complexes with disjoint vertex sets X and Y ,
their join is a simplicial complex with vertex set X ∪ Y . A set σ of
vertices spans a simplex in the join if and only if X ∩σ and Y ∩σ span
simplices in the given complexes.

Proof. By lemma 3.5, if an elementary lattice F represents a neighbor
of E in E , then either F ⊃ E or E ⊃ F . In the first case, F ’s integrality
gives E∗ ⊇ F ⊃ E. So F is the preimage in E∗ of a nonzero subspace
of E∗/E = ∆(E). In the second case we have E ⊃ F ⊇ pF ∗ ⊃ pE∗,
using that F is elementary and E ⊃ F . So F is the preimage in E of
a subspace of E/pE∗. We have reduced the enumeration of neighbors
of E to the problem: given a lattice F satisfying E∗ ⊃ F ⊃ E resp.
E ⊃ F ⊃ pE∗, express the condition that F is elementary in terms of
its image F̄ in ∆(E) resp. E/pE∗.

First suppose E∗ ⊃ F ⊃ E. If F is elementary, then it is integral, so
the (1

p
Zp)/Zp-valued inner product on F̄ ⊂ ∆(E) vanishes identically.

Conversely, if F̄ is totally isotropic, then the same argument shows
that F is integral. From this follows E∗ ⊃ F ∗ ⊇ F ⊃ E, so ∆(F ) is a
subquotient of ∆(E). Since ∆(E) is elementary abelian, ∆(F ) is also,
ie F is elementary.

Next suppose E ⊃ F ⊃ pE∗. Because E/pE∗ is nondegenerate,
the following are equivalent: (a) F̄ is the orthogonal complement of
a totally isotropic subspace of E/pE∗, and (b) F̄⊥ ⊆ F̄ . So our goal
is to prove that F̄⊥ ⊆ F̄ if and only if F is elementary. Dualizing
E ⊃ F ⊃ pE∗ gives E ⊃ pF ∗ ⊃ pE∗, so we may speak of the subspace
pF ∗ of E/pE∗ corresponding to pF ∗. Unwrapping definitions shows
pF ∗ = F̄⊥. This reduces us to proving that pF ∗ ⊆ F if and only if F
is elementary, which is a restatement of the definition.

This finishes the identification of the neighbors of E. The theo-
rem’s final statement follows immediately from lemma 3.5. (Note: the
passage in (2), from nonzero totally isotropic subspaces of E/pE∗ to
elementary lattices strictly contained in E, reverses inclusions. But
this does not affect well-orderedness under inclusion.) □

Remark 3.8. Implicit in the proof is a symmetry between the two cases
of theorem 3.6, arising from the equality E/pE∗ = ∆(E ′). So the
neighbors of wE in E are indexed by the nonzero totally isotropic sub-
spaces of ∆(E) and ∆(E ′). The symmetry is obvious in the presence
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of a Jordan decomposition; suppose E = E0 ⊕ E
[p]
1 , so E ′ ∼= E

[p]
0 ⊕ E1.

Then E0/pE0 maps isomorphically to E/pE∗ and to ∆(E ′).
To formulate this more intrinsically, observe that E[p]∗ = 1

p
·E∗[p] for

any lattice E, ie p · E[p]∗ = E ′. From this follows

pE ′∗ = p · (E ′)∗ = p · (p · E[p]∗)∗ = p · (1
p
· E[p]∗∗) = E[p]

When E is elementary, so that E ′ is also, this gives

E ′/pE ′∗ = E∗[p]/E[p] = E∗/E = ∆(E)

and symmetrically E/pE∗ = ∆(E ′). The bilinear pairings on E/pE∗

and ∆(E ′) coincide under this identification. (To compare them, mul-
tiply the pairing on ∆(E ′) by p, so that it takes values in Zp/pZp rather
than 1

p
Zp/Zp.)

4. The local case

We continue to fix a prime p and write V for a nondegenerate qua-
dratic space over Qp. In this section we prove theorems 1.1 and 1.2 by
carrying out the program explained after lemma 3.4. That is, for each
elementary lattice E ⊆ V , we will work out the O(E)-invariant neigh-
bors of wE in E , and use this iteratively to either show that O(E) is
nonmaximal, or to show that it is maximal and find all O(E)-invariant
vertices of E . For our local results, ie theorems 1.1 and 1.2, all that
matters below is the invariance of various subspaces of ∆(E) or E/pE∗

under O(E). The more detailed information contained in lemmas 4.1–
4.5, concerning the spinor norm 1 subgroup Θ(E) of SO(E), and cer-
tain reflections in O(E), is only needed for the global case in the next
section.

Lemma 4.1 (Unimodular orthogonal groups over Zodd). Suppose p is
an odd prime and U is a unimodular Zp-lattice.

(1) If dimU > 2, then U/pU is irreducible under Θ(U).
(2) If U ∼=

(
0 1
1 0

)
, and r ∈ U with p ∤ r2, then the reflection in r

exchanges the two isotropic lines in U/pU .

We remark that the lemma addresses exactly the cases that U/pU
contains isotropic vectors.

Proof. (1) First suppose U is the lattice of symmetric 2 × 2 matrices
over Zp, the quadratic form being the determinant. As usual SL2Qp

acts isometrically on V = U ⊗ Qp, with each g ∈ SL2Qp acting by
x 7→ gTxg. The map SL2(Qp) → SO(V ) is well-known to be the spin
double cover, whose image is Θ(V ) (see [4, example 4, p. 193] for the
essence of the argument). The restriction to SL2(Zp) maps into Θ(U),
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and acts on U/pU by SL2(Fp)’s usual action on the space of symmetric
bilinear forms on F2

p. For p > 2, this is well-known to be irreducible.
Up to scale, there is a unique unimodular 3-dimensional Zp-lattice, so
we have finished the proof for dimV = 3. Then an easy induction
finishes the proof.

(2) Writing r̄ for the image of r in U/pU , the reflection in r acts
on U/pU as the reflection in r̄, which makes sense because r̄ is not
isotropic. This reflection leaves invariant the span of r̄, and also r̄⊥,
but no other lines. These two lines are anisotropic, so the reflection
must exchange the two isotropic lines. □

The last part of the next theorem is the odd-p case of theorem 1.1.

Theorem 4.2. Suppose E is an elementary Zp-lattice with p odd.

(1) There is no Θ(E)-invariant elementary proper sublattice of E,
except perhaps if E’s unimodular constituent is isometric to(
0 1
1 0

)
. In that case, for every root r with p ∤ r2, the reflection

in r exchanges the two elementary proper sublattices of E.
(2) There is no Θ(E)-invariant elementary proper superlattice of E,

except perhaps if E’s non-unimodular constituent is isometric
to

(
0 p
p 0

)
. In that case, for every root r with p | r2, the reflection

in r exchanges the two elementary proper superlattices of E.
(3) O(E) is maximal, and E is the only O(E)-invariant elementary

lattice in E ⊗Qp.

Proof. (1) By theorem 3.6, the elementary lattices contained in E cor-
respond to the totally isotropic subspaces of the nondegenerate inner
product space E/pE∗. This space equals E0/pE0 for any choice of

Jordan decomposition E = E0 ⊕ E
[p]
1 . We recall that the oddness of p

implies that any two Jordan decompositions are O(E)-equivalent. First
consider the exceptional case, in which the unimodular constituent of
every Jordan decomposition is isometric to

(
0 1
1 0

)
, and r is a root of E

with p ∤ r2. Because 1
2
∈ Z×

p , every root generates a summand of E.
So ⟨r⟩ lies in the unimodular constituent E0 of some Jordan decompo-
sition. We are assuming E0

∼=
(
0 1
1 0

)
, so E/pE∗ = E0/pE0 has exactly

two isotropic lines. And lemma 4.1(2) shows that the reflection in r
exchanges them, finishing the proof in the special case.

The generic case is simpler; choose any Jordan decomposition E0 ⊕
E

[p]
1 . Since E0 ̸∼=

(
0 1
1 0

)
, E/pE∗ possesses no isotropic vectors unless

dimE0 ≥ 3. By lemma 4.1(1), Θ(E0) ⊆ Θ(E) acts irreducibly on
E0/pE0 = E/pE∗. So there are no nonzero Θ(E)-invariant totally
isotropic subspaces.
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(2) Essentially the same, with E/pE∗ replaced by ∆(E), which equals
1
p
E

[p]
1 /E

[p]
1

∼= E1/pE1 for any Jordan decomposition E = E0 ⊕ E
[p]
1 . In

the exceptional case, one may choose the Jordan decomposition so that

E
[p]
1 contains r, and then apply the same argument with E1 in place

of E0.
(3) Theorem 3.6 shows that the neighbors of wE in E correspond to

the elementary lattices that E properly contains, or is properly con-
tained in. So (1)–(2) imply that no neighbor of wE is O(E)-invariant.
It follows from lemma 3.4 that wE is the only fixed point of O(E). Since
the vertices of E correspond to the elementary lattices in E ⊗Qp, E is
the only O(E)-invariant elementary lattice. O(E) is maximal because
it is the full O(V )-stabilizer of every vertex of E that it fixes. □

In the rest of this section we take p = 2. The strategy is the same, but
everything is more delicate. We recall that a nondegenerate symmetric
bilinear form, on an F2 vector space W , distinguishes the characteristic
vector cW of W . To construct it, observe that the norm function W →
F2, namely x 7→ x · x, is linear (this uses 2 = 0). We define cW as
the unique element of W for which this linear function coincides with
x 7→ x · cW .

As in theorem 3.6, “isotropic” and “totally isotropic” refer only what-
ever symmetric bilinear form is present, not to any quadratic form
which might also be present.

Lemma 4.3 (Unimodular orthogonal groups over Z2). Suppose U is a
unimodular Z2-lattice and c is the characteristic vector of U/2U .

(1) If U ̸∼= 1+2
II is even, then Θ(U) acts irreducibly on U/2U .

(2) Suppose U is odd, and odd-dimensional. Then U/2U = c⊥⊕⟨c⟩.
If U is neither 1+3

±1 nor 1−3
±3, then Θ(U) acts irreducibly on c⊥.

(3) Suppose U is odd, and even-dimensional. Then c ∈ c⊥. If U is
neither 1+4

0 nor 1−4
4 , then ⟨c⟩ is the only nonzero Θ(U)-invariant

totally isotropic subspace of U/2U .
(4) Suppose U is one of the exceptions 1+2

II , 1
+3
±1, 1

−3
±3, 1

+4
0 or 1−4

4

from (1)–(3). Then U possesses vectors with norm 2 mod 4, and
the images in U/2U of all such vectors span an O(U)-invariant
totally isotropic subspace S. Furthermore, writing R ∈ O(U)
for the reflection in any one such vector,
(a) if U ∼= 1+2

II , 1
+3
±1 or 1−3

±3, then dimS = 1 and S is the only
nonzero R-invariant totally isotropic subspace of U/2U .

(b) if U ∼= 1+4
0 or 1−4

4 , then dimS = 2 and S contains c. Fur-
thermore, ⟨c⟩ and S are the only nonzero totally isotropic
subspaces of U/2U that are invariant under R and Θ(U).
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Proof. (1) We are assuming U is even unimodular. We work out three
cases explicitly. First, U = 1−2

II is represented by the A2 root lattice.
The obvious Z/3, inside the Weyl group W (A2) ∼= S3, acts irreducibly
on U/2U and lies in Θ(U).

Second, U = 1+4
II is represented by the root lattice A2 ⊕A2. We will

exhibit an element of Θ(U) that exchanges the summands. Choose
orthogonal roots a, b in the first summand, and orthogonal roots a′, b′

in the second, such that a2 = a′2 = 2 and b2 = b′2 = 6. Reflection in
a − a′, composed with reflection in b − b′, composed with negation of
one of the summands, exchanges the summands and has spinor norm 1.
Together with (Z/3)2 ⊆ W (A2)

2, it generates a subgroup of Θ(U) that
acts irreducibly on U/2U .

Third, U = 1−4
II is represented by the A4 root lattice, and Θ(U)

contains the commutator subgroup of the Weyl group W (A4) ∼= S5.
This is the alternating group A5, which acts on U/2U with orbit sizes
1, 5 and 10, hence irreducibly. The higher-dimensional cases follow by
decomposing U as a sum of copies of 1+2

II and 1−2
II and using induction.

In the proofs of (2)–(4) we will use the following direct sum decom-
positions:

(4.1) 1±n
t

∼=



1+1
t ⊕ 1

±(n−1)
II if t ∈ {1,−1}

1−1
t ⊕ 1

∓(n−1)
II if t ∈ {3,−3}

1±2
t ⊕ 1

+(n−2)
II

∼= 1∓2
t ⊕ 1

−(n−2)
II if t ∈ {2,−2}

1+2
0 ⊕ 1

±(n−2)
II if t = 0

1−2
4 ⊕ 1

∓(n−2)
II if t = 4

In the middle case, the second decomposition exists if and only if n > 2.
(2) We are assuming U ∼= 1oddI . One of the first 2 cases of (4.1)

applies. The first summand, modulo 2, equals ⟨c⟩ ⊆ U/2U , and the
second summand, modulo 2, equals c⊥. Now suppose U is neither 1+3

±1

nor 1−3
±3. Then the second summand is even but not 1+2

II , so the claimed
irreducibility follows from (1).

(3) We are assuming U ∼= 1evenI . First suppose dimU = 2, so U ∼=
⟨a, b⟩ with a, b odd. Then the characteristic vector c = (1, 1) ∈ F2

2 spans
the only nonzero totally isotropic subspace of U/2U . Now suppose
dimU > 2. One of the last 3 cases of (4.1) applies. The first summand,
mod 2, contains c. Write B for the second summand, so c⊥ = ⟨c⟩ ⊕
B/2B. The rest of (3) assumes U ̸∼= 1+4

0 or 1−4
4 . Then B is (or can

be chosen to be) different from 1+2
II . By (1), Θ(B) acts irreducibly on

B/2B ∼= c⊥/⟨c⟩. Now, seeking a contradiction, suppose S ̸= ⟨c⟩ is
a nonzero Θ(U)-invariant totally isotropic subspace of U/2U . Total



18 DANIEL ALLCOCK

isotropy implies S ⊆ c⊥. By the irreducibility of Θ(B) on B/2B, S
must project onto B/2B. Because c2 is even, and B/2B contains a
pair of vectors with odd inner product, S does too. This contradicts
total isotropy.

(4) The listed exceptional cases are

(4.2) U =
(
0 1
1 0

)
⊕

(
nothing, ⟨±1⟩, ⟨±3⟩, ⟨1,−1⟩ or ⟨1, 3⟩

)
A norm 2 root is visible in the first summand. The lemma writes
R ∈ O(U) for the reflection in any one lattice vector with norm 2
mod 4, which we will call r. Because 4 ∤ r2, r is primitive in U , and
therefore its image r̄ ∈ U/2U is nonzero. R acts on U/2U by the
orthogonal transvection x 7→ x+ (x · r̄)r̄.

(4a) First suppose U ∼=
(
0 1
1 0

)
. Then every element of U with norm 2

mod 4 projects to (1, 1) ∈ U/2U . So (1, 1) spans S (which is therefore
totally isotropic) and equals r̄. Its transvection exchanges the other
two nonzero elements of U/2U . This finishes the proof if U ∼=

(
0 1
1 0

)
.

Now suppose U ∼=
(
0 1
1 0

)
⊕ ⟨±1 or ± 3⟩. We have c = (0, 0, 1) ∈ F3

2.

Every totally isotropic subspace of U/2U lies in c⊥, which is the mod 2
reduction of the summand

(
0 1
1 0

)
of U . Every element of U with norm

2 mod 4 projects to (1, 1, 0) ∈ U/2U . So (1, 1, 0) spans S (which is
therefore totally isotropic) and equals r̄. The two nonzero elements
of c⊥, other than r̄, are exchanged by R. So S is the only nonzero
R-invariant totally isotropic subspace of U/2U .

(4b) We are assuming U ∼=
(
0 1
1 0

)
⊕ ⟨1,−1 or 3⟩. We define u, v ∈ U

by u = (1, 1, 0, 0) and v = (1, 1, 1, 1). Their images ū, v̄ in U/2U are
the only mod 2 classes represented by vectors with norm 2 mod 4. This
gives several things. First, S is their span, which is totally isotropic
because u · v is even. Second, one checks c = ū+ v̄ ∈ S. Finally, r̄ = ū
or v̄.

We must show that if T is a nonzero ⟨R,Θ(U)⟩-invariant totally
isotropic subspace of U/2U , then T = ⟨c⟩ or S. First, T consists of
isotropic vectors and hence lies in c⊥. Next, T lies in S. To see this,
suppose to the contrary that T contains some

x ∈ c⊥ − S = {(1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 1, 1), (0, 1, 1, 1)}.
Then x · r̄ ̸= 0 (one checks this for both possibilities for r̄). It follows
that T also contains R(x) = x + r̄, which has nonzero pairing with x,
contrary to total isotropy.

It remains to show that ⟨c⟩ is the only 1-dimensional ⟨R,Θ(U)⟩-
invariant subspace of S. It is enough to show that ū and v̄ are Θ(U)-
equivalent. First we show they are O(U)-equivalent. Observe that the
span of (1, 0, 0, 0) and u resp. v is a copy of 1+2

II ; we will call it Eu
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resp. Ev. It is classical that in an integral 2-adic lattice, any isometry
between even unimodular sublattices extends to an isometry of the
ambient lattice. (See [2, Lemma 7.2], or the corollary on p. 122 of [4].)
So some g ∈ O(U) sends Eu to Ev. Obviously g sends vectors with
norm ≡ 2 mod 4 to vectors with norm ≡ 2 mod 4. Reducing mod 2
shows that g sends ū to v̄.

Next we replace g by its compositions with various reflections of U , to
arrange that g ∈ Θ(U). We will not lose the property g(ū) = v̄, because
every reflection we will use fixes ū and v̄. (In particular, reflections in
odd norm roots act trivially on U/2U .) First, if g /∈ SO(U), then we
postcompose g with the reflection in (0, 0, 1, 0). So we may take g ∈
SO(U). Next, if the spinor norm of g is even, then we postcompose g
with the reflections in u and (0, 0, 1, 0). So we may suppose g has odd
spinor norm. Finally, ⟨1,−1⟩ and ⟨1, 3⟩ possess vectors of every odd
norm. After postcomposing g with the reflections in some such vectors,
we may suppose g ∈ Θ(U). □

Lemma 4.4 (Invariant elementary sublattices). Suppose E is an ele-
mentary 2-adic lattice.

(1) Suppose E ∼= 1evenI 2······, but E ̸∼= (1+4
0 or 1−4

4 )2···II . Then its even
sublattice Eeven is the only Θ(E)-invariant elementary proper
sublattice of E.

(2) Suppose E ∼=
(
1+2
II , 1

+3
±1, 1

−3
±3, 1

+4
0 or 1−4

4

)
2···II . Then E contains

vectors with norm ≡ 2 mod 4; let S be the subspace of E/2E∗

spanned by their images and let R ∈ O(E) be the reflection in
any one of them. Define the exceptional sublattice Eex as
the preimage in E of S⊥ ⊆ E/2E∗.
(a) If E ∼=

(
1+2
II , 1

+3
±1, or 1−3

±3

)
2···II , then Eex is the only R-invar-

iant elementary proper sublattice of E.
(b) If E ∼= (1+4

0 or 1−4
4 )2···II , then Eex and Eeven are the only

⟨R,Θ(E)⟩-invariant elementary proper sublattices of E.
(3) Otherwise, E has no Θ(E)-invariant elementary proper sublat-

tice.

The subscript even, indicating the even sublattice, is not related to
the superscript even, which we often use to indicate that a Jordan con-
stituent has even dimension.

Proof. Theorem 3.6(2) shows that every elementary lattice, that is
strictly contained in E, is the preimage of the orthogonal complement
of a nonzero totally isotropic subspace of E/2E∗. The current proof
consists of working out which such subspaces of E/2E∗ are invariant
under Θ(E), or under R or ⟨Θ(E), R⟩ in part (2). We will consider
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a Jordan decomposition E = E0 ⊕ E
[2]
1 , and the key point is that

E/2E∗ = E0/2E0. This allows us to appeal to lemma 4.3 for informa-
tion about how Θ(E0) ⊆ Θ(E) acts on E0/2E0. Some case splitting
propagates from there, but the underlying reasoning is mostly uniform.

Case 1. Suppose E is even, but not of the form 1+2
II 2

···
II . In particular,

if E0
∼= 1+2

II , then the second Jordan constituent has type I. In this
case, sign walking shows E ∼= 1−2

II 2
···
I . Replacing our original Jordan de-

composition with this one, we have reduced to the case E0 is even and
not 1+2

II . Appealing to lemma 4.3(1) shows that Θ(E0) acts irreducibly
on E0/2E0 = E/2E∗. So there is no nonzero Θ(E)-invariant totally
isotropic subspace of E/2E∗. Therefore E has no Θ(E)-invariant ele-
mentary proper sublattices, as claimed by (3).

Case 2. Suppose E ∼= 1odd··· 2······, but E ̸∼= (1+3
±1 or 1

−3
±3)2

···
II . In particular,

if E0
∼= 1+3

±1 or 1−3
±3, then the second Jordan constituent has type I,

say E = 1ε3t 2ε
′d
u . In this case, sign walking shows E ∼= 1−ε3

t 2−ε′d
u+4 , and

we replace our original Jordan decomposition with this one. We have
reduced to the case that E0

∼= 1oddI but E0 ̸∼= 1+3
±1, 1

−3
±3. Appealing

to lemma 4.3(2) shows that E0/2E0 = ⟨c⟩ ⊕ c⊥ and that Θ(E0) acts
irreducibly on c⊥. Here c is the characteristic vector of E0/2E0. Since
c is not isotropic, and c⊥ is not totally isotropic, there are no nonzero
Θ(E)-invariant totally isotropic subspaces of E/2E∗. So E has no
Θ(E)-invariant elementary proper sublattices, as claimed in (3).

Case 3. Suppose E0
∼= 1evenI , but E ̸∼= (1+4

0 or 1−4
4 )2···II . In particular,

if E0
∼= 1+4

0 or 1−4
4 , then the second Jordan constituent has type I, say

E ∼= 1ε4t 2ε
′d
u . In this case we use oddity fusion to increase t by some even

number δ, and simultaneously decrease u by the same amount. If d = 2,
then the legality of 2ε

′d
u−δ constrains δ somewhat, but it is always possible

to take δ ∈ {2,−2}. After replacing our original Jordan decomposition
with this one, we have E0 ̸∼= 1+4

0 or 1−4
4 . Now, arguing as in the previous

cases, using part (3) of lemma 4.3, shows that the only nonzero Θ(E0)-
invariant totally isotropic subspace of E0/2E0 is ⟨c⟩. It follows that ⟨c⟩
is the only nonzero Θ(E)-invariant totally isotropic subspace of E/2E∗.
Therefore the only Θ(E)-invariant elementary proper sublattice of E
is the preimage in E of c⊥ ⊆ E/2E∗. This is Eeven, as claimed in (1).
Case 4. The cases not yet treated are exactly the ones about which

(2) makes assertions, namely

E ∼= (1+2
II , 1+3

±1, 1−3
±3, 1+4

0 , or 1−4
4 )2···II .

Because the second constituent consists of vectors with norms divisible
by 4, the subspace S ⊆ E/2E∗ of the current lemma coincides with
the subspace S ⊆ E0/2E0 of lemma 4.3(4), under the identification
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E/2E∗ = E0/2E0. Furthermore, writing r ∈ E for a vector with
norm 2 mod 4 whose reflection is R, the projection of r to E0 also has
norm 2 mod 4, and its reflection acts on E/2E∗ in the same way. So,
for purposes of examining R-invariant subspaces of E/2E∗, we may
suppose without loss that r ∈ E0. Therefore lemma 4.3(4)’s R may be
taken to be the current R. Quoting that lemma gives: the only nonzero
⟨Θ(E0), R⟩-invariant totally isotropic subspaces of E0/2E0 are

S if E ∼= (1+2
II , 1+3

±1, 1−3
±3)2

···
II , resp.

S or ⟨c⟩ if E ∼= (1+4
0 or 1−4

4 )2···II .

Therefore the same holds with Θ(E0) replaced by Θ(E) and E0/2E0

replaced by E/2E∗. It follows that the only ⟨Θ(E), R⟩-invariant ele-
mentary proper sublattices of E are the preimages in E of S⊥, resp.
S⊥ and c⊥. These are Eex, resp. Eex and Eeven. □

To use lemma 4.4, we will need to know Eeven and Eex explicitly. One
can construct a copy of 1±2

t by writing it as ⟨a, b⟩, with a+ b ≡ t mod 8
and the Kronecker symbol (ab

2
) being the given sign. Then, choosing

a basis for the even sublattice yields the n = 2 case of the following.
The formula for the case of even n > 2 follows from this and (4.1).

(4.3) for even n, (1±n
t )even ∼=


1
+(n−2)
II 2±2

±t if t ∈ {2,−2}
1
±(n−2)
II 2+2

II if t = 0

1
∓(n−2)
II 2−2

II if t = 4

For a general elementary lattice E of the form ∼= 1evenI 2······, we get Eeven

by applying (4.3) to the unimodular constituent and combining the
resulting 2±2

··· with the second constituent 2······ of E.
If E ∼=

(
1+2
II , 1

+3
±1, 1

−3
±3, 1

+4
0 or 1−4

4

)
2···II , then we defined the excep-

tional sublattice Eex in lemma 4.4(2). To compute it, write the uni-
modular constituent as

(4.4) E0 =
(
0 1
1 0

)
⊕

(
nothing, ⟨±1⟩, ⟨±3⟩, ⟨1,−1⟩ or ⟨1, 3⟩

)
In the proof of lemma 4.3(4), we worked out the subspace S of E/2E∗.
In the last two cases of (4.4), it is the span of the images of the lat-
tice vectors (1, 1, 0, 0), (1, 1, 1, 1) ∈ E0. By definition, a member of E
lies in Eex just if it has even inner product with these vectors, or
equivalently with (1, 1, 0, 0), (0, 0, 1, 1) ∈ E0. The sublattice of

(
0 1
1 0

)
having even inner product with (1, 1) is ⟨2,−2⟩, and the sublattice of
⟨1,−1 or 3⟩ having even inner product with (1, 1) is ⟨1,−1 or 3⟩even. So
(4.5) (1+4

0 )ex ∼= ⟨2,−2⟩⊕ 2+2
II

∼= 2+4
0 (1−4

4 )ex ∼= ⟨2,−2⟩⊕ 2−2
II

∼= 2−4
0
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In the 2- resp. 3-dimensional cases of (4.4), S is the span of the image
of (1, 1) resp. (1, 1, 0) ∈ E0, leading to

(4.6) (1+2
II )ex

∼= 2+2
0 (1+3

±1)ex
∼= 1+1

±12
+2
0 (1−3

±3)ex
∼= 1−1

±32
+2
0

As for Eeven, the non-unimodular constituent of (4.5) or (4.6) should
be merged with the second constituent 2···II of E when describing Eex.

Next we prove the superlattice analogue of lemma 4.4. We will use
superscripts for the relevant invariant superlattices Echar and Eex of E,
just as we used subscripts for the sublattices Eeven and Eex in lemma 4.4.
The exceptional superlattice Eex is defined in lemma 4.5(2), and the
characteristic superlattice Echar is defined as the span of E and any
representative in E∗ of the characteristic vector of ∆(E).

Lemma 4.5 (Invariant elementary superlattices). Suppose F is an
elementary 2-adic lattice.

(1) Suppose F ∼= 1······2
even
I , but F ̸∼= 1···II(2

+4
0 or 2−4

4 ). Then F char is
the only Θ(F )-invariant elementary proper superlattice of F .

(2) Suppose F ∼= 1···II
(
2+2
II , 2

+3
±1, 2

−3
±3, 2

+4
0 or 2−4

4

)
. Then the norms

of elements of ∆(F ) are well-defined mod 2. Let T ⊆ ∆(F ) be
the span of those with norm 1 mod 2, and define the excep-
tional superlattice F ex as the preimage in F ∗ of T . Also, F
has roots of norm 4 mod 8; let R be the reflection in any one of
them.
(a) If F ∼= 1···II

(
2+2
II , 2

+3
±1, or 2−3

±3

)
, then F ex is the only R-invar-

iant elementary lattice strictly containing F .
(b) If F ∼= 1···II(2

+4
0 or 2−4

4 ), then F char and F ex are the only
⟨R,Θ(F )⟩-invariant elementary lattices that strictly con-
tain F .

(3) Otherwise, no Θ(F )-invariant elementary lattice strictly con-
tains F .

Before proving this we work out F char and F ex. For a, b odd, one
obtains ⟨2a, 2b⟩char by adjoining the vector (1

2
, 1
2
). The results are the

n = 2 case of (4.7) below. For F ∼= 2evenI , decompose F as in (4.1),
with all inner products doubled, and then apply the 2-dimensional case
to the summand 2±2

I . This yields

(4.7) for even n, (2±n
t )char ∼=


1±2
±t2

+(n−2)
II if t ∈ {2,−2}

1+2
II 2

±(n−2)
II if t = 0

1−2
II 2

∓(n−2)
II if t = 4,

which (unsurprisingly) differs from (4.3) by rescaled duality. For F ∼=
1······2

even
I , one applies this formula to the second constituent, and merges
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the unimodular part of the result with F ’s unimodular constituent.
(Remark: F char is defined for any elementary F . But the remaining
cases are uninteresting: F char coincides with F when F ∼= 1······2

···
II , and

is nonintegral when F ∼= 1······2
odd
I .)

Next suppose F ∼= 1···II
(
2+2
II , 2

+3
±1, 2

−3
±3, 2

+4
0 or 2−4

4

)
, as in part (2) of

the lemma. Write F ’s second constituent as in (4.4) with all inner
products doubled. The only element of ∆(F ) with norm 1 mod 2 is
represented by (1

2
, 1
2
) in the summand

(
0 2
2 0

)
, except in the last two

cases, when the only other such element is represented by (1
2
, 1
2
, 1
2
, 1
2
).

These span a totally isotropic subspace of ∆(F ). (We recall the remark
before theorem 3.6, that “total isotropy” refers to the vanishing of inner
products mod 1, not the vanishing of norms mod 2.) So adjoining these
vectors to F yields an O(F )-invariant elementary superlattice of F .
Working out the details yields

(4.8)
(2+2

II )
ex ∼= 1+2

0 (2+3
±1)

ex ∼= 1+2
0 2+1

±1 (2−3
±3)

ex ∼= 1+2
0 2−1

±3

(2+4
0 )ex ∼= 1+4

0 (2−4
4 )ex ∼= 1−4

0

which is (unsurprisingly) the rescaled dual of (4.5)–(4.6). As before,
the unimodular constituent of this result should be merged with the
unimodular constituent of F .

Proof. Take E = F [1/2]∗, whose rescaled dual E ′ is F . By lemma 2.1,
rescaled duality sends elementary lattices to elementary lattices, and re-
verses inclusions. So the elementary superlattices of F are the rescaled
duals of the elementary sublattices of E. Using E ∼= E ′′ = F ′, we see
that E satisfies the hypotheses of (1), (2a), (2b) or (3) of lemma 4.4
if and only if F satisfies the corresponding hypothesis of the current
lemma. The rest of the proof transforms that lemma’s results about E
into our claims about F .

(1) We are assuming F ∼= 1······2
even
I but F ̸∼= 1···II

(
2+4
0 or 2−4

4

)
. Scaling

the inner product on V does not affect the spinor norm homomorphism
SO(V ) → Q×

2 /(Q×
2 )

2. From this and O(E) = O(F ) follows Θ(E) =
Θ(F ). The elementary proper sublattices of E, that are invariant under
Θ(E), and listed in lemma 4.4(1). There is exactly one, namely Eeven,
so there exists a unique Θ(F )-invariant elementary proper superlattice
of F . Since F char is such a lattice, we are done. We also get the
unsurprising equality F char = (Eeven)

′.
(2) We are assuming F ∼= 1···II

(
2+2
II , 2

+3
±1, 2

−3
±3, 2

+4
0 or 2−4

4

)
. The even-

ness of F implies the well-definedness of norms in ∆(F ) mod 2, so the
definition of T makes sense. As in the statement of the lemma, we write
R for the reflection in any root t of F with norm 4 mod 8. (Such a root
is visible in the second constituent of F .) Observe t ·F ⊆ 1

2
t2Z2 ⊆ 2Z2,
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and recall that F [1/2] is the Z-module underlying F , with all inner
products halved. Regarding t as an element of F [1/2], these imply (a)
t · F [1/2] ⊆ Z2, ie t ∈ F [1/2]∗ = E, and (b) t2 ≡ 2 mod 4. Therefore
the reflection called R in lemma 4.4(2) may be taken to be the current
reflection R. With this preparation, and Θ(E) = Θ(F ) from the pre-
vious paragraph, lemma 4.4(2) lists the elementary proper sublattices
of E that are invariant under R or ⟨R,Θ(E)⟩. Their rescaled duals
are the elementary proper superlattices of F with the same invariance
properties. In particular, in subcase (2a) resp. (2b) the number of such
superlattices is 1 resp. 2. We have exhibited this many such lattices,
so our enumeration is complete. We also get the unsurprising equality
(Eex)

′ = F ex.
(3) We have already proven Θ(E) = Θ(F ). Lemma 4.4(3) shows the

absence of Θ(E)-invariant elementary proper sublattices of E. So there
are no Θ(F )-invariant elementary lattices that properly contain F . □

The next theorem concludes the local analysis.

Theorem 4.6 (Table of elementary 2-adic lattices). For each elemen-
tary 2-adic lattice E, table 4.1 says whether O(E) is maximal under
inclusion among all lattice stabilizers in O(V ), where V = E ⊗ Q2.
When O(E) is maximal, the table lists all the other O(E)-invariant
elementary lattices in V , and a recipe for recovering E from each of
them. When O(E) is not maximal, the table lists one or more O(E)-
invariant lattices in V , whose orthogonal groups are maximal and hence
strictly contain O(E).

Remarks 4.7 (Reading the table). (1) Every elementary 2-adic lattice
E appears in exactly one of the 11 blocks 1–7 and 3′–6′. The row in
that block that applies to E is the most specific one that matches the
isometry type of E; more-specific rows are listed before less-specific
ones. Eg, 1+2

II 2
+4
II is treated by case 2b not 2d, and 1+1

±12
−4
0 is treated

by 6a not 6b. (Note: 1+1
±12

−4
0

∼= 1−1
∓32

+4
0 by sign walking.)

(2) The boxed rows in the table are the most important, because
they exactly account for the maximal groups; they are the forms in
(1.2). The remaining rows give alternate descriptions of some of these
groups, and also some non-maximal groups.

(3) The “related lattice” Echar
even in case 7b is defined as (Echar)even or

(Eeven)
char. Part of the proof is checking that these coincide.

Remark 4.8 (The most interesting case). If O(E) is maximal, then it
preserves at most two elementary lattices in V , unless E ∼= 1+2

II 2
+2
II , 1

+4
0

or 2+4
0 . These are all a single example, with O(E) preserving exactly
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E O(E) maximal? related lattices E equals

1. 1odd··· 2odd··· yes none

2a. 1+2
II 2

+2
II yes Eex ∼= 1+4

0 (Eex)even
Eex

∼= 2+4
0 (Eex)

char

2b. 1+2
II 2

···
II yes Eex

∼= 2···0 (Eex)
char

2c. 1···II2
+2
II yes Eex ∼= 1···0 (Eex)even

2d. 1···II2
···
II yes none

3a. (1+3
±1 or 1

−3
±3)2

···
II yes Eex

∼= (1+1
±1 or 1

−1
±3)2

even
0 (Eex)

char

3b. 1odd··· 2···II yes none

4. 1±d
t=2or−22

···
II yes Eeven

∼= 1
+(d−2)
II 2even±t (Eeven)

char

5a. 1+4
0 yes Eeven

∼= 1+2
II 2

+2
II (Eeven)

ex

Eex
∼= 2+4

0 (Eex)
ex

5b. 1even0 yes Eeven
∼= 1···II2

+2
II (Eeven)

ex

5c. 1even0 or 42
···
II no Eeven

∼= 1···II2
···
II

6a. 1±1
t 2+even

u , ± = ( t+u
2
) yes Echar ∼= 1±3

t+u2
···
II (Echar)ex

6b. 1oddI 2evenI no Echar ∼= 1oddI 2···II

7a. 1event 2evenu , t+ u = ±2 no Echar ∼= 1evenI 2···II
Eeven

∼= 1···II2
even
I

7b. 1event 2evenu , t+ u ̸= ±2 no Echar
even

∼= 1···II2
···
II

obtained from above by rescaled duality:

3a′. 1···II(2
+3
±1 or 2

−3
±3) yes Eex ∼= 1even0 (2+1

±1 or 2
−1
±3) (Eex)even

3b′. 1···II2
odd
··· yes none

4′. 1···II2
±d
t=2or−2 yes Echar ∼= 1even±t 2

+(d−2)
II (Echar)even

5a′. 2+4
0 yes Echar ∼= 1+2

II 2
+2
II (Echar)ex

Eex ∼= 1+4
0 (Eex)ex

5b′. 2even0 yes Echar ∼= 1+2
II 2

···
II (Echar)ex

5c′. 1···II2
even
0 or 4 no Echar ∼= 1···II2

···
II

6a′. 1+even
u 2±1

t , ± = (u+t
2
) yes Eeven

∼= 1···II2
±3
u+t (Eeven)

ex

6b′. 1evenI 2oddI no Eeven
∼= 1···II2

odd
I

Table 4.1. For each elementary 2-adic lattice E, this
says whether O(E) is maximal, and provides additional
information. See theorem 4.6.
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three elementary lattices, one of each type. Temporarily using the
symbols to refer to these lattices rather than their isometry classes,

1+2
II 2

+2
II = (1+4

0 )even = (2+4
0 )char

1+4
0 = (1+2

II 2
+2
II )

ex = (2+4
0 )ex 2+4

0 = (1+2
II 2

+2
II )ex = (1+4

0 )ex

Proof of theorems 1.1 and 1.2, given theorem 4.6. We proved the odd
p case of theorem 1.1 in theorem 4.2(3). When p = 2, the proof amounts
to checking that the lattices listed in (1.1) are the same as those for
which the 3rd column of table 4.1 says “yes”. This is straightforward
except for the fact that the lattices (1+1

±1 or 1
−1
±3)2

···
0 , from (1.1), are the

same as the lattices 1±1
t 2+even

0 with ± = ( t+u
2
), from row 6a of the table.

This requires some sign walking and oddity fusion.
Theorem 1.2 relies on the 4th column of table 4.1. As mentioned in

the remark, the lattices (1.2) in the statement of the theorem are the
boxed cases in the table, namely 1, 2a–2d, 3a–3b, 3a′–3b′ and 4. Every
maximal subgroup G of O(V ) has the form O(L) for some elementary
lattice L. If L appears in one of the boxed cases in the table, then
take E = L. Otherwise, by the maximality of O(L), L appears in
one of the rows 5a–5b, 6a, 4′, 5a′–5b′ and 6a′. One can choose an E
appearing in a boxed row, from among L’s related lattices. This proves
that G = O(E) for some E from (1.2). That there is a unique E for
which this holds requires checking the related lattices in the boxed
rows. Namely, no such lattice has isometry type appearing in (1.2).
Theorem 1.2’s assertions about the O(E)-invariant elementary lattices
amount to copying the related lattices from the table. □

Proof of theorem 4.6. Lemma 3.5 shows that every elementary lattice
adjacent to E either properly contains or is properly contained in E.
Those that are also O(E)-invariant are classified in lemmas 4.4 and 4.5:

(4.9)

Echar when E ∼= 1······2
even
I

Eex when E ∼= 1···II
(
2+2
II , 2

+3
±1, 2

−3
±3, 2

+4
0 or 2−4

4

)
Eeven when E ∼= 1evenI 2······
Eex when E ∼=

(
1+2
II , 1

+3
±1, 1

−3
±3, 1

+4
0 or 1−4

4

)
2···II

We start with a copy of table 4.1 that is blank except for the “E”
column. We begin by filling in an auxiliary column omitted from the
printed table. It uses (4.9) to list the O(E)-invariant elementary lat-
tices adjacent to any elementary lattice E, and then (4.3), (4.5), (4.6),
(4.7) and (4.8) to work out their isometry types. We work out several
special cases as examples:

Cases 7a–7b: The difference between these cases only emerges at
the very end of the proof, so we treat them together; suppose E ∼=
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1evenI 2evenI . By (4.9), the O(E)-invariant neighbors of E are Echar and
Eeven. Referring to (4.7) and (4.3) respectively, they have the forms
1evenI 2···II and 1···II2

even
I . So the auxiliary column reads “Echar ∼= 1evenI 2···II

and Eeven
∼= 1···II2

even
I .”

Case 5c: We are assuming E ∼= 1even0 or 42
···
II but E ̸∼= 1···0 . By (4.9),

the O(E)-invariant neighbors of E are Eeven and Eex, the latter only
appearing in the special case E ∼= (1+4

0 or 1−4
4 )2···II . By (4.3), Eeven

∼=
1···II2

···
II . In the special case, (4.5) gives Eex

∼= (2+4
0 or 2−4

0 )2···II
∼= 2···0 . So

the auxiliary column reads “Eeven
∼= 1···II2

···
II and sometimes Eex

∼= 2···0 ”.
Case 5c′ is obtained from this by duality. All other cases are straight-

forward. It develops that the contents of the auxiliary column are the
same as what we will eventually record under “related lattices”, except
in cases 5c, 5c′ and 7b. So, to read the auxiliary column, the reader
may refer to the above examples (in these cases), or to the data printed
under “related lattices” (otherwise). We have not yet verified any of
the theorem’s claims about the related lattices.

First we use this information to justify the no’s in the “O(E) maxi-
mal?” column. We will treat cases 5c, 6b, 7a and 7b directly, simplest
first. The remaining cases 5c′ and 6b′ follow by rescaled duality.

Case 6b: We are assuming E has the form 1oddI 2evenI , but not the
form 1±1

t 2+even
u with ± = ( t+u

2
). In this case, the auxiliary column

(recorded under “related lattices”) informs us that Echar ∼= 1oddI 2···II is
the only O(E)-invariant neighbor of E. Using whichever of cases 3a
and 3b applies to Echar, we can read off the O(Echar)-invariant neigh-
bors of Echar from that row’s auxiliary column (again, recorded under
“related lattices”). Only in case 3a does such a neighbor exist, when
it is unique, namely (Echar)ex ∼= (1+1

±1 or 1
−1
±3)2

even
0 . If the sign on the

second constituent is +, then (Echar)ex ̸∼= E by assumption on E. If
the sign is −, then sign walking yields (Echar)ex ∼= (1−1

∓3 or 1
+1
∓1)2

+even
0 ,

so again (Echar)ex ̸∼= E. It follows that O(Echar) preserves no lattice
isometric to E. In particular, it strictly contains O(E).

Case 5c: We are assuming E ∼= 1even0 or 42
···
II but E ̸∼= 1···0 . The auxiliary

column is worked out above: Eeven
∼= 1···II2

···
II and sometimes Eex

∼= 2···0 .
We claim O(Eeven) does not preserve E. To prove this, we consult
whichever of 2a–2d applies to Eeven. In these cases, the auxiliary col-
umn, although not printed, is identical to the related lattices column.
This informs us that every O(Eeven)-invariant neighbor of Eeven has
one of the forms 1···0 or 2···0 . Since E has neither of these forms, it is
not O(Eeven)-invariant. Therefore O(E) is not maximal. (Although
not needed, similar reasoning also shows O(E) ⊂ O(Eex) when Eex is
present.)
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Cases 7a and 7b: We are assuming E ∼= 1evenI 2evenI ; its auxiliary
column is worked out above: Echar ∼= 1evenI 2···II and Eeven

∼= 1···II2
even
I . One

of cases 4 or 5a–5c applies to Echar. If case 5c applies, then we just
saw that O(Echar) is not maximal, so O(E) cannot be either. In the
other cases, the O(Echar)-invariant neighbors of Echar can be read from
the related lattices column. No such neighbor has the form 1evenI 2evenI ,
so O(Echar) does not preserve E, so O(E) is not maximal. Similar
reasoning also shows O(E) ⊂ O(Eeven).

We have justified all the no’s. Next suppose that the auxiliary col-
umn reads “none”, ie E has no O(E)-invariant elementary neighbors.
Then lemma 3.4 shows that wE is the only O(E)-invariant point of E .
So O(E) is the full O(V )-stabilizer of every O(E)-invariant vertex,
hence maximal among lattice stabilizers. This accounts for four “yes”
entries in the table.

A similar but more complicated argument justifies the remaining
“yes” entries. Except in cases 2a, 5a and 5a′, E has exactly one O(E)-
invariant elementary neighbor L. One can check that E may be re-
covered from L by the operation in the last column. It follows that
O(E) = O(L). (Note: from data so far compiled, one can read off
that O(L) leaves invariant a lattice isometric to E. But we need the
stronger result that O(L) leaves E itself invariant. We checked each
case, using the definitions of the operations even, ex,

char and ex.) Fur-
thermore, in these cases, one can read from the table that L has a
unique O(L)-invariant neighbor. This can only be E, and it follows
that the fixed-point set of O(E) in E is the segment wEwL. Since O(E)
is the full stabilizer of each endpoint of this segment, it is maximal.

The idea is the same in the special cases 2a, 5a and 5a′. Consider
the three isometry classes 1+2

II 2
+2
II , 1

+4
0 and 2+4

0 . If E represents one
of these classes, then it has exactly two O(E)-invariant elementary
neighbors, which represent the other two classes. Furthermore, E can
be recovered from either of them via the operations listed in the last
column. It follows that all three lattices have the same isometry group,
which we call G to avoid breaking the symmetry. One also checks that
these neighbors of E are neighbors of each other, so that they and E
form the vertices of a 2-simplex of E . The two G-invariant neighbors,
of any vertex of this triangle, can only be the other two vertices. It
follows that this triangle is the entire fixed-point set of G. Since G is
the full stabilizer of each vertex of it, G is maximal.

To finish the proof in each case with O(E) maximal, we must find
all O(E)-invariant elementary lattices in V , record them under “re-
lated lattices”, and record how to recover E from each of them. The
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O(E)-invariant elementary lattices are the same as the O(E)-invariant
vertices of E , and we just worked out O(E)’s fixed-point set. In partic-
ular, the O(E)-invariant vertices are E and the O(E)-invariant neigh-
bors of E. The latter are exactly the contents of the auxiliary column,
which explains why we copy its contents to “related lattices”. While
proving maximality, we already checked that the last column describes
how to recover E from any O(E)-invariant neighbor.

To finish the proof in each case with O(E) non-maximal, we must
record under “related lattices” at least one O(E)-invariant lattice whose
isometry group is maximal. By rescaled duality, it is enough to do this
in cases 5c, 6b and 7a–7b. We recall the O(E)-invariant neighbors of E,
and in cases 5c and 6b we explain why each such neighbor has maximal
orthogonal group:

O(E)-invariant
Case neighbor L reasoning about O(L)

5c Eeven
∼= 1···II2

···
II maximal by one of 2a–2d

Eex
∼= 2···0 (if present) maximal by one of 5a′–5b′

6b Echar ∼= 1oddI 2···II maximal by one of 3a–3b

7a–7b Echar ∼= 1evenI 2···II see below

Eeven
∼= 1···II2

even
I

This justifies their “related lattices” in table 4.1. In cases 7a–7b we are
assuming E ∼= 1event 2evenu . Because the dimensions of the constituents
are even, so are t and u. By (4.3),

Eeven
∼=

{
1···II ⊕ 2···2±t ⊕ 2···u if t = 2 or −2
1···II ⊕ 2···2II ⊕ 2···u if t = 0or 4

}
∼= 1···II2

···
v

where v ≡ t + u mod 4. Similarly, Echar ∼= 1···w2
···
II with w ≡ t + u

mod 4. In case 7a we assumed t+ u ∈ {±2}, so O(Echar) and O(Eeven)
are maximal by cases 4 and 4′. This justifies the “related lattices” in
row 7a. In case 7b we have t + u ∈ {0, 4}, so Echar resp. Eeven falls
into one of the cases 5a–5c resp. 5a′–5c′. It can happen that O(Echar)
and/or O(Eeven) is maximal, eg if E ∼= 1+2

0 2+2
0 . But neither is maximal

if 5c and 5c′ apply. On the other hand, in case 7b one can check that
(Echar)even and (Eeven)

char are the same lattice, which we take as the
definition of Echar

even. This has the form 1···II2
···
II , whose orthogonal group is

maximal by one of the cases 2a–2d. □

5. The global case

Our goal is to prove theorem 1.4. Philosophically, it is a direct appli-
cation of strong approximation. But for some elementary lattices E,
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Θ(E) is not large enough. In those cases we find a reflection in O(E).
We recommend that the reader skip to the “generic case” in the proof of
lemma 5.4, and then to lemma 5.5 and the proof of theorem 1.4. Lem-
mas 5.1–5.3, and most of the proof of lemma 5.4, adapt these simple
ideas to some troublesome cases.

Lemma 5.1. Each indefinite elementary Z-lattice E of rank n ≥ 3 is
the unique lattice in its genus.

Proof. We use Thm. 19 from Sec. 9.7 of [5, Ch. 15], or equivalently
the corollary to 3.7 of [4, Ch. 11]. It says that if an indefinite lattice
E is not unique in its genus, then there is a prime p for which Ep has
a Jordan decomposition with every constituent being 1-dimensional.
But then E would not be elementary. □

Lemma 5.2. Suppose L is a Z-lattice and N ∈ Z. If Lp has a root of
norm N for every place p, then so does some lattice in the genus of L.
In particular, if L is unique in its genus, then L has a norm N root.

Proof. This is a minor variation on the standard argument that if all
Lp represent N , then some lattice in L’s genus does too. Let rp be
a norm N root in Lp, and let Kp = r⊥p ⊆ Lp. Because L ⊗ Q is a
quadratic space over Q, its p-adic invariants satisfy the “product rule”

σ2(L) ≡ σ∞(L) +
∑
odd p

εp(L) mod 8

and similarly with ⟨N⟩ in place of L. (See [5, Sec. 7.7 of Ch. 15] for
this formulation of the product rule, including the invariants σp and εp.
See [4, Lem. 1.1 of Ch. 6] for the classical formulation.) Because the
invariants are additive under direct sum, subtraction yields σ2(K2) ≡
σ∞(K∞) +

∑
odd p εp(Kp) mod 8. This guarantees the existence of a

Z-lattice K whose localizations are the Kp. (See [5, Sec. 7.7 of Ch. 15].
In the classical formulation, combine Thm. 1.3 of Ch. 6 and Thm. 1.2
of Ch. 9 from [4]).

Write r for a generator of the Z-lattice ⟨N⟩. We will enlarge K⊕⟨r⟩
to get a lattice in the genus of L. It is already isomorphic to L at every
place except 2: because 1

2
∈ Z×

p , the root rp generates a summand of
Lp, so Lp = Kp⊕⟨rp⟩. If r2 generates a summand of L2, then the same
holds at 2, so K⊕⟨r⟩ lies in the genus of L. Otherwise, K2⊕⟨r2⟩ must
have index 2 in L2, because r2 being a root of L2 gives L2 · r2 ⊆ 1

2
Z2r

2
2.

Define J as the corresponding index 2 enlargement of K ⊕ ⟨r⟩. By
construction, J2 ∼= L2. An index 2 enlargement does not change any
other localization of K ⊕ ⟨r⟩. Therefore J lies in the genus of L, as
desired.
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To finish the proof, we show that r is a root of J . First, because J
contains K⊕⟨r⟩ with index ≤ 2, the projection of J to Qr lies in 1

2
Zr.

Together with the primitivity of r, which follows from that of r2, this
shows that r is a root. □

Lemma 5.3. If E2 is an elementary 2-adic lattice of rank ≥ 3, then
there exists a power of 2, say N2, such that E2 has roots of all norms
N2 · u with u ∈ Z×

2 .

Proof. One checks directly that 1+2
II and 1−2

II have roots of all norms
2 · (odd). Also, if a, b, c are odd, then ⟨a, b, 2c⟩ has roots of every
odd norm, for example (1, 0 or 2, 0 or 1). These roots are also roots of
⟨a, b, 2c⟩′ ∼= ⟨2a, 2b, c⟩, with doubled norms. From these examples it
follows that if E admits a summand

1±2
II , 2±2

II , ⟨a, b, 2c⟩, or ⟨2a, 2b, c⟩
then we may take N2 = 2, 4, 1 or 2 respectively. One can check that
every elementary lattice of rank ≥ 3 admits such a summand. □

If V is a nondegenerate quadratic space overQ, then for each prime p,
section 3 defines the complex E of elementary lattices in Vp. To avoid
confusion we will write Ep. If E is an elementary lattice in V , and p is
understood, then we will abbreviate the vertex wEp ∈ Ep to wE.

Lemma 5.4. Suppose V is an indefinite quadratic space over Q of
dimension ≥ 3 and E is an elementary lattice in V . If p is a prime
and wE ∈ Ep has an O(E)-invariant neighbor, then p = 2 and that
neighbor is also O(E2)-invariant.

Proof. Lemma 3.5 shows that the neighbors of wE correspond to ele-
mentary lattices properly containing or properly contained in Ep. So it
is enough to prove that if such a superlattice resp. sublattice is O(E)-
invariant, then it is O(Ep)-invariant and p = 2. We give details for
the sublattice case, and indicate the minor changes needed for super-
lattices.

We begin with “the generic case”: if p = 2 then we assume E2

does not appear in lemma 4.4(2), while if p is odd then we assume
that the unimodular constituent of Ep is not

(
0 1
1 0

)
. The proof is easy

and does not use anything else from this section. An O(E)-invariant
elementary proper sublattice of Ep is obviously Θ(E)-invariant, hence
Θ(Ep)-invariant by strong approximation. If p is odd, then no such
sublattice exists by theorem 4.2(1). If p = 2 then lemma 4.4 shows that
the only possibility for such a sublattice is (E2)even, which is obviously
O(E2)-invariant.
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Now for the non-generic case. First suppose p = 2, so E2 appears
in lemma 4.4(2), ie E2

∼= (1+2
II , 1

+3
±1, 1

−3
±3, 1

+4
0 or 1−4

4 )2···II . We will show
that E has a root whose norm N is twice an odd number. Assuming
this for the moment, we write R for this root’s reflection, and use the
argument of the previous paragraph with ⟨Θ(E), R⟩ in place of Θ(E),
and lemma 4.4(2) in place of the other parts of that lemma. This shows:
the only O(E)-invariant elementary proper sublattices of E2 are (E2)ex
and maybe (E2)even. These are obviously O(E2)-invariant.

To construct the required root, we first define N = 2
∏

q Nq with q
varying over the odd primes, where

(5.1) Nq =

{
1 if Eq’s unimodular constituent has rank ≥ 2

q if Eq’s non-unimodular constituent has rank ≥ 2

(At least one case applies; if both do then choose either.) By lemmas
5.1 and 5.2, it is enough to show that every completion of E has a
norm N root. E2 does because it admits a summand 1±2

II , which has
roots of all norms 2 · (odd). Now fix an odd prime q. We will use
the fact that every nondegenerate Fq inner product space of rank ≥ 2
is universal: it represents every nonzero element of Fq. If Nq = 1
then we apply this to U/qU = Eq/qE

∗
q , where U is the unimodular

constituent. It follows that U represents every element of Z×
q , hence

has a norm N vector. Since q ∤ N , this vector generates a summand
of U and hence is a root of Eq. On the other hand, if Nq = q, then we
apply a scaled version of this argument to 1

q
V/V = ∆(Eq), where V is

the non-unimodular constituent. For p = 2, this finishes the proof that
E has a norm N vector. We already showed that the O(E2)-invariance
of every O(E)-invariant neighbor of wE follows.

When p is odd in the non-generic case, the unimodular constituent
of Ep is

(
0 1
1 0

)
. The proof is modeled on the p = 2 case. We define N =

N2

∏
q Nq, where the Nq are as before except we specify Np = 1, and

N2 comes from applying lemma 5.3 to E2. In particular, p ∤ N . E has
a norm N root by the same argument. The same argument concerning
⟨Θ(E), R⟩, but using theorem 4.2(1) in place of lemma 4.4(2), shows
the absence of O(E)-invariant elementary proper sublattices of Ep.

Finally, we indicate how to adapt the argument to apply to O(E)-
invariant elementary superlattices of E. If p = 2, then the generic
case is that E2 does not appear in lemma 4.5(2). If p is odd, then the
generic case is that E’s non-unimodular constituent is not

(
0 p
p 0

)
. In

either of these cases the proof goes through as before, except that we
quote lemma 4.5 rather than 4.4 when p = 2, and quote theorem 4.2(2)
rather than 4.2(1) when p is odd. In the non-generic case when p = 2,
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the argument is the same except that we take N = 4
∏

Nq, use the
presence of a summand 2±2

II in place of a 1±2
II summand, and quote

lemma 4.5(2) rather than 4.4(2). In the non-generic case when p is
odd, take Np = p rather than Np = 1, work with the non-unimodular
constituent rather than the unimodular one, and quote Theorem 4.2(2)
rather than 4.2(1). □

Lemma 5.5. Suppose E and F are elementary lattices in the same
indefinite rational quadratic space of dimension ≥ 3. Suppose their
completions coincide at all odd primes, and represent neighboring ver-
tices of E2 at the prime 2. Then

(5.2) O(E) ⊆ O(F ) ⇐⇒ O(E2) ⊆ O(F2).

Furthermore, the same holds with ⊆ replaced by ⊇ or by =.

Proof. We only prove “⇐”, because “⇒” is part of the previous lemma.
So suppose O(E2) preserves F2. As a subgroup of O(E2), O(E) does
too. So it preserves the unique Z-lattice in V whose 2-adic completion
is F2 and whose other completions coincide with those of E. That is,
O(E) preserves F .
The statement (5.2) with ⊆ replaced by ⊇ follows from symmetry in

E and F . The statement with ⊆ replaced by = is a formal consequence
of the ⊆ and ⊇ statements. □

Proof of theorem 1.4. By lemma 5.4, every O(L)-invariant elementary
lattice in V coincides with L at all odd primes. Therefore comple-
tion-at-2 is a bijection from the set of such lattices to the set of O(L)-
invariant 2-adic elementary lattices in V2. So, whenever we have a
2-adic elementary lattice in mind, the “corresponding Z-lattice” will
mean the one whose 2-adic completion is that lattice, and whose other
completions coincide with those of L.
First we suppose O(L2) is not maximal. In this case, the theorem’s

only claim is that O(L) is also non-maximal. By non-maximality, O(L2)
appears in one of the rows 5c, 6b, 7a–7b, 5c′ and 6b′ of table 4.1.
We claim there exists a neighboring 2-adic elementary lattice M2 with
strictly larger orthogonal group. We recall that the “related lattices”
column of table 4.1, in the case that O(L2) is non-maximal, lists one or
more O(L2)-invariant 2-adic lattices with maximal orthogonal group.
Except for case 7b, these are neighbors of L2, so we may take M2 to
be one of them. In case 7b, one can take M2 = (L2)even or (L2)

char;
the proof of theorem 4.6 showed that both their orthogonal groups
contain O(L2) properly. Take M to be the corresponding Z-lattice.
From O(L2) ⊂ O(M2), lemma 5.4 gives O(L) ⊂ O(M). In particular,
O(L) is not maximal.
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Now we assume O(L2) is maximal. We consider the fixed points of
O(L) in E2, and quote lemma 3.4 to deduce the following. Every O(L)-
invariant elementary 2-adic lattice in V2 is the final term in a sequence

L
(0)
2 , . . . , L

(k)
2 of such lattices, with L

(0)
2 = L2 and each consecutive

pair being neighbors. We write L(0), . . . , L(k) for the corresponding Z-
lattices, and prove by induction that O(L(i)) = O(L) and O(L

(i)
2 ) =

O(L2). The base case is trivial, so suppose i > 0. By construction, L
(i)
2

is invariant under O(L), hence under O(L(i−1)) by induction. From

O(L(i−1)) ⊆ O(L
(i)
2 ), lemma 5.5 deduces O(L

(i−1)
2 ) ⊆ O(L

(i)
2 ). The left

side is maximal, because it coincides with O(L2) by induction. So the

inclusion is an equality. From O(L
(i)
2 ) = O(L

(i−1)
2 ) follow both induc-

tive claims. First, O(L
(i)
2 ) = O(L2) by O(L

(i−1)
2 ) = O(L2). Second,

O(L(i)) = O(L(i−1)) = O(L) by lemma 5.5 and O(L(i−1)) = O(L).
The previous paragraph implies two things. First, every O(L)-invar-

iant elementary lattice in V has the same orthogonal group as L. So
O(L) is maximal. Second, the O(L)- and O(L2)-invariant elementary
lattices in V2 coincide. The rest of the theorem follows by applying
theorem 1.2 to L2. □
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