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We give a construction for new families of thin subgroups inside SL(4, R). In particular,

we show that the fundamental group of a closed hyperbolic 3-manifold can be isomor-

phic to a thin subgroup of a lattice.

1 Introduction

Let G be a semi-simple Lie group and Γ < G be a lattice. This paper is motivated by

the attempt to understand the infinite index subgroup structure of Γ . In particular, to

understand the possibilities for infinite index, finitely generated, freely indecomposable,

Zariski dense subgroups of Γ .

The study of Zariski dense subgroups of semi-simple Lie groups has a long

and rich history. Some highlights are the Borel Density Theorem, which establishes

that a lattice in a semi-simple Lie group is Zariski dense, and works of Oh [17] and

Venkataramana [23], which establish in certain cases that Zariski dense subgroups of a

nonuniform lattice in a high rank Lie group are themselves lattices. In addition, there

are many constructions (based on ping-pong) of free subgroups (or more generally sub-

groups that are free products), of semi-simple Lie groups, and lattices that are Zariski

dense (see [16, 22] and references therein). Indeed, it is shown in [20] that, in a precise
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2 D. D. Long and A. W. Reid

probabilistic sense, Zariski density is a generic property for subgroups of lattices in

SL(n, Z) or Sp(2g, Z).

Following Sarnak (see [21]), a subgroup Δ of Γ is called thin if Δ has infinite

index in Γ , and is Zariski dense. Since, as remarked upon above, it is by now quite

standard to exhibit Zariski dense subgroups of lattices that are free products, the case of

most interest is that the thin group Δ is finitely generated and does not decompose as a

free product. In this paper, thin subgroups are understood to be freely indecomposable.

There has been much recent interest in the nature of thin subgroups of lattices,

motivated in part by work on expanders, and in particular the so-called “affine sieve” of

Bourgain et al. [5]. We cite [21] for a detailed survey; other recent works that study thin

groups are [8–10, 14, 15, 20] to name but a few.

Thin subgroups appear quite difficult to exhibit since the Zariski dense condition

makes any given subgroup hard to distinguish from a lattice. Some striking families of

examples and nonexamples are offered in [15] (which generalizes an old example in [12])

and [14]. This paper continues our work in this direction and exhibits new examples

of thin groups inside infinitely many nonuniform lattices in SL(4, R). In particular, we

show that the fundamental group of a closed hyperbolic 3-manifold can be isomorphic

to a thin subgroup. To our knowledge, these are the first such examples (see below for a

precise statement).

The starting point of this paper is the construction of [7], where it is shown that

for certain closed hyperbolic 3-manifolds, one can flex the faithful discrete represen-

tation into SO0(3, 1) < SL(4, R); by which we mean that if one regards the hyperbolic

structure as a strictly convex real projective structure, it can be deformed. In this way,

we bring to bear deep results of Koszul [13] and Benoist [3, 4] to deduce that all of these

deformations give rise to convex real projective structures. In particular, the holonomy

representations are all discrete, faithful representations of the fundamental group in

question. This part of the construction plays the role of the work of Choi–Goldman [6]

used in [15]. One can then argue, using the results of [11], that all of these image groups,

other than the discrete faithful SO0(3, 1)-representation, are Zariski dense in SL(4, R)

(see Theorem 2.1).

The argument to this point is quite general and applies to any flexible hyperbolic

3-manifold (even if these are apparently quite rare; see [7]), but some specialization is

now necessary to ensure that the deformed group lies inside a lattice. To this end, we fix

attention upon one particular closed hyperbolic 3-manifold, traditionally known as vol3.

The lattices in question are described in Witte [24, Proposition 6.55]: One fixes a real

quadratic number field L with ring of integers OL and nontrivial Galois automorphism τ .
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Constructing thin subgroups in SL(4, R) 3

The lattices considered arise in the commensurability class of the Hermitean isometry

groups of a diagonal form J, denoted by SU(J,OL , τ ). We refer to Theorem 2.3 for a

precise description. After some slightly delicate technical work, we show the following

theorem.

Theorem 1.1. For infinitely many real quadratic number fields L, the lattices

SU(J,OL , τ ) contain a thin subgroup isomorphic to a subgroup of finite index

in π1(vol3). �

We note that any such subgroup is not a free product (since it is the fundamental

group of a closed hyperbolic 3-manifold) and must have infinite index in the lattice that

contains it, since it is well known that π1(vol3) contains subgroups of finite index which

map onto Z. Indeed, one can show further that (see [18]) one can pass to a subgroup of

finite index in π1(vol3) which is a surface bundle over the circle. This means one can

find surface groups that are virtually normal subgroups in π1(vol3). Such a subgroup

will have the same Zariski closure as π1(vol3), so that we have the following corollary.

Corollary 1.2. For infinitely many real quadratic number fields L, the lattices

SU(J,OL , τ ) contain a thin surface subgroup. �

In this vein, the first author and M. Thistlethwaite (unpublished) have con-

structed a family of thin surface subgroups of SL(4, Z).

2 The Construction

As stated in Section 1, the group upon which our construction is based is the fun-

damental group of the closed hyperbolic 3-manifold known as vol3. The interest in

this manifold is that one finds it is the simplest hyperbolic 3-manifold which is

flexible in the sense of [7]; which is to say that the discrete faithful representation

ρ∞ : π1(vol3) → SO0(3, 1) < SL(4, R) admits nontrivial deformations into SL(4, R). Of

course, Mostow rigidity implies that these deformations cannot lie inside SO0(3, 1).

However, if one uses the Klein model for hyperbolic space, one can regard this hyperbolic

structure as a strictly convex real projective and then remarkable results of Koszul [13]

and Benoist [3, 4] show that all these deformations correspond to holonomy deforma-

tions qua strictly convex real projective structures and, in particular, they are all dis-

crete and faithful representations of the group π1(vol3) into SL(4, R). Moreover, we also

have the following theorem.
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4 D. D. Long and A. W. Reid

Theorem 2.1. Let ρ be irreducible and a nontrivial (i.e., nonconjugate) deforma-

tion of ρ∞.

Then the image ρ(π1(vol3)) is Zariski dense in SL(4, R). �

Proof. This is based upon a theorem due to Benoist. Theorem 1.1 of [3] describes the

various possibilities for convex real projective structures in our setting. The representa-

tion ρ is irreducible, so that the convex set C associated to the real projective ρ-structure

cannot split invariantly as a product of convex sets C1 × C2.

The statement of Benoist’s Theorem 1.1 now becomes either ρ(π1(vol3)) has

Zariski closure SL(4, R), or that C is homogeneous, which is to say that Aut(C ) acts

transitively on C . However, we may rule out this case as follows.

The action of Aut(C ) is by isometries of the Hilbert metric on C . Now it is a

standard fact (e.g., one can base an argument on [1, Theorem 2.17]) that one can associate

to any Finsler metric a Riemannian metric which is sufficiently canonical that the action

of Aut(C ) is by isometries of this Riemannian metric; that is to say, we have assigned to

C a Riemannian metric making it into a homogeneous space. This makes C/ρ(π1(vol3))

into a closed manifold with a homogeneous metric. Such homogeneous metrics have

been classified by Thurston, and the only possibility is that the homogeneous metric on

C/ρ(π1(vol3)) is a multiple of the hyperbolic metric.

However, we now claim that this contradicts the fact that the representation

has been flexed away from the canonical representation. We argue as follows:

We have identified Aut(C ) as a subgroup of SO0(3, 1) and since the only tran-

sitive nonsoluble Lie subgroup of SO0(3, 1) is the whole group, this shows that

Aut(C ) ∼= SO0(3, 1).

However, all representations of SO0(3, 1) into SL(4, R) preserve a nondegenerate

invariant bilinear form (see, e.g., [11, p. 205 and Example 3, p. 198]). This form cannot be

definite since Aut(C ) contains an infinite discrete subgroup, and cannot have signature

(2, 2) since SO0(3, 1) and SO(2, 2) are not locally isomorphic. It follows that we must have

signature (3, 1) and therefore up to conjugacy in SL(4, R) the representation is equivalent

to the standard one. We deduce that the flexed representation ρ can be conjugated into

SO0(3, 1).

Finally, we conclude that this contradicts Mostow rigidity. The reason is as fol-

lows: The manifold C/ρ(π1(vol3)) is a K(π, 1) and therefore H3(C/ρ(π1(vol3))) = Z. This

implies that C/ρ(π1(vol3)) is a closed 3-manifold and we deduce that ρ(π1(vol3)) would

be a lattice in Aut(C ) ∼= SO0(3, 1). Mostow rigidity implies that ρ is conjugate to the stan-

dard representation, contradicting that ρ is a nontrivial flexing of ρ∞.
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Constructing thin subgroups in SL(4, R) 5

Hence, C cannot be homogeneous and therefore ρ(π1(vol3)) is Zariski dense in

SL(4, R), as required. �

We now collect some details about vol3. It is an arithmetic hyperbolic

3-manifold with volume the same as that of a regular ideal simplex (i.e., approximately

1.01494160640965 . . .), and H1(vol3, Z) = Z6 ⊕ Z3. It is known that vol3 is non-Haken and

indeed arithmetic methods show that ρ∞(π1(vol3)) contains no nonelementary Fuchsian

subgroups (see [18] for details).

The fundamental group has presentation

〈a, b | aabbABAbb, aBaBabaaab〉,

where A= a−1 and B = b−1.

It will be technically slightly easier to work with an orbifold Q = vol3/〈u〉 which

is four-fold covered by vol3. We denote by Γ the orbifold fundamental group of Q. Note

that a representation of Γ is discrete and faithful only if it is discrete and faithful when

restricted to vol3, so that it suffices to work with Γ .

One finds that Γ is generated by two elements of finite order uand c (see [7]). The

group π1(vol3) is recovered as a= u2 · c and b = (a · u · a)−1 · u.

We shall need quite a detailed understanding of the representations of Γ ; ini-

tially, we use the version presented in [7], where, after some mild conjugacy, one finds

that the 4-dimensional representations are given by

ρv(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0

√
v2 − 4

v2 + 8
1

0 0 −2(v2 + 2)

v2 + 8
−

√
v2 − 4

v2 + 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

ρv(c) =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
v + √

v2 + 8
)
/4 0

(
4 − v2 − v

√
v2 + 8

)
/8 0

0
(
v − √

v2 + 8
)
/4 0

(
− 4 + v2 − v

√
v2 + 8

)
/8

1 0
(

− v − √
v2 + 8

)
/4 0

0 −1 0
(

− v + √
v2 + 8

)
/4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

 at U
niversity of T

exas at A
ustin on July 12, 2013

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


6 D. D. Long and A. W. Reid

The discrete faithful representation occurs at v = 2 and the deformations as a convex

real projective manifold are parameterized by real v ∈ [2,∞); the observations above

show that all these representations are discrete and faithful representations of Γ .

One crucial property we shall need is the following proposition.

Proposition 2.2. For every v ∈ Z with v ≥ 2, the traces of ρv lie in the ring of integers

OQ(
√

v2−4). �

Proof. This is a computation; we sketch the proof. One constructs a list of 16 group

elements {Mj} in Γ that are linearly independent in M(4, R): {id, uc, u2c, c, cuc, cu2c, (uc)2,

u2cuc, ucu2c, u2cu2c, cucuc, cu2cuc, cucu2c, cu2cu2c, u2cucuc, ucucu2cuc}.
This is then used to construct a 16-dimensional representation of Γ by using left

multiplication on this basis. (A file with this representation has been placed at [25].) One

finds that, for the given values of v, the entries for this representation are elements of

OQ(
√

v2−4).

The proof of Proposition 2.2 is completed as follows. One can check by hand

that the traces of the elements Mj are all integers. Now the image of the general element

γ ∈ Γ for the left regular representation constructed above has all its entries in OQ(
√

v2−4),

and since the first element of the list is the identity, the first column of this matrix is 16

integers {cj}, which express the fact that

g =
∑

j

cj Mj.

Since the trace is linear, tr(g) = ∑
j cj tr(Mj) is an integer, as required. �

The next phase of the proof is to show that, for infinitely values of v ∈ Z,

the images ρv(Γ ) lie in a lattice inside SL(4, R). The lattices in question are con-

structed from [24, Theorem 6.55] by a rather general construction which involves L,

a real quadratic extension of Q and D, a central simple division algebra of degree d

over L. However, in our situation we may assume that D = L, and we state only this

special case.

Before stating the theorem, recall that if L is a real quadratic extension of

Q, and A∈ SL(4, L), we denote by A∗ the matrix obtained by taking the transpose of

the matrix obtained from A by applying τ (the nontrivial Galois automorphism) to all

its entries.
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Constructing thin subgroups in SL(4, R) 7

Theorem 2.3. Suppose that L is a real quadratic extension of Q, with Galois automor-

phism τ . Suppose that b1, . . . , b4 are nonzero elements of Z. Setting J = diag(b1, . . . , b4),

then the group

SU(J,OL , τ ) = {A∈ SL(4,OL) | A∗ J A= J}

is a lattice in SL(4, R). �

We also note from [24, Proposition 6.55] that, in the case being considered here

(when D = L), the corresponding forms will represent zero nontrivially, and so the lat-

tices produced are nonuniform.

It is not immediate how to apply Theorem 2.3 directly, since as it stands the

entries of ρv lie in a biquadratic field. However, one can show that the representation

ρv is conjugate to the representation below with v = (r − 1/r)/
√

2.

φr(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − (1 + r2)(2 + 2r2 −
√

2(1 − 10r2 + r4))

1 + 14r2 + r4
0 0

2 + 2r2 +
√

2(1 − 10r2 + r4)

2 + 2r2
0 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

φr(c) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − r2

4
√

2r
−1 + r2

4r
−1 0

−1 + 14r2 + r4

8(r + r3)

1 − r2

4
√

2r
0 1

1

16
(−10 + 1/r2 + r2)

−1 + r4

8
√

2r2

−1 + r2

4
√

2r
−1 + r2

4r

− (−1 + r2)(1 + 14r2 + r4)

16
√

2r2(1 + r2)

1

16
(10 − 1/r2 − r2) −1 + 14r2 + r4

8(r + r3)

−1 + r2

4
√

2r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The utility of this version of the representation is that if one chooses r to be a

unit α ∈ Z[
√

2] with the property that the Galois automorphism carries α → 1/α, then

it is a simple exercise to see that the entries of φα(Γ ) lie in a real quadratic field

Q(
√

2α2 − 20 + 2/α2); indeed φα(c) is a rational matrix. In this notation, v is the integer

(α − 1/α)/
√

2; the simplest case α = 3 + 2
√

2 gives v = 4.
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8 D. D. Long and A. W. Reid

The passage to a commensurable integral representation is achieved by the fol-

lowing theorem.

Theorem 2.4. Suppose that Γ < SL(4, k) is a finitely generated group with the property

that tr(γ ) ∈Ok for every γ ∈ Γ .

Then Γ has a subgroup of finite index contained in SL(4,Ok). �

Proof. Consider

OΓ = {Σaiγi | ai ∈Ok, γi ∈ Γ },

where the sums are finite. It is shown in [2] (see Proposition 2.2 and Corollary 2.3), that

OΓ is an order of a central simple subalgebra B ⊂ M(4, k) defined over k. Now, while OΓ

need not be an order in M(4, k), it is known that it is contained in some maximal order

D of M(4, k) (cf. [15, Exercise 5 and Proof of Lemma 2.3; 19, p. 131).

Now it is a standard fact that the groups of elements of norm 1 in orders con-

tained in M(4, k) are commensurable (since the intersection of two orders is an order

and the unit groups of orders will be irreducible lattices in SL(4, R) × SL(4, R); see [24,

Chapter 15I]). In particular, SL(4,Ok) and D1 are commensurable. Let Δ = SL(4,Ok) ∩ D1,

which has finite index in both groups. Then Γ ≤D1, so that Γ ∩ Δ has finite index in Γ

and lies inside SL(4,Ok), as required. �

For the specializations α above, one can perform a computation to find a non-

singular Hermitean matrix J which exhibits φα(Γ ) as a subgroup of SU(J, L , τ ), where

L is the real quadratic field Q
(√

2α2 − 20 + 2/α2
)
. Hence, by Theorem 2.4, we may pass

to a subgroup H of finite index in Γ for which φα(H) lies inside SU(J,OL , τ ). By using

the Gram–Schmidt process, one can diagonalize J over L, and by scaling assume that

the diagonal entries lie in OL , hence in Z. The main theorem will now follow from the

following simple lemma.

Lemma 2.5. Suppose that the forms J1 and J2 are GL(4, L)-equivalent.

Then, after a conjugacy in GL(4, L), the groups Γ1 = SU(J1,OL , τ ) and Γ2 =
SU(J2,OL , τ ) are commensurable. �

Proof. If J1 = M∗ J2M say, and A∈ Γ2, then M−1 · A · M is an isometry of J1, but need not

have entries in OL (since det(M) need not be a unit). However, this may be rectified by
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Constructing thin subgroups in SL(4, R) 9

passing to a sufficiently deep congruence subgroup K ≤ Γ2. Then M−1K M ≤ Γ1 necessar-

ily of finite index by volume considerations. �

The result of Theorem 1.1 now follows. Taking r = α, a unit of the required form,

the representation φα(Γ ) is a discrete, faithful representation of Γ into SL(4, R) which

has image whose entries lie in L = Q
(√

v2 − 4
)
, where v = (α − 1/α)/

√
2. Theorem 2.1

shows that this subgroup is Zariski dense in SL(4, R).

By Theorem 2.4, one can pass to a subgroup of finite index which has entries

in OL . A computation finds a τ Hermitean form J for which this subgroup lies inside

SU(J,OL , τ ), where τ is the nontrivial Galois automorphism of L. The Gram–Schmidt

process converts this form to a diagonal Z-form J ′, so that an application of Lemma 2.5

shows that by passing to a further subgroup of finite index, φα(Γ ) is commensurable

with a subgroup of SU(J ′,OL , τ ); this is a nonuniform lattice by Theorem 2.3 and the

discussion following it.

Finally, we note that the image group φα(Γ ) cannot be commensurable with a

subgroup of finite index in SU(J ′,OL , τ ), since as pointed out in Section 1, π1(vol3) con-

tains subgroups of finite index that map onto Z. Hence, this subgroup is thin, as claimed.

3 An Example

The simplest example is when v = 4. It is easily checked that the representation in

Section 2 is conjugate to

ρ4(u) =

⎛
⎜⎜⎜⎜⎝

0 −1 −4 + 3
√

3 −1 + 2
√

3

1 0 −2 + √
3 −1

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

ρ4(c) =

⎛
⎜⎜⎜⎜⎝

0 0 −1 + √
3 0

0 0 0 −1 + √
3

(1 + √
3)/2 0 0 0

0 (1 + √
3)/2 0 0

⎞
⎟⎟⎟⎟⎠ .

This is not integral, but there is a surjection from π1(vol3) to the dihedral group with

10 elements where one sends a to a reflection and b to a rotation. A direct calculation

shows that the kernel of this map consists of elements whose entries lie in Z[
√

3]. One
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10 D. D. Long and A. W. Reid

can also check that a nondegenerate τ -Hermitean form for the image of ρ4 is

J =

⎛
⎜⎜⎜⎜⎝

2 0 2 − 2
√

3 −2
√

3

0 2 6 − 4
√

3 2 − 2
√

3

2 + 2
√

3 6 + 4
√

3 −4 0

2
√

3 2 + 2
√

3 0 −4

⎞
⎟⎟⎟⎟⎠ ,

which in turn can be checked as being equivalent to the diagonal form diag(1, 1, 1,−5).
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