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All finite groups are involved in the mapping class group

GREGOR MASBAUM

ALAN W REID

Let �g denote the orientation-preserving mapping class group of the genus g � 1

closed orientable surface. In this paper we show that for fixed g , every finite group
occurs as a quotient of a finite index subgroup of �g .

20F38; 57R56

1 Introduction

Throughout this paper, �g will denote the orientation-preserving mapping class group
of the genus g closed orientable surface.

A group H is involved in a group G if there exists a finite index subgroup K <G and
an epimorphism from K onto H . The question as to whether every finite group is
involved in �g was raised by U Hamenstädt in her talk at the 2009 Georgia Topology
Conference. The main result of this note is the following.

Theorem 1.1 For all g � 1, every finite group is involved in �g .

Some comments are in order. When g D 1, �1 Š SL.2;Z/ and in this case the result
follows since SL.2;Z/ contains free subgroups of finite index (of arbitrarily large rank).
For the case of g D 2, it is known that �2 is large (see Korkmaz [21]); that is to say,
�2 contains a finite index subgroup that surjects a free nonabelian group, and again the
result follows. Thus, it suffices to deal with the case when g � 3.

Although �g is well-known to be residually finite by Grossman [18], and therefore has
a rich supply of finite quotients, apart from those finite quotients obtained from

�g! Sp.2g;Z/! Sp.2g;Z=N Z/;

very little seems known explicitly about what finite groups can arise as quotients
of �g (or of subgroups of finite index). Some constructions of finite quotients of
finite index subgroups of �g do appear in the literature; for example, in Dunfield and
Thurston [10], Funar and Pitsch [13] and Looijenga [25]. In particular, the constructions
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in [25] using Prym representations associated to finite abelian overs of surfaces can
be used to construct finite quotients that are similar in spirit to what is done here.
Further information about the structure of finite index subgroups of �g is contained in
Berrick, Gebhardt and Paris [4] where the minimal index of a proper subgroup of �g

is computed.

Theorem 1.1 will follow (see Section 4) from our next result which gives many new
finite simple groups of Lie type as quotients of �g . Throughout the paper, Fq will
denote a finite field of order q , and SL.N; q/ (resp. PSL.N; q// will denote the finite
group SL.N;Fq/ (resp. PSL.N;Fq/).

Theorem 1.2 For each g� 3, there exist infinitely many N such that for each such N ,
there exist infinitely many primes q such that �g surjects PSL.N; q/.

In addition we show that Theorem 1.2 also holds for the Torelli group (with g � 2).

It is worth emphasizing that one cannot expect to prove Theorem 1.1 simply using
the subgroup structure of the groups Sp.2g;Z=N Z/. The reason for this is that since
Sp.2g;Z/ has the Congruence Subgroup Property (see Bass, Milnor and Serre [2]),
it is well-known that not all finite groups are involved in Sp.2g;Z/ (see Long and
Reid [24, Chapter 4.0], for example).

An interesting feature of the proof of Theorem 1.1 is that it exploits the unitary repre-
sentations arising in Topological Quantum Field Theory (TQFT) first constructed by
Reshetikhin and Turaev [34]. We actually use the so-called SO.3/–TQFT following
the skein-theoretical approach of Blanchet, Habegger, Masbaum and Vogel [5] (see
Section 3 for a brief resumé of this).

We briefly indicate the strategy of the proof of Theorem 1.2. The unitary representations
that we consider are indexed by primes p congruent to 3 modulo 4. For each such p

we exhibit a group �g which is the image of a certain central extension z�g of �g and
satisfies

�g � SL.Np;ZŒ�p �/;
where �p is a primitive p–th root of unity, and ZŒ�p � is the ring of integers in Q.�p/.
Moreover, the dimension Np !1 as we vary p . The key part of the proof is the
following. We exhibit infinitely many rational primes q , and prime ideals zq�ZŒ�p � sat-
isfying ZŒ�p �=zq'Fq , for which the reduction homomorphism �zq from SL.Np;ZŒ�p �/
to SL.Np; q/ (induced by the isomorphism ZŒ�p �=zq ' Fq ) restricts to a surjection
�g � SL.Np; q/.

From this, it is then easy to get surjections �g � PSL.Np; q/, which will complete
the proof. The details of how all of this is achieved are given in Section 4.
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The paper is organized as follows. In Section 2 we collect some background on
algebraic and arithmetic subgroups of (special) unitary groups, as well as what is
needed for us from Strong Approximation. This is all well-known, but we include this
to help make the paper more self-contained. In Section 3 we discuss the (projective)
unitary representations of �g arising from SO.3/–TQFT and a density result for these
representations due to Larsen and Wang [22]. In Section 4 we put the pieces together
to prove Theorem 1.1 and Theorem 1.2 following the strategy outlined above. Finally,
in Section 5 we make some additional comments about Theorem 1.1, in particular, how
Theorem 1.1 is perhaps reflective of some more “rank 1” phenomena for �g .
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groups to Teichmüller spaces”, and “On Interactions between Hyperbolic Geometry,
Quantum Topology and Number Theory” at CIRM Luminy and Columbia University
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helpful conversations. We would particularly like to thank Gopal Prasad who helped
enormously in clarifying various points about algebraic groups, their k –forms and
fields of definition that are used in Section 4. The second author thanks Max Planck
Institute for Mathematics for its hospitality whilst working on this.

The second author was partially supported by the NSF.

Remark 1.3 Whilst in the process of completing the writing of this paper we have
learned that similar results have recently been proved by Funar [12].

2 Algebraic and arithmetic aspects of unitary groups

It will be convenient to recall some of the basic background of unitary groups, algebraic
groups arising from Hermitian forms (over number fields, local fields and finite fields),
their arithmetic subgroups, and some aspects of the Zariski topology that we will make
use of.

We begin by fixing some notation. Throughout this paper we will fix p to be an odd
prime, which will be assumed congruent to 3 modulo 4 from Section 3 on. Let � D �p
denote a primitive p–th root of unity, Kp (or simply K if no confusion will arise) will
denote the cyclotomic field Q.�/ and OK its ring of integers. We will let the maximal
real subfield of Kp be denoted by k D kp , with corresponding ring of integers Ok .
We will assume that these fields always come with a specific embedding into C. Kp is
a totally imaginary quadratic extension of the totally real field kp , and both are Galois
extensions of Q.
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If G < GL.m;C/ is an algebraic group, and R� C is a subring then we will denote
the R–points of G by G.R/DG \GL.m;R/. We will identify G with its complex
points.

2.1

For more details about the material covered in this section, see Platonov and Rap-
inchuk [33] and Shimura [35; 36].

First, consider the extension of fields K=k . Fixing an embedding of K � C, complex
conjugation induces a Galois automorphism of K fixing k (since x� D ��1 ).

Now K=k has a k –basis f1; �g, and for ˛ 2 K , we can express the k –linear map
Lz.˛/ D z˛ in terms of the above basis. If z D aC b� with a; b 2 k then Lz is
represented by the following element of M.2; k/:

Lz D

�
a �b

b aC bt

�
;

where t D � C ��1 . Extending the k –linear map L in the obvious way, it follows
that SL.N;K/ may be embedded in GL.2N;C/ as an algebraic group defined over k .
Clearly, SL.N;K/ maps into SL.2N; k/. Furthermore, since f1; �g generates OK

over Ok , then SL.N;OK / maps into SL.2N;Ok/.

Let V D KN and H a nondegenerate Hermitian form on V . The special unitary
group

SU.V;H /D fA 2 SL.N;C/ W xAtHADH g

also has the structure of an algebraic group defined over k (where xA denotes complex
conjugation of matrices.) This is because Lxz is represented by the matrix

Lxz D

�
aC bt b

�b a

�
so that when we embed K into M2.k/ using the map L, complex conjugation becomes
the restriction of a self-map of M2.k/ defined over k .

We will denote this algebraic group by G , and we will frequently blur the distinction
between SU.V;H / and G .

The group SU.V;H IOK / D SU.V;H / \ SL.N;OK / embeds in SL.2N; k/ as a
subgroup commensurable with G.Ok/. Indeed, in this case, using the remark above
regarding the image of SL.N;OK /, we deduce that the image of SU.V;H IOK / is
actually equal to G.Ok/. Denoting this image group by � , then � is an arithmetic
subgroup of a product SUD SU.p1; q1/� � � � �SU.ps; qs/, of special unitary groups
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that arise from SU.V;H / in the following way (see Borel and Harish-Chandra [8]
and Shimura [35] for more details). Let �1; : : : �d denote the Galois embeddings of
k ,!R (with �1 chosen to be the identity embedding). We will that assume that at �1 ,

SU.V;H IR/D G.R/Š SU.p1; q1/;

where p1C q1 DN and p1; q1 > 0. Applying a Galois embedding �i to G produces
an algebraic group defined over �i.k/ D k whose real points thereby determine
another special unitary group of some signature. Assume that for i D 1; : : : ; s this
special unitary group, denoted by SU.pi ; qi/, is not isomorphic to SU.N / (ie, is
noncompact) and for iD sC1; : : : ; r the special unitary group is isomorphic to SU.N /.
The theory of arithmetic groups then shows that � is an arithmetic subgroup of
SU D SU.p1; q1/� � � � � SU.ps; qs/. Thus SU=� has finite volume, and moreover,
if s ¤ r , the quotient SU=� is compact, or equivalently � contains no unipotent
elements [8].

If K denotes the maximal compact subgroup of SU, then the arithmetic groups de-
scribed above determine finite volume quotients of the symmetric space SU=K. In fact
the full group of holomorphic isometries is obtained by projectivizing these groups;
ie � projects to an arithmetic lattice in PSUD PSU.p1; q1/� � � � �PSU.ps; qs/ (see
Borel [6] and Borel and Harish-Chandra [8]). Notice that for each pi ; qi , there is a
natural epimorphism SU.pi ; qi/! PSU.pi ; qi/ whose kernel consists of N –th roots
of unity, and in particular is finite.

2.2

We maintain the notation of the previous subsection. Let V denote the set of nonar-
chimedean places of k . If P is a prime ideal in Ok , we will write �P for the place in V
associated to P , and often simply write � . The theory of the group G over the local
fields k� is well-understood and we summarize what is needed for us (see Platonov
and Rapinchuk [33, Chapter 2.3.3] and Tits [37; 38]).

Suppose that L=F is a finite extension of number fields, with rings of integers OL

and OF respectively. Let � be a place associated to a prime ideal P �OF . Then the
behavior of P in L=F is determined by how the OL –ideal POL factorizes. We say
that � (or the prime P ) splits completely in L=F if POL decomposes as a product of
precisely ŒL W F � pairwise distinct prime ideals in OL (each of norm q the rational
prime lying below P ).

Consider the degree 2 extension K=k , and so a k –prime either remains prime in K ,
is ramified in K or splits into a product of two distinct primes. The structure of G.k�/
depends on the splitting type described above. Briefly, in the first two cases, the
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persistence of the quadratic extension locally is enough to show that G.k�/ is a special
unitary group. However, if � splits as a product of two primes in the quadratic
extension K=k , then k� ˝k K Š k� � k� is not a quadratic field extension of k� .
Using this, it can be shown that

G.k�/Š f.A;B/ 2 SL.N; k�/�SL.N; k�/ WADH�1t
B�1H g Š SL.N; k�/:

For more details see the discussion in [33, Chapter 2.3.3] or [37, page 55; 38]. We
summarize what is needed from this discussion in the following:

Theorem 2.1 Suppose that q is a rational prime that splits completely to K , and � a
place of k dividing q . Then G.k�/Š SL.N; k�/Š SL.N;Qq/.

The last isomorphism in Theorem 2.1 follows from the fact that for the places � in
Theorem 2.1, k� Š Qq . That there are infinitely many such primes q follows from
Cebotarev’s density theorem.

For all but finitely many primes P �Ok , we can also consider G as an algebraic group
over the residue class field F� D FP Š Fq (see [33, pages 142–143]). Moreover, by
[33, Chapter 3, Proposition 3.20], for these primes the reduction map G.Ok/! G.FP/

is a surjective homomorphism. Thus, together with Theorem 2.1 we deduce:

Corollary 2.2 Suppose that q is a rational prime that splits completely to K , and P a
k –prime dividing q . Then for all but finitely many such primes P , G.FP/Š SL.N; q/.

2.3

We continue with the notation above. Being an algebraic subgroup of SL.N;C/, G
comes equipped with the Zariski topology, and so in particular is Zariski closed by
definition. It also has the analytic (“usual”) topology arising from the subspace topology
inherited from SL.N;C/. Thus given a subgroup D < G we can talk about its Zariski
closure and analytic closure. Furthermore G.R/ is a Lie group and a real algebraic
group, and as such we can talk about the real Zariski closure and analytic closure
of subgroups D < G.R/. We collect some facts about the interplay between these
topologies on these groups and their subgroups that will be used.

The following lemma is due to Chevalley (see Morris [30, Proposition 4.6.1]).

Lemma 2.3 Let D < SU.N / be a subgroup. Then D is Zariski closed in SU.N / if
and only if it is analytically closed.
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Lemma 2.4 Suppose that D<G.k/ is (real) Zariski dense in G.R/, then D is Zariski
dense in G .

Proof Let Z denote the Zariski closure of D in G . Since D<G.k/, Z is an algebraic
subgroup of G defined over k (see [7, Chapters I.1.3, and AG 14.4], for example).
Hence Z.R/ < G.R/ are real algebraic groups defined over k , and so are real Zariski
closed sets. But the Zariski closure of D in G.R/ is G.R/, and so it follows that
Z.R/D G.R/.

Now viewed as real algebraic groups, the groups G.R/ and Z.R/ are defined over k .
The algebraic groups G and Z are also defined over k and are simply the complexifi-
cations of these real algebraic groups. Thus the ideals of polynomials defining G.R/
and G (resp. Z.R/ and Z ) agree. From this it follows that Z DG as required.

2.4

We will apply Strong Approximation, and in particular, a corollary of Theorem 10.5
of Weisfeiler [40] (see also Nori [32]). Note that G is an absolutely almost simple
simply connected algebraic group defined over k (ie the only proper normal algebraic
subgroups of G are finite) which is required in [40].

For convenience we state the main consequence of [40, Theorem 10.5 and Corol-
lary 10.6] (see also the discussion in [26, Window 9]) in our context.

Definition 2.5 The adjoint trace field of a subgroup D < G.k/ is defined to be the
field Q.ftr.Ad  / W  2 Dg. Here Ad denotes the adjoint representation of G on its
Lie algebra.

Theorem 2.6 Let G be as above, and let D < G.k/ be a finitely generated Zariski
dense subgroup of G such that the adjoint trace field of D is k . Then for all but finitely
many k –primes P , the reduction homomorphism �P W D! G.FP/ is surjective.

Proof We briefly discuss how this is deduced from [40, Theorem 10.5 and Corol-
lary 10.6]. Since D is finitely generated, apart from a finite set of places in V , the
image of D (which we will identify with D ) under the embedding G.k/ ,! G.k�/,
lies in the subgroup G.Ok�

/. Now the conclusion of [40, Corollary 10.6] states that
there is a (perhaps different) finite set T � V so that the closure of D in the restricted
direct product group

Q
VnT G.Ok�

/ is open. That this closure is open, in particular
implies that for all � 2V nT , the closure of D in the �–adic topology is all of G.Ok�

/.
It follows that the associated reduction homomorphism �P is surjective.
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Theorem 2.6 together with Corollary 2.2 now shows the following:

Corollary 2.7 Let D < G.k/ be a finitely generated Zariski dense subgroup of G
such that the adjoint trace field of D coincides with k . Then there are infinitely
many k –primes P of norm q a prime in Z, for which the reduction homomorphism
�P W D! SL.N; q/ is surjective.

Remark 2.8 It is clear from the proof that Theorem 2.6 and Corollary 2.7 also hold if
we assume the adjoint trace field is a subfield `� k , provided that G can be defined
over `, and D lies in the `–points of G (the point being that a rational prime that splits
completely in k must split completely in `). This observation will allow for a shortcut
in our proof of Theorem 1.1 in Section 4.

3 The SO.3/–TQFT representations

We briefly recall some of the background from the SO.3/–TQFT constructed in
Blanchet et al [5] and its integral version constructed in Gilmer and Masbaum [16]. We
also record some consequences of this and Larsen and Wang [22] that we will make use
of. From now on, we only consider the case where the prime p satisfies p� 3 .mod 4/.

Remark 3.1 It is possible to make everything what follows work for all odd primes,
but doing so requires some modifications and some extra arguments in the case p �

1 .mod 4/. Since primes p � 3 .mod 4/ are enough to prove Theorems 1.1 and 1.2,
we prefer to restrict to that case for simplicity.

Let † be a compact oriented surface of genus g without boundary, and let �g be
its mapping class group. The integral SO.3/–TQFT constructed in [16] provides a
representation of a central extension z�g of �g by Z on a free lattice (ie a free module
of finite rank) Sp.†/ over the ring of cyclotomic integers ZŒ�p �:

�pW
z�g �! GL.Sp.†//' GL.Ng.p/;ZŒ�p �/;

where Ng.p/ is the rank of Sp.†/. We refer to this representation as the SO.3/–
TQFT–representation. Some results and conjectures about this representation are
discussed by the first author in [27]. We also denote by Vp.†/ the K–vector space
Sp.†/˝K where K D Q.�p/ as in Section 2. The Vp –theory is a version of the
Reshetikhin–Turaev TQFT associated with the Lie group SO.3/, and we think of Sp as
an integral refinement of that theory (see Gilmer and Masbaum [16] for more details).
The rank Ng.p/ of Sp.†/ is given by a Verlinde-type formula and goes to infinity
as p !1. The construction uses the skein theory of the Kauffman bracket with
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Kauffman’s skein variable A specialized to AD��
.pC1/=2
p . Note that A2 D �p and

A is a primitive 2p–th root of unity.

We assume g � 3, so that �g is perfect and H 2.�gIZ/ ' Z. It is customary in
TQFT to take the extension z�g to be isomorphic to Meyer’s signature extension, whose
cohomology class is 4 times a generator of H 2.�gIZ/'Z. However, in this paper we
take z�g so that the cohomology class Œz�g� is a generator of H 2.�gIZ/. Thus our z�g

is (isomorphic to) an index four subgroup of the signature extension. The advantage of
this choice is that z�g is a perfect group. In fact, z�g is a universal central extension
of �g for g � 4.

Remark 3.2 The are various constructions of these central extensions of the mapping
class group from the TQFT point of view. We will not discuss them here as the details
are not relevant for this paper. To be specific, we follow the approach of Gilmer
and Masbaum [15], except for notation: our z�g is denoted by z�CCg in [15]. Up
to isomorphism, this is the same as the extension denoted by z�1 in Masbaum and
Roberts [28].

The generator of the kernel of z�g!�g acts as multiplication by ��6
p on Sp.†/. (This

is the fourth power of the number � as given in [15, Section 11].) Since ��6
p ¤ 1, the

TQFT–representation �p induces only a projective representation of the mapping class
group �g .

Notation 3.3 Henceforth, the image group �p.z�g/ will be denoted by �g .

Remark 3.4 The following observation will be used in the proof of our main theorem:
If we have a surjection from �g to a finite group H , the induced surjection

z�g ��g � H

will factor through a surjection �g � H as soon as H has no nontrivial central
element of order p (because z�g! �g is a central extension and the generator of its
kernel is sent to an element of order p in �g ). In particular if H has trivial center
this will hold.

We now refine the strategy outlined in Section 1. First, as observed by Dunfield and
Wong [11], the map

det ı�pW
z�g �! ZŒ�p ��

is trivial, since z�g is perfect. Therefore the group �g D �p.z�g/ is contained in a
special linear group:

�g � SL.Sp.†//' SL.N;ZŒ�p �/;
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where N D Ng.p/. The primes zq in ZŒ�p � mentioned in Section 1 lie above those
rational primes q which split completely in ZŒ�p �. For every such prime zq of ZŒ�p �
lying over q , we can consider the group

�zq.�g/� SL.N; q/;

where �zq is the reduction homomorphism from SL.N;ZŒ�p �/ to SL.N; q/ induced
by the isomorphism ZŒ�p �=zq ' Fq . The key step in the proof of Theorem 1.2 is to
establish

(1) �zq.�g/D SL.N; q/

for all but finitely many such zq . This will be an application of Corollary 2.7 and is
described in Section 4. Thus, as announced in Section 1, we will have surjections
�g � SL.N; q/ for infinitely many primes q. The surjections �g � PSL.N; q/
follow easily and this will complete the proof of Theorem 1.2.

Remark 3.5 As far as proving the equality (1) for all but finitely many zq , we do
not actually need Integral TQFT. Here by Integral TQFT we mean the fact that the
TQFT–representation �p preserves the lattice Sp.†/ inside the TQFT–vector space
Vp.†/DSp.†/˝K , which we used to arrange that �gD�p.z�g/ lies in SL.N;ZŒ�p �/
rather than just in SL.N;Q.�p//. The point is that even if �g is only known to lie
in SL.N;Q.�p//, we can still define �zq.�g/ for all but finitely many zq (because
�g is a finitely generated group, and so involves only finitely many primes in the
denominators of its matrix entries). This is enough for our application of Corollary 2.7.
On the other hand, it is interesting to know that the group �zq.�g/ is always defined,
and one may ask which are the exceptional primes q (if any) for which this group is
strictly smaller than SL.N; q/?

In order to apply Corollary 2.7 to �g , we need to describe the Zariski closure of �g as
an algebraic group defined over a number field, which we will now do in the remainder
of this section. The first step is to observe that �g lies in a (special) unitary group.
This is because, as always in TQFT, the representation �p preserves a nondegenerate
Hermitian form. Here, conjugation is given by �p D ��1

p . Let us denote by Hp the
Hermitian form on the vector space Vp.†/ defined in [5]. There is a basis of Vp.†/

which is orthogonal for this form; moreover the diagonal terms of the matrix of Hp in
this basis lie in the maximal real subfield k . Explicit formulas for these diagonal terms
are given in [5, Theorem 4.11].

Remark 3.6 (i) Note that Hp is denoted by h ; i† in [5]. We are using here
that p � 3 .mod 4/, because in this case the coefficient � D hS3ip which appears
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in [5, Theorem 4.11] lies in k . Indeed, we have x� D � and it is shown in [17,
Lemma 4.1(ii)] that ��1 (which is called D in [17; 16]) lies in ZŒ�p �.

(ii) It is shown in [17; 16] that one can rescale the hermitian form so that its values on
the lattice Sp.†/ lie in ZŒ�p � (it suffices to multiply the form by the number D ).

Thus the Hermitian form Hp is defined over k . As in Section 2.1, let G be the group
SU.Vp.†/;Hp/; this is an algebraic group G defined over k , and

�g D �p.z�g/� G.k/:

The signature of the Hermitian form Hp depends on the choice of �p in C. For the
choice

AD ipe2�i=4p; �p DA2
D .�1/pe2� i=2p

D .e2�i=p/.pC1/=2

the form Hp is positive definite so that G.R/ is isomorphic to the usual special unitary
group SU.N / where N DNg.p/D rkSp.†/D dim Vp.†/. For other choices of �p
in C the form is typically indefinite as soon as the genus is at least two [5, Remark 4.12].

We now recall the following result of Larsen and Wang [22].

Theorem 3.7 [22] For the choice of root of unity given above, �g projects to a
subset of PSU.N / that is dense in the analytic topology.

Remark 3.8 Larsen and Wang actually take AD ie2� i=4p if p � 3 .mod 4/. This
differs from our choice of A by a sign. The explanation is that Larsen and Wang
take A to be a primitive p–th root whereas in the skein-theoretic approach to TQFT
of [5] which we are using, A must be a primitive 2p–th root (essentially because in
the axiomatics of [5], Kauffman’s skein variable must be A rather than �A). However,
in the SO.3/–case, the TQFT–representation �p of z�g only depends on A2 D �p , so
the sign of A is, in fact, irrelevant here.

Since SU.N /! PSU.N / is a finite covering, a corollary of Theorem 3.7 is:

Corollary 3.9 With the notation as above, �g is a dense subgroup of SU.N / in the
analytic topology.

We also see from this discussion, and that contained in Section 2.1, that �g contains
no unipotent elements.

Corollary 3.10 In the notation above, �g is Zariski dense in the algebraic group G .

Proof This follows applying Lemma 2.3, and Lemma 2.4.
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Remark 3.11 (1) At present it remains open whether the index of �g in the
arithmetic group � ' G.Ok/ (see the discussion in Section 2.1) is finite or infinite.
If this index were finite then �g would have been arithmetic and so Zariski density
would follow from Borel density.

(2) We also note that Zariski density at other embeddings of k into R follows easily
from this, but we will not need to make use of this fact.

4 Proof of the main results

4.1 Proof of Theorem 1.1 and Theorem 1.2

Fixing g � 3 and a prime p � 3 .mod 4/, the discussion in Section 3 shows that we
have a representation �p of z�g whose image �g lies in the k –points of the algebraic
group G defined over k , where k is the maximal real subfield of the cyclotomic field
K DQ.�p/, with the root of unity �p 2 C chosen so that G.R/Š SU.N /. Moreover,
�g is Zariski dense in G . We wish to apply Corollary 2.7 to this situation. Notice that
all the hypotheses of this corollary are already satisfied, except the hypothesis about
the adjoint trace field. Denote the adjoint trace field of �g by

`DQ.tr.Ad  / W  2�g/:

As observed in Remark 2.8, it is enough to check that G can be defined over `, and
that �g lies in the `–points of G . This is the content of Proposition 4.2 below, which
we prove next.

Lemma 4.1 We have `� k .

Proof As in Sections 2.1 and 2.2, we are considering G as a k –algebraic subgroup
of SL.2N /. We denote the adjoint group Ad G by Gad . Since �g � G.k/, we have
Ad  2 Gad.k/ for all  2�g . This shows `� k .

Proposition 4.2 The group G can be defined over `, and one has �g � G.`/.

Proof By Vinberg’s theorem [39, Theorem 1] (see also Mostow [31, (2.5.1)]), Zariski
density of �g in G together with Q.tr.Ad  / W  2 �g/ D ` imply that there is an
`–structure on Gad (ie, the group Gad can be defined over `) so that Ad�g � Gad.`/.
Since G is simply connected, by a well-known result of Borel and Tits [9] (see also
Platonov and Rapinchuk [33, Section 2.2]), this `–structure on Gad can be lifted to an
`–structure on G so that the canonical projection � W G! Gad is defined over `.
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As already mentioned, Vinberg’s theorem also gives that Ad�g � Gad.`/. We must
show that, in fact, �g � G.`/. This is, however, not a formal consequence of Vinberg’s
theorem, but uses the fact that �g is perfect. We proceed as follows. To show that
�g � G.`/, we will show that �. /D  for every  2�g � G.k/ and � 2Gal.k=`/
(recall that Lemma 4.1 shows that `� k ). Consider the exact sequence

C.k/! G.k/ ��! Gad.k/;

where C is the center of G . Since Ad  2 Gad.`/ for  2�g , we have

�.�. //D �.�. //D �. /

for every � 2 Gal.k=`/. Hence the function f defined by

f .�/D  �.
�1/

is a C.k/–valued 1–cocycle on Gal.k=`/. (One easily checks the cocycle condition
f .�1�2/D f .�1/�1.f .�2//.) Let Z1.Gal.k=`/IC.k// denote the space of such
cocycles. It is an abelian group (since C.k/ is abelian.) Moreover, the assignment
 7! f is a group homomorphism from �g to Z1.Gal.k=`/IC.k//. But since �g is
perfect, this homomorphism is trivial; in other words, we have f D 1 for all  2�g .
This shows that �g � G.`/, as asserted.

Remark 4.3 A natural question at this point is whether `D k . As far as the proofs
of Theorems 1.1 and 1.2 are concerned, whether the answer is in the affirmative or not,
does not matter because, as observed in Remark 2.8, we can simply apply Corollary 2.7
with ` in place of k . However, for completeness, and because it seems worthwhile
recording, we will prove that indeed `D k (using Proposition 4.2) in Section 4.3.

We can now give the proof of Theorem 1.2 which is restated below for convenience.

Theorem 1.2 For each g � 3, there exists infinitely many N such that for each
such N , there exists infinitely many primes q such that �g surjects PSL.N; q/.

Proof Fixing g � 3, the discussion in Section 3 together with Proposition 4.2 shows
that for every prime p�3 .mod 4/ we have a representation �p of z�g whose image �g

lies in the `–points of the algebraic group G defined over `, where ` is a finite Galois
extension of Q and G.R/Š SU.N /, with N DNg.p/ going to infinity as p!1.
Moreover, �g is Zariski dense in G and its adjoint trace field is `.

Fixing such a dimension N as above, we deduce from Corollary 2.7 that there are
infinitely many rational primes q such that �g surjects the groups SL.N; q/. Now
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quotienting out by the center of SL.N; q/ gives surjections of �g onto PSL.N; q/.
As remarked in Remark 3.3, the induced homomorphisms z�g! PSL.N; q/ will factor
through �g since PSL.N; q/ has trivial center.

The proof of Theorem 1.1 will be completed by the following basic fact about embedding
finite groups in the groups PSL.N; q/.

Lemma 4.4 Let H be a finite group, then there exists an integer N such that for all
odd primes q , H is isomorphic to a subgroup of PSL.N; q/.

Proof By Cayley’s theorem, every finite group embeds in a symmetric group. Thus it
suffices to prove the lemma for symmetric groups Sn . Note first that PSL.N; q/ has
even order and so will trivially contain a copy of S2 (being isomorphic to the cyclic
group of order 2). Thus we can assume that n� 3. We first prove that Sn injects into
SL.N; q/ (for large enough N ).

To that end, recall that the standard permutation representation of Sn injects Sn ,!

GL.n;Z/. Furthermore, GL.n;Z/ can be embedded in SL.n C 1;Z/ by sending
g 2 GL.n;Z/ to the element �

g 0

0 �.g/

�
;

where �.g/D˙1 depending on whether det.g/D˙1.

It is a well-known result of Minkowski that the kernels of the homomorphisms
SL.N;Z/! SL.N; q/ are torsion-free for q an odd prime (see [33, Lemma 4.19]).
Hence the copies of Sn constructed above inject in SL.N; q/ as required.

To pass to PSL.N; q/, simply note that PSL.N; q/ is the central quotient of SL.N; q/,
and the center of Sn is trivial for n� 3. Hence Sn will inject into PSL.N; q/.

4.2 The case of the Torelli group

We now discuss the case of the Torelli subgroup (ie, the kernel of the homomorphism
�g ! Sp.2g;Z/). We will denote the Torelli group by Ig . Johnson [20] showed
that Ig is finitely generated for g � 3 and Mess [29] showed that I2 is an infinitely
generated free group.

Theorem 4.5 For each g � 2, there exists infinitely many N such that for each
such N , there exists infinitely many primes q such that Ig surjects PSL.N; q/.
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Proof As noted above I2 is an infinitely generated free group and so the result easily
holds in this case. Thus we fix a g�3, and consider a surjection f W �g �PSL.N; q/ as
constructed in Theorem 1.2. Since Ig is normal in �g , the image f .Ig/ in PSL.N; q/
will also be normal. The groups PSL.N; q/ are simple, and so f .Ig/ is either trivial
or PSL.N; q/.

We claim that for N large enough the image must be PSL.N; q/. For suppose not,
then for some arbitrarily large N the image f .Ig/ will be trivial, and so the epimor-
phisms f W �g � PSL.N; q/ will factor through Sp.2g;Z/. However, as mentioned
in Section 1, Sp.2g;Z/ has the Congruence Subgroup Property and so cannot surject
the groups PSL.N; q/ (for N large).

4.3 The adjoint trace field

We briefly discuss how to deduce that the adjoint trace field `DQ.tr.Ad  / W  2�g/

is equal to k . (Recall that k is the maximal real subfield of the cyclotomic field
K DQ.�p/.) We proceed as follows.

From Lemma 4.1 and Proposition 4.2, we have that ` is a subfield of k so that G can
be defined over `, and �g � G.`/. The group G , when considered as defined over `,
is an `–form of SU.N /. By the classification of forms of SU.N / over number fields
[33, Sections (2.3.3) and (2.3.4)], there is a central simple algebra A, with center L a
quadratic field extension of `, so that

G.`/D fx 2A j x �.x/D 1; Nrd.x/D 1g;

where � is an (anti)involution of A of the second kind, and Nrd is the reduced norm.
Therefore for all  2�g � G.`/, we have

Trd. / 2L;

where Trd is the reduced trace. When we extend scalars from ` to k , our group G
viewed as an `–group becomes k –isomorphic to our original k –group G . Thus

A˝K 'MN .K/

(where N DNg.p/ is the dimension of the K–vector space Vp.†/), and the reduced
trace Trd. / is (strictly by definition) nothing but the ordinary trace of  viewed as an
element of MN .K/. For  2�g D �p.z�g/, this is the same as the trace of  acting
on Vp.†/.

Now recall that the generator of the kernel of the central extension z�g! �g acts as
multiplication by a primitive p–th root of unity on the vector space Vp.†/. Thus
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�g D �p.z�g/ contains an element  whose trace on Vp.†/ is N times �p . Since this
is the same as Trd. /, and we know that Trd. / 2 L, it follows that �p 2 L, hence
LDK . Since `� k and ŒL W `�D 2, this shows `D k .

5 Comments

(1) As shown by Long and Reid [24] for example, if � is a finitely generated group that
contains a nonabelian free group, and � is LERF (ie, all finitely generated subgroups
of � are closed in the profinite topology on � ), then all finite groups are involved
in � . In the context of lattices in semisimple Lie groups, it is only in rank 1 that
examples of LERF lattices are known, although large classes of lattices in these rank 1
Lie groups are known to have a slightly weaker separability property (see for example
Agol, Long and Reid [1], Bergeron, Haglund and Wise [3] and Long and Reid [24]).
In higher rank the expectation is that lattices will not be LERF, since the expectation is
that the Congruence Subgroup Property should hold for these higher rank lattices. As
mentioned in Section 1, if the group � is an arithmetic lattice that has the Congruence
Subgroup Property, then the finite groups that are involved in � are restricted.

It is an easy fact that �g is not LERF (see Leininger and McReynolds [23, Appendix A]).

(2) Let Fn denote a free group of rank n and Out.Fn/ denote its outer automorphism
group. The family of groups Out.Fn/, n�2 are often studied in comparison to mapping
class groups. Typically, a theorem about mapping class groups is reworked in the context
of Out.Fn/. In regards to Theorem 1.1, it was already known from Gilman [14] that
all finite groups are involved in Out.Fn/. Indeed, for n� 3, Gilman [14] showed that
Out.Fn/ is residually symmetric (ie, given 1¤ ˛ 2Out.Fn/ there is a finite symmetric
group Sm and an epimorphism � W Out.Fn/! Sm with �.˛/¤ 1).

Another proof that all finite groups are involved in Out.Fn/ can be deduced from
Grunewald and Lubotzky [19] using methods similar to those used here.

References
[1] I Agol, D D Long, A W Reid, The Bianchi groups are separable on geometrically finite

subgroups, Ann. of Math. 153 (2001) 599–621 MR1836283

[2] H Bass, J Milnor, J-P Serre, Solution of the congruence subgroup problem for
SLn .n � 3/ and Sp2n .n � 2/ , Inst. Hautes Études Sci. Publ. Math. (1967) 59–137
MR0244257

[3] N Bergeron, F Haglund, D T Wise, Hyperplane sections in arithmetic hyperbolic
manifolds, J. Lond. Math. Soc. 83 (2011) 431–448 MR2776645

Geometry & Topology, Volume 16 (2012)

http://dx.doi.org/10.2307/2661363
http://dx.doi.org/10.2307/2661363
http://www.ams.org/mathscinet-getitem?mr=1836283
http://www.numdam.org/item?id=PMIHES_1967__33__59_0
http://www.numdam.org/item?id=PMIHES_1967__33__59_0
http://www.ams.org/mathscinet-getitem?mr=0244257
http://dx.doi.org/10.1112/jlms/jdq082
http://dx.doi.org/10.1112/jlms/jdq082
http://www.ams.org/mathscinet-getitem?mr=2776645


All finite groups are involved in the mapping class group 1409

[4] J A Berrick, V Gebhardt, L Paris, Finite index subgroups of mapping class groups
arXiv:1105.2468

[5] C Blanchet, N Habegger, G Masbaum, P Vogel, Topological quantum field theories
derived from the Kauffman bracket, Topology 34 (1995) 883–927 MR1362791

[6] A Borel, Compact Clifford–Klein forms of symmetric spaces, Topology 2 (1963) 111–
122 MR0146301

[7] A Borel, Linear algebraic groups, W. A. Benjamin, New York-Amsterdam (1969)
MR0251042 Notes taken by H Bass

[8] A Borel, Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math.
75 (1962) 485–535 MR0147566

[9] A Borel, J Tits, Compléments à l’article: “Groupes réductifs”, Inst. Hautes Études
Sci. Publ. Math. (1972) 253–276 MR0315007

[10] N M Dunfield, W P Thurston, Finite covers of random 3–manifolds, Invent. Math.
166 (2006) 457–521 MR2257389

[11] N M Dunfield, H Wong, Quantum invariants of random 3–manifolds, Algebr. Geom.
Topol. 11 (2011) 2191–2205 MR2826936

[12] L Funar, Zariski density and finite quotients of mapping class groups, to appear in Int.
Math. Res. Not. 2012 (2012) arXiv:1106.4165

[13] L Funar, W Pitsch, Finite quotients of symplectic groups vs mapping class groups
arXiv:1103.1855

[14] R Gilman, Finite quotients of the automorphism group of a free group, Canad. J. Math.
29 (1977) 541–551 MR0435226

[15] P M Gilmer, G Masbaum, Maslov index, Lagrangians, mapping class groups and
TQFT, to appear in Forum Math. arXiv:0912.4706

[16] P M Gilmer, G Masbaum, Integral lattices in TQFT , Ann. Sci. École Norm. Sup. 40
(2007) 815–844 MR2382862

[17] P M Gilmer, G Masbaum, P van Wamelen, Integral bases for TQFT modules and
unimodular representations of mapping class groups, Comment. Math. Helv. 79 (2004)
260–284 MR2059432

[18] E K Grossman, On the residual finiteness of certain mapping class groups, J. London
Math. Soc. 9 (1974/75) 160–164 MR0405423

[19] F Grunewald, A Lubotzky, Linear representations of the automorphism group of a
free group, Geom. Funct. Anal. 18 (2009) 1564–1608 MR2481737

[20] D Johnson, The structure of the Torelli group I: A finite set of generators for I , Ann.
of Math. 118 (1983) 423–442 MR727699

[21] M Korkmaz, On cofinite subgroups of mapping class groups, Turkish J. Math. 27
(2003) 115–123 MR1975334

Geometry & Topology, Volume 16 (2012)

http://arxiv.org/abs/1105.2468
http://dx.doi.org/10.1016/0040-9383(94)00051-4
http://dx.doi.org/10.1016/0040-9383(94)00051-4
http://www.ams.org/mathscinet-getitem?mr=1362791
http://dx.doi.org/10.1016/0040-9383(63)90026-0
http://www.ams.org/mathscinet-getitem?mr=0146301
http://www.ams.org/mathscinet-getitem?mr=0251042
http://www.jstor.org/stable/10.2307/1970210
http://www.ams.org/mathscinet-getitem?mr=0147566
http://www.numdam.org/item?id=PMIHES_1972__41__253_0
http://www.ams.org/mathscinet-getitem?mr=0315007
http://dx.doi.org/10.1007/s00222-006-0001-6
http://www.ams.org/mathscinet-getitem?mr=2257389
http://dx.doi.org/10.2140/agt.2011.11.2191
http://www.ams.org/mathscinet-getitem?mr=2826936
http://dx.doi.org/10.1093/imrn/rns097
http://arxiv.org/abs/1106.4165
http://arxiv.org/abs/1103.1855
http://dx.doi.org/10.4153/CJM-1977-056-3
http://www.ams.org/mathscinet-getitem?mr=0435226
http://arxiv.org/abs/0912.4706
http://dx.doi.org/10.1016/j.ansens.2007.07.002
http://www.ams.org/mathscinet-getitem?mr=2382862
http://dx.doi.org/10.1007/s00014-004-0801-5
http://dx.doi.org/10.1007/s00014-004-0801-5
http://www.ams.org/mathscinet-getitem?mr=2059432
http://dx.doi.org/10.1112/jlms/s2-9.1.160
http://www.ams.org/mathscinet-getitem?mr=0405423
http://dx.doi.org/10.1007/s00039-009-0702-2
http://dx.doi.org/10.1007/s00039-009-0702-2
http://www.ams.org/mathscinet-getitem?mr=2481737
http://dx.doi.org/10.2307/2006977
http://www.ams.org/mathscinet-getitem?mr=727699
http://mistug.tubitak.gov.tr/bdyim/abs.php?dergi=mat&rak=0303-16
http://www.ams.org/mathscinet-getitem?mr=1975334


1410 Gregor Masbaum and Alan W Reid

[22] M Larsen, Z Wang, Density of the SO.3/ TQFT representation of mapping class
groups, Comm. Math. Phys. 260 (2005) 641–658 MR2183960

[23] C J Leininger, D B McReynolds, Separable subgroups of mapping class groups, Topol-
ogy Appl. 154 (2007) 1–10 MR2271769

[24] D D Long, A W Reid, Surface subgroups and subgroup separability in 3–manifold
topology, IMPA Math. Publ., Inst. Nacional de Mat. Pura e Aplicada, Rio de Janeiro
(2005) MR2164951 25th Brazilian Math. Colloquium

[25] E Looijenga, Prym representations of mapping class groups, Geom. Dedicata 64 (1997)
69–83 MR1432535

[26] A Lubotzky, D Segal, Subgroup growth, Progress in Math. 212, Birkhäuser, Basel
(2003) MR1978431

[27] G Masbaum, On representations of mapping class groups in Integral TQFT, Oberwol-
fach Reports 5 (2008) 1157–1232 Available at http://people.math.jussieu.fr/
~masbaum

[28] G Masbaum, J D Roberts, On central extensions of mapping class groups, Math. Ann.
302 (1995) 131–150 MR1329450

[29] G Mess, The Torelli groups for genus 2 and 3 surfaces, Topology 31 (1992) 775–790
MR1191379

[30] D W Morris, Ratner’s theorems on unipotent flows, Chicago Lectures in Math., Univ.
of Chicago Press (2005) MR2158954

[31] G D Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific
J. Math. 86 (1980) 171–276 MR586876

[32] M V Nori, On subgroups of GLn.Fp/ , Invent. Math. 88 (1987) 257–275 MR880952

[33] V Platonov, A Rapinchuk, Algebraic groups and number theory, Pure and Applied
Math. 139, Academic Press, Boston (1994) MR1278263 Translated from the 1991
Russian original by R Rowen

[34] N Reshetikhin, V G Turaev, Invariants of 3–manifolds via link polynomials and
quantum groups, Invent. Math. 103 (1991) 547–597 MR1091619

[35] G Shimura, Arithmetic of unitary groups, Ann. of Math. 79 (1964) 369–409
MR0158882

[36] G Shimura, Arithmetic of Hermitian forms, Doc. Math. 13 (2008) 739–774
MR2466186

[37] J Tits, Classification of algebraic semisimple groups, from: “Algebraic Groups and
Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, CO, 1965)”, (A Borel,
G D Mostow, editors), Amer. Math. Soc. (1966) 33–62 MR0224710

Geometry & Topology, Volume 16 (2012)

http://dx.doi.org/10.1007/s00220-005-1382-x
http://dx.doi.org/10.1007/s00220-005-1382-x
http://www.ams.org/mathscinet-getitem?mr=2183960
http://dx.doi.org/10.1016/j.topol.2006.03.013
http://www.ams.org/mathscinet-getitem?mr=2271769
http://www.ams.org/mathscinet-getitem?mr=2164951
http://dx.doi.org/10.1023/A:1004909416648
http://www.ams.org/mathscinet-getitem?mr=1432535
http://www.ams.org/mathscinet-getitem?mr=1978431
http://people.math.jussieu.fr/~masbaum
http://people.math.jussieu.fr/~masbaum
http://dx.doi.org/10.1007/BF01444490
http://www.ams.org/mathscinet-getitem?mr=1329450
http://dx.doi.org/10.1016/0040-9383(92)90008-6
http://www.ams.org/mathscinet-getitem?mr=1191379
http://www.ams.org/mathscinet-getitem?mr=2158954
http://projecteuclid.org/euclid.pjm/1102780622
http://www.ams.org/mathscinet-getitem?mr=586876
http://dx.doi.org/10.1007/BF01388909
http://www.ams.org/mathscinet-getitem?mr=880952
http://www.ams.org/mathscinet-getitem?mr=1278263
http://dx.doi.org/10.1007/BF01239527
http://dx.doi.org/10.1007/BF01239527
http://www.ams.org/mathscinet-getitem?mr=1091619
http://www.jstor.org/stable/10.2307/1970551
http://www.ams.org/mathscinet-getitem?mr=0158882
http://www.math.uiuc.edu/documenta/vol-13/20.html
http://www.ams.org/mathscinet-getitem?mr=2466186
http://www.ams.org/mathscinet-getitem?mr=0224710


All finite groups are involved in the mapping class group 1411

[38] J Tits, Reductive groups over local fields, from: “Automorphic forms, representations
and L–functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, OR, 1977),
Part 1”, (A Borel, editor), Proc. Sympos. Pure Math. XXXIII, Amer. Math. Soc. (1979)
29–69 MR546588

[39] E B Vinberg, Rings of definition of dense subgroups of semisimple linear groups, Izv.
Akad. Nauk SSSR Ser. Mat. 35 (1971) 45–55 MR0279206

[40] B Weisfeiler, Strong approximation for Zariski-dense subgroups of semisimple alge-
braic groups, Ann. of Math. 120 (1984) 271–315 MR763908

Institut de Mathématiques de Jussieu (UMR 7586 du CNRS)
Case 247, 4 pl. Jussieu, 75252 Cedex 5 Paris, France

Department of Mathematics, University of Texas
1 Station C1200, Austin TX 78712-0257, USA

masbaum@math.jussieu.fr, areid@math.utexas.edu

http://www.math.jussieu.fr/~masbaum/,
http://www.ma.utexas.edu/users/areid/

Proposed: Benson Farb Received: 22 September 2011
Seconded: Ronald J Stern, Martin R Bridson Revised: 11 May 2012

Geometry & Topology, Volume 16 (2012)

http://www.ams.org/mathscinet-getitem?mr=546588
http://dx.doi.org/10.1070/IM1971v005n01ABEH001006
http://www.ams.org/mathscinet-getitem?mr=0279206
http://dx.doi.org/10.2307/2006943
http://dx.doi.org/10.2307/2006943
http://www.ams.org/mathscinet-getitem?mr=763908
mailto:masbaum@math.jussieu.fr
mailto:areid@math.utexas.edu
http://www.math.jussieu.fr/~masbaum/
http://www.ma.utexas.edu/users/areid/

	1. Introduction
	2. Algebraic and arithmetic aspects of unitary groups
	2.1. 
	2.2. 
	2.3. 
	2.4. 

	3. The SO(3)-TQFT representations
	4. Proof of the main results
	4.1. Proof of Theorem 1.1 and Theorem 1.2
	4.2. The case of the Torelli group
	4.3. The adjoint trace field

	5. Comments
	References

