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1 Introduction

This paper is based on a series of 4 lectures delivered at Groups St Andrews 2013.
The main theme of the lectures was distinguishing finitely generated residually finite
groups by their finite quotients. The purpose of this paper is to expand and develop
the lectures.

The paper is organized as follows. In §2 we collect some questions that motivated
the lectures and this article, and in §3 discuss some examples related to these ques-
tions. In §4 we recall profinite groups, profinite completions and the formulation of
the questions in the language of the profinite completion. In §5, we recall a particu-
lar case of the question of when groups have the same profinite completion, namely
Grothendieck’s question. In §6 we discuss how the methods of L2-cohomology can be
brought to bear on the questions in §2, and in §7, we give a similar discussion using
the methods of the cohomology of profinite groups. In §8 we discuss the questions
in §2 in the context of groups arising naturally in low-dimensional topology and ge-
ometry, and in §9 discuss parafree groups. Finally in §10 we collect a list of open
problems that may be of interest.
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them for their collaborations. I would also like to thank the organizers of Groups St
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conference, and for their patience whilst this article was completed. This work was
supported in part by NSF grants.

2 The motivating questions

We begin by recalling some terminology. A group Γ is said to be residually finite
(resp., residually nilpotent, residually-p, residually torsion-free-nilpotent) if for each
non-trivial γ ∈ Γ there exists a finite group (resp., nilpotent group, p-group, torsion-
free-nilpotent group) Q and a homomorphism φ : Γ→ Q with φ(γ) 6= 1.

2.1. If a finitely-generated group Γ is residually finite, then one can recover any
finite portion of its Cayley graph by examining the finite quotients of the group. It
is therefore natural to wonder whether, under reasonable hypotheses, the set

C(Γ) = {G : G is a finite quotient of Γ}

might determine Γ up to isomorphism.
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Assuming that the groups considered are residually finite is a natural condition to
impose, since, first, this guarantees a rich supply of finite quotients, and secondly,
one can always form the free product Γ ∗ S where S is a finitely generated infinite
simple group, and then, clearly C(Γ) = C(Γ∗S). Henceforth, unless otherwise stated,
all groups considered will be residually finite.

The basic motivating question of this work is the following due to Remesselenikov:

Question 1: If Fn is the free group of rank n, and Γ is a finitely-generated, resid-
ually finite group, then does C(Γ) = C(Fn) imply that Γ ∼= Fn?

This remains open at present, although in this paper we describe progress on this
question, as well as providing structural results about such a group Γ (should it
exist) as in Question 1.

Following [31], we define the genus of a finitely generated residually finite group Γ
to be:

G(Γ) = {∆ : C(∆) = C(Γ)}.

This definition is taken, by analogy with the theory of quadratic forms over Z where
two integral quadratic forms can be locally equivalent (i.e., at all places of Q), but
not globally equivalent over Z.

Question 2: Which finitely generated (respectively, finitely presented) groups Γ have
G(Γ) = {Γ}?

Question 3: Which finitely generated (respectively, finitely presented) groups Γ have
|G(Γ)| > 1?

Question 4: How large can |G(Γ)| be for finitely generated (resp., finitely presented)
groups?

Question 5: What group theoretic properties are shared by (resp., are different for)
groups in the same genus?

In addition, if P is a class of groups, then we define

G(Γ,P) = {∆ ∈ P : C(∆) = C(Γ)},

and can ask the same questions upon restricting to groups in P.

2.2. Rather than restricting the class of groups in a genus, we can ask to distinguish
finitely generated groups by restricting the quotient groups considered. A particularly
interesting case of this is the following. Note first that, a group Γ is residually
nilpotent if and only if

⋂
Γn = 1, where Γn, the n-th term of the lower central series of

Γ, defined inductively by setting Γ1 = Γ and defining Γn+1 = 〈 [x, y] : x ∈ Γn, y ∈ Γ 〉.
Two residually nilpotent groups Γ and Λ are said to have the same nilpotent genus

if they have the same lower central series quotients; i.e., Γ/Γc ∼= Λ/Λc for all c ≥ 1.
Residually nilpotent groups with the same nilpotent genus as a free group are termed
parafree. In [10] Gilbert Baumslag surveyed the state of the art concerning groups of
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the same nilpotent genus with particular emphasis on the nature of parafree groups.
We will discuss this in more detail in §9 below.

3 Some examples

We begin with a series of examples where one can say something about Questions
1–4.

3.1. We first prove the following elementary result.

Proposition 3.1 Let Γ be a finitely generated abelian group, then G(Γ) = {Γ}.

Proof Suppose first that ∆ ∈ G(Γ) and ∆ is non-abelian. We may therefore find
a commutator c = [a, b] that is non-trivial. Since ∆ is residually finite there is a
homomorphism φ : ∆ → Q, with Q finite and φ(c) 6= 1. However, ∆ ∈ G(Γ) and so
Q is abelian. Hence φ(c) = 1, a contradiction.

Thus ∆ is abelian. We can assume that Γ ∼= Zr ⊕ T1 and ∆ ∼= Zs ⊕ T2, where Ti
(i = 1, 2) are finite abelian groups. It is easy to see that r = s, for if r > s say, we
can choose a large prime p such that p does not divide |T1||T2|, and construct a finite
quotient (Z/pZ)r that cannot be a quotient of ∆.

In addition if T1 is not isomorphic to T2, then some invariant factor appears in T1

say, but not in T2. One can then construct a finite abelian group that is a quotient
of T1 (and hence Γ1) but not of Γ2. �

Note that the proof of Proposition 3.1 also proves the following.

Proposition 3.2 Let Γ be a finitely generated group, and suppose that ∆ ∈ G(Γ).
Then Γab ∼= ∆ab. In particular b1(Γ) = b1(∆).

3.2. Remarkably, moving only slightly beyond Z to groups that are virtually Z, the
situation is dramatically different. The following result is due to Baumslag [9]. We
include a sketch of the proof.

Theorem 3.3 There exists non-isomorphic meta-cyclic groups Γ1 and Γ2 for which
C(Γ1) = C(Γ2). Indeed, both of these groups are virtually Z and defined as extensions
of a fixed finite cyclic group F by Z.

Sketch Proof What Baumslag actually proves in [9] is the following, and this is
what we sketch a proof of:

(∗) Let F be a finite cyclic group with an automorphism of order n, where
n is different from 1, 2, 3, 4 and 6. Then there are at least two non-
isomorphic cyclic extensions of F , say Γ1 and Γ2 with C(Γ1) = C(Γ2).

Recall that the automorphism group of a finite cyclic group of order m is an abelian
group of order φ(m). So in (∗) we could take F to be a cyclic group of order 11,
which has an automorphism of order 5.
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Now let F = 〈a〉 be a cyclic group of order m, and assume that it admits an
automorphism α of order n as in (∗). Assume that α(a) = ar. Now some elementary
number theory (using that φ(m) > 2 by assumption) shows that we can find an
integer ` such that (`, n) = 1, and

(i) α` 6= α, and (ii) α` 6= α−1.

Now define Γ1 = 〈 a, b | am = 1, b−1ab = ar 〉 to be the split extension of F induced

by α and Γ2 = 〈 a, c | am = 1, c−1ac = ar
` 〉 be the split extension of F induced by α`.

The key claims to be established are that Γ1 and Γ2 are non-isomorphic, and that
they have the same genus.

That the groups are non-isomorphic can be checked directly as follows. If θ : Γ1 →
Γ2 is an isomorphism, then θ must map the set of elements of finite order in Γ1 to
those in Γ2; that is to say θ preserves F , and so induces an automorphism of F . Thus
θ(a) = as where (s,m) = 1. Moreover since the quotients Γi/F ∼= Z for i = 1, 2, it
follows that θ(b) = cεat where ε = ±1 and t is an integer. Now consider θ(ar). When
θ(b) = cat we get:

α(as) = ars = θ(ar) = θ(bab−1) = (cat)as(cat)−1 = α`(as),

and it follows that α = α`. A similar argument holds when θ(b) = c−1at to show
α−1 = α`, both of which are contradictions to (ii) above.

We now discuss proving that the groups are in the same genus. Setting P = Γ1×Z,
Baumslag [9] shows that P is isomorphic to Γ2 × Z. That Γ1 and Γ2 have the same
genus now follows from a result of Hirshon [34] (see also [9]) where it is shown that
(see Theorem 9 of [34]):

Proposition 3.4 Suppose that A and B are groups with A × Z ∼= B × Z, then
C(A) = C(B).

3.3. The case of nilpotent groups more generally is well understood due to work of
Pickel [52]. We will not discuss this in any detail, other than to say that, in [52] it is
shown that for a finitely generated nilpotent group Γ, G(Γ) consists of a finite number
of isomorphism classes of nilpotent groups, and moreover, examples where the genus
can be made arbitrarily large are known (see for example [58] Chapter 11). Similar
results are also known for polycyclic groups (see [29] and [58]).

3.4. From the perspective of this article, more interesting examples where the genus
has cardinality greater than 1 (although still finite) are given by examples of lattices
in semi-simple Lie groups. We refer the reader to [4] and [5] for details but we will
provide a sketch of some salient points.

Let Γ be a lattice in a semi-simple Lie group, for example, in what follows we
shall take Γ = SL(n,Rk) where Rk denotes the ring of integers in a number field k. A
natural, obvious class of finite quotients of Γ, are those of the form SL(n,Rk/I) where
I ⊂ Rk is an ideal. Let πI denote the reduction homomorphism Γ → SL(n,Rk/I),
and Γ(I) the kernel. Note that by Strong Approximation for SLn (see [53] Chapter 7.4
for example) πI is surjective for all I. A congruence subgroup of Γ is any subgroup
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∆ < Γ such that Γ(I) < ∆ for some I. A group Γ is said to have the Congruence
Subgroup Property (henceforth abbreviated to CSP) if every subgroup of finite index
is a congruence subgroup.

Thus, if Γ has CSP, then C(Γ) is known precisely, and in effect, to determine C(Γ)
is reduced to number theory. Expanding on this, since Rk is a Dedekind domain, any
ideal I factorizes into powers of prime ideals. If I =

∏
Paii , then it is known that

SL(n,Rk/I) =
∏

SL(n,Rk/Paii ). Thus the finite groups that arise as quotients of
SL(n,Rk) are determined by those of the form SL(n,Rk/Paii ). Hence we are reduced
to understanding how a rational prime p behaves in the extension k/Q. This idea,
coupled with the work of Serre [59] which has shed considerable light on when Γ has
CSP, allows construction of non-isomorphic lattices in the same genus.

Example: Let k1 = Q(
8
√

37) and k2 = Q( 8
√

48). Let Γ1 = SL(n,Rk1) and Γ2 =
SL(n,Rk2) (n ≥ 3). Then Γ1 and Γ2 have CSP (by [59]), are non-isomorphic (by
rigidity) and C(Γ1) = C(Γ2). The reason for the last statement is that the fields
k1 and k2 are known to be adelically equivalent (see [36]); i.e. their Adele rings are
isomorphic. This can be reformulated as saying that if Vi (i = 1, 2) are the sets
of valuations associated to the prime ideals in k1 and k2, then there is a bijection
φ : V1 → V2 such that for all ν ∈ V1 we have isomorphisms (k1)ν ∼= (k2)φ(ν). This
has, as a consequence, the desired identical splitting behavior of rational primes in
k1 and k2.

3.5. Unlike in the previous subsections, there are recent examples of Bridson [14] of
finitely presented groups Γ for which G(Γ) is infinite. This will be discussed further
in §5.1.

4 Profinite methods

An important reformulation of the discussion in §2 uses the language of profinite
groups. In particular, the language of profinite completions is a particularly conve-
nient formalism for organizing finite quotients of a discrete group. For completeness
we provide some discussion of profinite groups and profinite completions of discrete
groups. We refer the reader to [56] for a more detailed account of the topics covered
here.

4.1. A directed set is a partially ordered set I such that for every i, j ∈ I there exists
k ∈ I such that k ≥ i and k ≥ j. An inverse system is a family of sets {Xi}{i∈I},
where I is a directed set, and a family of maps φij : Xi → Xj whenever i ≥ j, such
that:

• φii = idXi ;

• φijφjk = φik, whenever i ≥ j ≥ k.

Denoting this system by (Xi, φij , I), the inverse limit of the inverse system (Xi, φij , I)
is the set

lim←−Xi =

{
(xi) ∈

∏
i∈I

Xi

∣∣∣∣ φij(xi) = xj , whenever i ≥ j
}
.
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We record the following standard facts about the inverse limit (see [56] Chapter 1
for further details):

(i) Let (Xi, φij , I) be an inverse system of non-empty compact, Hausdorff, totally
disconnected topological spaces (resp. topological groups) over the directed set I,
then lim←−Xi is a non-empty, compact, Hausdorff, totally disconnected topological
space (resp. topological group).

(ii) Let (Xi, φij , I) be an inverse system. A subset J ⊂ I is defined to be cofinal, if
for each i ∈ I, there exists j ∈ J with j ≥ i. If J is cofinal we may form an inverse
system (Xj , φij , J) obtained by omitting those i ∈ I \ J . The inverse limit lim←−Xj

can be identified with the image of lim←−Xi under the projection map
∏
i∈I Xi onto∏

j∈J Xj .

4.2. Returning to the world of group theory, let Γ be a finitely generated group (not
necessarily residually finite for this discussion), and let N denote the collection of all
finite index normal subgroups of Γ. Note that N is non-empty as Γ ∈ N , and we can
make N into directed set by declaring that

For M,N ∈ N , M ≤ N whenever M contains N .

In this case, there are natural epimorphisms φNM : Γ/N → Γ/M , and the inverse
limit of the inverse system (Γ/N, φNM ,N ) is denoted Γ̂ and defined to be to the
profinite completion of Γ.

Note that there is a natural map ι : Γ→ Γ̂ defined by

g 7→ (gN) ∈ lim←−Γ/N,

and it is easy to see that ι is injective if and only if Γ is residually finite.
An alternative, perhaps more concrete way of viewing the profinite completion

is as follows. If, for each N ∈ N , we equip each Γ/N with the discrete topology,
then

∏
{Γ/N : N ∈ N} is a compact space and Γ̂ can be identified with j(Γ) where

j : Γ→
∏
{Γ/N : N ∈ N} is the map g 7→ (gN).

4.3. From §4.1, Γ̂ is a compact topological group, and so a subgroup U is open if
and only if it is closed of finite index. In addition, a subgroup H < Γ̂ is closed if and
only if it is the intersection of all open subgroups of Γ̂ containing it. More recently,
it is a consequence of a deep theorem of Nikolov and Segal [50] that if Γ is a finitely
generated group, then every finite index subgroup of Γ̂ is open. Thus a consequence
of this is the following elementary lemma (in which Hom(G,Q) denotes the set of
homomorphisms from the group G to the group Q, and Epi(G,Q) denotes the set of
epimorphisms).

Lemma 4.1 Let Γ be a finitely-generated group and let ι : Γ→ Γ̂ be the natural map
to its profinite completion. Then, for every finite group Q, the map Hom(Γ̂, Q) →
Hom(Γ, Q) defined by g 7→ g ◦ ι is a bijection, and this restricts to a bijection
Epi(Γ̂, Q)→ Epi(Γ, Q).

We record the following corollary for later use.
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Corollary 4.2 If Γ1 is finitely-generated and Γ̂1
∼= Γ̂2, then

|Hom(Γ1, Q)| = |Hom(Γ2, Q)|

for every finite group Q.

4.4. The first Betti number of a finitely generated group is

b1(Γ) = dimQ [(Γ/[Γ,Γ])⊗Z Q].

Given any prime p, one can detect b1(Γ) in the p-group quotients of Γ, since it is the
greatest integer b such that Γ surjects (Z/pkZ)b for every k ∈ N. We exploit this
observation as follows:

Lemma 4.3 Let Λ and Γ be finitely generated groups. If Λ is isomorphic to a dense
subgroup of Γ̂, then b1(Λ) ≥ b1(Γ).

Proof For every finite group A, each epimorphism Γ̂→ A will restrict to an epimor-
phism on both Γ and Λ (since by density Λ cannot be contained in a proper closed
subgroup). But the resulting map Epi(Γ̂, A) → Epi(Λ, A) need not be surjective, in
contrast to Lemma 4.1. Thus if Γ surjects (Z/pkZ)b then so does Λ (but perhaps not
vice versa). �

4.5. We now discuss the profinite topology on the discrete group Γ, its subgroups
and the correspondence between the subgroup structure of Γ and Γ̂. We begin by
recalling the profinite topology on Γ. This is the topology on Γ in which a base for
the open sets is the set of all cosets of normal subgroups of finite index in Γ. Now
given a tower T of finite index normal subgroups of Γ:

Γ > N1 > N2 > . . . > Nk > . . .

with
⋂
Nk = 1, this can be used to define an inverse system and thereby determines

a completion of Γ̂T (in which Γ will inject). Now if the inverse system determined by
T is cofinal (recall §4.1) then the natural homomorphism Γ̂→ Γ̂T is an isomorphism.
That is to say T determines the full profinite topology of Γ.

The following is important in connecting the discrete and profinite worlds (see [56]
3.2.2, where here we use [50] to replace “open” by “finite index”).

Notation Given a subset X of a profinite group G, we write X to denote the closure
of X in G.

Proposition 4.4 If Γ is a finitely generated residually finite group, then there is a
one-to-one correspondence between the set X of subgroups of Γ that are open in the
profinite topology on Γ, and the set Y of all finite index subgroups of Γ̂.

Identifying Γ with its image in the completion, this correspondence is given by:

• For H ∈ X , H 7→ H.
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• For Y ∈ Y, Y 7→ Y ∩ Γ.

If H,K ∈ X and K < H then [H : K] = [H : K]. Moreover, K / H if and only if
K /H, and H/K ∼= H/K.

The following corollary of this correspondence will be useful in what follows.

Corollary 4.5 Let Γ be a finitely-generated group, and for each d ∈ N, let Md denote
the intersection of all normal subgroups of index at most d in Γ. Then the closure
Md of Md in Γ̂ is the intersection of all normal subgroups of index at most d in Γ̂,
and hence

⋂
d∈NMd = 1.

Proof If N1 and N2 are the kernels of epimorphisms from Γ to finite groups Q1

and Q2, then N1 ∩N2 is the kernel of the extension of Γ → Q1 × Q2 to Γ̂, while
N1 × N2 is the kernel of the map Γ̂ → Q1 × Q2 that one gets by extending each of
Γ → Qi and then taking the direct product. The uniqueness of extensions tells us
that these maps coincide, and hence N1 ∩N2 = N1 ∩ N2. The claims follow from
repeated application of this observation. �

If now H < Γ, the profinite topology on Γ determines some pro topology on H
and therefore some completion of H. To understand what happens in certain cases
that will be of interest to us, we recall the following. Since we are assuming that Γ
is residually finite, H injects into Γ̂ and determines a subgroup H. Hence there is a
natural epimorphism Ĥ → H. This need not be injective. For this to be injective
(i.e. the full profinite topology is induced on H) we require the following to hold:

For every subgroup H1 of finite index in H, there exists a finite index
subgroup Γ1 < Γ such that Γ1 ∩H < H1.

There are some important cases for which injectivity can be arranged. Suppose that Γ
is a group and H a subgroup of Γ, then Γ is called H-separable if for every g ∈ G\H,
there is a subgroup K of finite index in Γ such that H ⊂ K but g /∈ K; equivalently,
the intersection of all finite index subgroups in Γ containing H is precisely H. The
group Γ is called LERF (or subgroup separable) if it is H-separable for every finitely-
generated subgroup H, or equivalently, if every finitely-generated subgroup is a closed
subset in the profinite topology.

It is important to note that even if the subgroup H of Γ is separable, it need not
be the case that the profinite topology on Γ induces the full profinite topology on H.
Stronger separability properties do suffice, however, as we now indicate.

Lemma 4.6 Let Γ be a finitely-generated group, and H a finitely-generated subgroup
of Γ. Suppose that Γ is H1-separable for every finite index subgroup H1 in H. Then
the profinite topology on Γ induces the full profinite topology on H; that is, the natural
map Ĥ → H is an isomorphism.

Proof Since Γ is H1 separable, the intersection of all subgroups of finite index in Γ
containing H1 is H1 itself. From this it easily follows that there exists Γ1 < Γ of finite
index, so that Γ1 ∩H = H1. The lemma follows from the discussion above. �
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Subgroups of finite index obviously satisfy the conditions of Lemma 4.6, and if Γ is
LERF, the conditions of Lemma 4.6 are also satisfied. Hence we deduce the following.

Corollary 4.7 (1) If Γ is residually finite and H is a finite-index subgroup of Γ,
then the natural map from Ĥ to H is an isomorphism.

(2) If Γ is LERF and H is a finitely generated subgroup of Γ, then the natural map
from Ĥ to H is an isomorphism.

Another case of what the profinite topology does on a subgroup that will be of
interest to us is the following. Let Γ be a residually finite group that is the funda-
mental group of a graph of groups. Let the edge groups be denoted by Ge and the
vertex groups by Gv. The profinite topology on Γ is said to be efficient if it induces
the full profinite topology on Gv and Ge for all vertex and edge groups, and Gv and
Ge are closed in the profinite topology on Γ. The main example we will make use of
is the following which is well-known:

Lemma 4.8 Suppose that Γ is a free product of finitely many residually finite groups
G1, . . . , Gn. Then the profinite topology on Γ is efficient.

Proof Since Γ is residually finite, the trivial group is closed in the profinite topology.
To see that each Gi is closed in the profinite topology we prove that Γ is Gi-separable.
To that end let G denote one of the Gi, and let g ∈ Γ \G. Since g /∈ G, the normal
form for g contains at least one element ak ∈ Gk 6= G. Since Gk is residually finite
there is a finite quotient A of Gk for which the image of ak is non-trivial. Using
the projection homomorphism G1 ∗ . . . ∗Gn → Gk → A defines a homomorphism for
which the image of G is trivial but the image of g is not. This proves the vertex
groups are closed.

To see that the full profinite topology is induced on each Gi, we need to show
that for each Gi, i = 1, . . . , n, the following condition holds (recall the condition for
injectivity given above). For every subgroup H of finite index in Gi, there exists a
finite index subgroup Hi < Γ such that Hi ∩ Gi < H. Let G denote one of the Gi’s
and assume that H < G is a finite index subgroup. We can also assume that H is a
normal subgroup. Then using the projection homomorphism Γ = G1∗. . .∗Gn → G/H
whose kernel K defines a finite index of subgroup of Γ with K∩G = H as required. �

Note that in the situation of Lemma 4.8, it also follows that Γ̂ ∼= Ĝ1 q Ĝ2 . . .q Ĝn
where q indicates the profinite amalgamated product. We refer the reader to [56]
Chapter 9 for more on this.

4.6. We now prove one of the key results that we make use of. This is basically
proved in [25] (see also [56] pp. 88–89), the mild difference here, is that we employ
[50] to replace topological isomorphism with isomorphism.

Theorem 4.9 Suppose that Γ1 and Γ2 are finitely-generated abstract groups. Then
Γ̂1 and Γ̂2 are isomorphic if and only if C(Γ1) = C(Γ2).

Proof If Γ̂1 and Γ̂2 are isomorphic then the discussion following the correspondence
provided by Proposition 4.4 shows that C(Γ1) = C(Γ2).
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For the converse, we argue as follows. For each n ∈ N let

Un =
⋂
{U : U is a normal subgroup of Γ1 with [Γ1 : U ] ≤ n}, and

Vn =
⋂
{V : V is a normal subgroup of Γ2 with [Γ2 : V ] ≤ n}.

Then Γ1/Un ∈ C(Γ1) and Γ2/Vn ∈ C(Γ2). Hence there exists a normal subgroup
K < Γ1 so that Γ1/K ∼= Γ2/Vn. Now it follows that K is an intersection of normal
subgroups of index ≤ n, and so Un < K. Hence |Γ2/Vn| = |Γ1/K| ≤ |Γ1/Un|. On
reversing the roles of Γ1 and Γ2 reverses this inequality from which it follows that
Γ2/Vn ∼= Γ1/Un.

Now for each such n, let An denote the set of all isomorphisms Γ1/Un onto Γ2/Vn.
For each n this is a finite non-empty set with the property that for m ≤ n and
α ∈ An, then α induces a unique homomorphism fnm(α) : Γ1/Um → Γ2/Vm such
that the following diagram commutes.

Γ1/Un −→ Γ1/Um

α
y yfnm(α)

Γ2/Vn −→ Γ2/Vm

It follows that {An, fnm} is an inverse system of (non-empty) finite sets, and so
the inverse limit lim←−An exists and defines an isomorphism of the inverse systems
lim←−Γ1/Un and lim←−Γ2/Vn. Also note that since Un and Vn are co-final, the discussion
in §4.5 shows that they induce the full profinite topology on Γ1 and Γ2 respectively
and so we have:

Γ̂1
∼= lim←−Γ1/Un ∼= lim←−Γ2/Vn ∼= Γ̂2

as required. �

Thus statements about C(Γ) and G(Γ) can now be rephrased in terms of the profi-
nite completion. For example,

G(Γ) = {∆ : ∆̂ ∼= Γ̂}.

4.7. We now give some immediate applications of Theorem 4.9 and the previous
discussion in the context of the motivating questions.

Lemma 4.10 Let φ : Γ1 → Γ2 be an epimorphism of finitely-generated groups. If
Γ1 is residually finite and Γ̂1

∼= Γ̂2, then φ is an isomorphism.

Proof Let k ∈ kerφ. If k were non-trivial, then since Γ1 is residually finite, there
would be a finite group Q and an epimorphism f : Γ1 → Q such that f(k) 6= 1. This
map f does not lie in the image of the injection Hom(Γ2, Q) ↪→ Hom(Γ1, Q) defined
by g 7→ g ◦ φ. Thus |Hom(Γ1, Q)| > |Hom(Γ2, Q)|, contradicting Corollary 4.2. �

Definition 4.11 The rank d(Γ) of a finitely-generated group Γ is the least integer
k such that Γ has a generating set of cardinality k. The rank d̂(G) of a profinite
group G is the least integer k for which there is a subset S ⊂ G with k = |S| and
〈S〉 is dense in G.
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If Γ1 is assumed to be a finitely generated free group of rank r and Γ2 a finitely
generated group with d(Γ2) = r and Γ̂1

∼= Γ̂2, then it follows immediately from
Lemma 4.10 that Γ2 is isomorphic to a free group of rank r (using the natural epi-
morphism Γ1 → Γ2).

Indeed, one can refine this line of argument as follows. In the following proposition,
we do not assume that Γ is residually finite.

Proposition 4.12 Let Γ be a finitely-generated group and let Fn be a free group. If
Γ has a finite quotient Q such that d(Γ) = d(Q), and Γ̂ ∼= F̂n, then Γ ∼= Fn.

Proof First Γ̂ ∼= F̂n, so Q is a quotient of Fn. Hence n ≥ d(Q). But d(Q) = d(Γ) and
for every integer s ≥ d(Γ) there exists an epimorphism Fs → Γ. Thus we obtain an
epimorphism Fn → Γ, and application of the preceding lemma completes the proof.

�

Corollary 4.13 Let Γ be a finitely-generated group. If Γ and its abelianisation have
the same rank, then Γ̂ ∼= F̂n if and only if Γ ∼= Fn.

Proof Every finitely-generated abelian group A has a finite quotient of rank d(A).
�

As an application of Corollary 4.13 we give a quick proof that that free groups
and surface groups are distinguished by their finite quotients. For if Γ is a genus
g ≥ 1 surface group, then Γ and its abelianization have rank 2g. Corollary 4.13 then
precludes such a group having the same profinite completion as a free group.

Another application is the following. Another natural generalization of free groups
are right angled Artin groups. Let K be a finite simplicial graph with vertex set
V = {v1, . . . , vn} and edge set E ⊂ V × V . Then the right angled Artin group (or
RAAG) associated with K is the group A(K) given by the following presentation:

A(K) = 〈 v1, . . . , vn | [vi, vj ] = 1 for all i, j such that {vi, vj} ∈ E 〉.

For example, if K is a graph with n vertices and no edges, then A(K) is the free
group of rank n, while if K is the complete graph on n vertices, then A(K) is the free
abelian group Zn of rank n.

If the group Γ has a presentation of the form 〈A | R 〉 where A is finite and all
of the relators r ∈ R lie in the commutator subgroup of the free group F (A), then
both Γ and its abelianisation (which is free abelian) have rank |A|. The standard
presentations of RAAGs have this form.

Proposition 4.14 If Γ is a right-angled Artin group that is not free, then there exists
no free group F such that F̂ ∼= Γ̂.

4.8. We shall also consider other pro-completions, and we briefly recall these. The
pro-(finite nilpotent) completion, denoted Γ̂fn, is the inverse limit of the finite nilpotent
quotients of Γ. Given a prime p, the the pro-p completion Γ̂p is the inverse limit of

the finite p-group quotients of Γ. As above we have natural homomorphisms Γ→ Γ̂fn
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and Γ→ Γ̂p and these are injections if and only if Γ is residually nilpotent in the first
case and residually p in the second.

Note that in this language, two finitely generated residually nilpotent groups with
the same nilpotent genus have isomorphic pro-(finite nilpotent) completions. This
can proved in a similar manner as Proposition 4.4 using only the finite nilpotent
quotients. Note that it is proved in [6] (before the general case of [50]) that for a
finitely generated group Γ, every subgroup of finite index in Γ̂fn is open. Moreover,
finitely generated groups in the same nilpotent genus also have isomorphic pro-p
completions for all primes p.

5 Grothendieck Pairs and Grothendieck Rigidity

A particular case of when discrete groups have isomorphic profinite completions is
the following (which goes back to Grothendieck [28]).

5.1. Let Γ be a residually finite group and let u : P ↪→ Γ be the inclusion of a
subgroup P . Then (Γ, P )u is called a Grothendieck Pair if the induced homomor-
phism û : P̂ → Γ̂ is an isomorphism but u is not. (When no confusion is likely to
arise, it is usual to write (Γ, P ) rather than (Γ, P )u.) Grothendieck [28] asked about
the existence of such pairs of finitely presented groups and the first such pairs were
constructed by Bridson and Grunewald in [15]. The analogous problem for finitely
generated groups had been settled earlier by Platonov and Tavgen [54]. Both con-
structions rely on versions of the following result (cf. [54], [15] Theorem 5.2 and [13]).

We remind the reader that the fibre product P < Γ×Γ associated to an epimorphism
of groups p : Γ→ Q is the subgroup P = {(x, y) : p(x) = p(y)}.

Proposition 5.1 Let 1→ N → Γ→ Q→ 1 be a short exact sequence of groups with
Γ finitely generated and let P be the associated fibre product. Suppose that Q 6= 1 is
finitely presented, has no proper subgroups of finite index, and H2(Q,Z) = 0. Then

(1) (Γ× Γ, P ) is a Grothendieck Pair;

(2) if N is finitely generated then (Γ, N) is a Grothendieck Pair.

More recently in [14], examples of Grothendieck Pairs were constructed so as to
provide the first examples of finitely-presented, residually finite groups Γ that con-
tain an infinite sequence of non-isomorphic finitely presented subgroups Pn so that
the inclusion maps un : Pn ↪→ Γ induce isomorphisms of profinite completions. In
particular, this provides examples of finitely presented groups Γ for which G(Γ) is
infinite.

5.2. There are many classes of groups Γ that can never have a subgroup P for which
(Γ, P ) is a Grothendieck Pair; as in [40], we call such groups Grothendieck Rigid.

Before proving the next theorem, we make a trivial remark that is quite helpful.
Suppose that H < Γ and Γ is H-separable, then (Γ, H) is not a Grothendieck Pair.
The reason for this is that being separable implies that H is contained in (infinitely
many) proper subgroups of Γ of finite index. In particular H < Γ̂ is contained in
proper subgroups of finite index in Γ̂. On the other hand if (Γ, H) is a Grothendieck
Pair, H is dense in Γ̂ and so cannot be contained in a closed subgroup (of finite index)
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of Γ̂. With this remark in place, we prove our next result. Recall that a group Γ is
called residually free if for every non-trivial element g ∈ Γ there is a homomorphism
φg from Γ to a free group such that φg(g) 6= 1, and Γ is fully residually free if for every
finite subset X ⊆ Γ there is a homomorphism from Γ to a free group that restricts to
an injection on X.

Theorem 5.2 Let Γ be a finitely generated group isomorphic to either: a Fuchsian
group, a Kleinian group, the fundamental group of a geometric 3-manifold, a fully
residually free group. Then Γ is Grothendieck Rigid.

Proof This follows immediately from the discussion above, and the fact that such
groups are known to be LERF. For Fuchsian groups see [57], for Kleinian groups this
follows from [2] and [62] and for fully residually free groups [60]. If M is a geometric
3-manifold, then the case when M is hyperbolic follows from the remark above, and
when M is a Seifert fibered space see [57]. For those modelled on SOL geometry,
separability of subgroups can be established directly and the result follows. �

Remark The case of finite co-volume Kleinian groups was proved in [40] without
using the LERF assumption. Instead, character variety techniques were employed.
In §8.2 we will establish Grothendieck Rigidity for prime 3-manifolds that are not
geometric.

6 L2-Betti numbers and profinite completion

Proposition 3.2 established that the first Betti number of a group is a profinite in-
variant. The goal of this section is to extend this to the first L2-Betti number, and
to give some applications of this.

We refer the reader to Lück’s paper [47] for a comprehensive introduction to L2-
Betti numbers. For our purposes, it is best to view these invariants not in terms
of their original (more analytic) definition, but instead as asymptotic invariants of
towers of finite-index subgroups. This is made possible by the Lück’s Approximation
Theorem [46]:

Theorem 6.1 Let Γ be a finitely presented group, and let Γ = Γ1 > Γ2 > . . . > Γm >
. . . be a sequence of finite-index subgroups that are normal in Γ and intersect in the
identity. Then for all p ≥ 0, the p-th L2-Betti number of Γ is given by the formula

b(2)
p (Γ) = lim

m→∞

bp(Γm)

[Γ : Γm]
.

An important point to note is that this limit does not depend on the tower, and

hence is an invariant of Γ. We will mostly be interested in b
(2)
1 .

Example 6.2 Let F be a free group of rank r. Euler characteristic tells us that
a subgroup of index d in F is free of rank d(r − 1) + 1, so by Lück’s Theorem

b
(2)
1 (Fr) = r − 1. A similar calculation shows that if Σ is the fundamental group of a

closed surface of genus g, then b
(2)
1 (Σ) = 2g − 2.
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Proposition 6.3 Let Λ and Γ be finitely presented residually finite groups and sup-

pose that Λ is a dense subgroup of Γ̂. Then b
(2)
1 (Γ) ≤ b(2)

1 (Λ).

Proof For each positive integer d let Md be the intersection of all normal subgroups
of index at most d in Γ, and let Ld = Λ ∩Md in Γ̂. We saw in Corollary 4.5 that⋂
dMd = 1, and so

⋂
d Ld = 1. Since Λ and Γ are both dense in Γ̂, the restriction of

Γ̂→ Γ̂/Md to each of these subgroups is surjective, and hence

[Λ : Ld] = [Γ̂ : Md] = [Γ : Md].

Now Ld is dense in Md, while M̂d = Md, so Lemma 4.3 implies that b1(Ld) ≥
b1(Md), and then we can use the towers (Ld) in Λ and (Md) in Γ to compare L2-Betti
numbers and find

b
(2)
1 (Γ) = lim

d→∞

b1(Md)

[Γ : Md]
≤ lim

d→∞

b1(Ld)

[Λ : Ld]
= b

(2)
1 (Λ),

by Lück’s approximation theorem. �

This has the following important consequence:

Corollary 6.4 Let Γ1 and Γ2 be finitely-presented residually finite groups. If Γ̂1
∼=

Γ̂2, then b
(2)
1 (Γ1) = b

(2)
1 (Γ2).

If one assumes only that the group Γ is finitely generated, then one does not know
if the above limit exists, and when it does exist one does not know if it is independent
of the chosen tower of subgroups. However, a weaker form of Lück’s approximation

theorem for b
(2)
1 was established for finitely generated groups by Lück and Osin [48].

Theorem 6.5 If Γ is a finitely generated residually finite group and (Nm) is a se-
quence of finite-index normal subgroups with

⋂
mNm = 1, then

lim sup
m→∞

b1(Nm)

[Γ : Nm]
≤ b(2)

1 (Γ).

6.1. We now give some applications of Proposition 6.3 in the context of Question 1
(and the analogous questions for Fuchsian groups). First we generalize the calculation
in Example 6.2.

Proposition 6.6 If Γ is a lattice in PSL(2,R) with rational Euler characteristic

χ(Γ), then b
(2)
1 (Γ) = −χ(Γ).

Proof It follows from Lück’s approximation theorem that if H is a subgroup of index

index d in Γ (which is finitely-presented) then b
(2)
1 (H) = d b

(2)
1 (Γ). Rational Euler

characteristic is multiplicative in the same sense. Thus we may pass to a torsion-free
subgroup of finite index in Γ, and assume that it is either a free group Fr of rank r,
or the fundamental group Σg of a closed orientable surface of genus g. The free group
case was dealt with above, and so we focus on the surface group case.
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Thus if Γd is a subgroup of index d in Γ, then it is a surface group of genus
d(g − 1) + 1. The first Betti number in this case is 2d(g − 1) + 1 and so b1(Γd) =

2 − dχ(Γ). Dividing by d = |Γ : Γd| and taking the limit, we find b
(2)
1 (Γ) = −χ(Γ).

�

With this result and Proposition 6.3 we have the following. The only additional
comment to make is that the assumption that the Fuchsian group Γ1 is non-elementary

implies it is not virtually abelian, and so b
(2)
1 (Γ1) 6= 0.

Corollary 6.7 Let Γ1 be a finitely generated non-elementary Fuchsian group, and Γ2

a finitely presented residually finite group with Γ̂1
∼= Γ̂2. Then b

(2)
1 (Γ2) = b

(2)
1 (Γ1) =

−χ(Γ1) 6= 0.

Another standard result about free groups is that if F is a finitely generated free
group of rank ≥ 2, then any finitely generated non-trivial normal subgroup of F has
finite index (this also holds more generally for Fuchsian groups and limit groups,
see [17] for the last statement). As a further corollary of Propositon 6.4 we prove the
following.

Corollary 6.8 Let Γ be a finitely presented residually finite group in the same genus
as a finitely generated free group, and let N < Γ be a non-trivial normal subgroup. If
N is finitely generated, then Γ/N is finite.

Proof Proposition 3.1 shows that the genus of the infinite cyclic group contains
only itself, and so we can assume that Γ lies in the genus of a non-abelian free group.

Thus, by Corollary 6.4, b
(2)
1 (Γ) 6= 0. The proof is completed by making use of the

following theorem of Gaboriau (see [27] Theorem 6.8):

Theorem 6.9 Suppose that

1→ N → Γ→ Λ→ 1

is an exact sequence of groups where N and Λ are infinite. If b
(2)
1 (N) < ∞, then

b
(2)
1 (Γ) = 0.

�

Indeed, using Theorem 6.5, Corollary 6.8 can be proved under the assumption
that Γ is a finitely generated residually finite group. In this case, the argument
establishes that if Γ is in the same genus as a finitely generated free group F , then

b
(2)
1 (Γ) ≥ b(2)

1 (F ) and we can still apply [27].

As remarked upon earlier, Question 1 is still unresolved, and in the light of this,
Corollary 6.8 provides some information about the structural properties of a finitely
generated group in the same genus as a free group. In §8.3, we point out some other
properties that occur assuming that a group Γ is in the same genus as a finitely
generated free group.
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Remark Unlike the case of surface groups, if M is a closed 3-manifold, then

typically b
(2)
1 (π1(M)) = 0. More precisely, we have the following from [44]. Let

M = M1#M2# . . .#Mr be the connect sum of closed (connected) orientable prime
3-manifolds and that π1(M) is infinite. Then

b
(2)
1 (π1(M)) = (r − 1)−

r∑
j=1

1

|π1(Mj)|
,

where in the summation, if π1(Mj) is infinite, the term in the sum is understood to
be zero.

6.2. Corollary 6.4 establishes that b
(2)
1 is an invariant for finitely presented groups in

the same genus. A natural question arises as to whether anything can be said about
the higher L2-Betti numbers. Using the knowledge of L2-Betti numbers of locally

symmetric spaces (see [21]), it follows that the examples given §3.4 will have all b
(2)
p

equal. On the other hand, using [4] examples can be constructed which do not have

all b
(2)
p being equal. Further details will appear elsewhere.

7 Goodness

In this section we discuss how cohomology of profinite groups can be used to inform
about Questions 1–5.

7.1. We begin by recalling the definition of the continuous cohomology of profinite
groups (also known as Galois cohomology). We refer the reader to [59] and [56,
Chapter 6] for details about the cohomology of profinite groups.

Let G be a profinite group, M a discrete G-module (i.e., an abelian group M
equipped with the discrete topology on which G acts continuously) and let Cn(G,M)
be the set of all continous maps Gn → M . One defines the coboundary operator
d : Cn(G,M)→ Cn+1(G,M) in the usual way thereby defining a complex C∗(G,M)
whose cohomology groups Hq(G;M) are called the continuous cohomology groups
of G with coefficients in M .

Note that H0(G;M) = {x ∈ M : gx = x ∀ g ∈ G} = MG is the subgroup of
elements of M invariant under the action of G, H1(G;M) is the group of classes
of continuous crossed homomorphisms of G into M and H2(G;M) is in one-to-one
correspondence with the (equivalence classes of) extensions of M by G.

7.2. Now let Γ be a finitely generated group. Following Serre [59], we say that a
group Γ is good if for all q ≥ 0 and for every finite Γ-module M , the homomorphism
of cohomology groups

Hq(Γ̂;M)→ Hq(Γ;M)

induced by the natural map Γ→ Γ̂ is an isomorphism between the cohomology of Γ
and the continuous cohomology of Γ̂.

Example 7.1 Finitely generated free groups are good.
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To see this we argue as follows. As is pointed out by Serre ([59] p. 15), for any (finitely
generated) discrete group Γ, one always has isomorphisms Hq(Γ̂;M)→ Hq(Γ;M) for
q = 0, 1. Briefly, using the description of H0 given above (and the discrete setting),
isomorphism for H0 follows using denseness of Γ in Γ̂ and discreteness of M . For H1,
this follows using the description of H1 as crossed homomorphisms.

If Γ is now a finitely generated free group, since H2(Ĝ;M) is in one-to-one cor-
respondence with the (equivalence classes of) extensions of M by Γ̂, it follows that
H2(Γ̂;M) = 0 (briefly, like the case of the discrete free group there are no interesting
extensions).

The higher cohomology groups Hq(Γ̂;M) (q ≥ 3) can also be checked to be zero.
For example, since Hq(Γ;M) = 0 for all q ≥ 2, the induced map Hq(Γ̂;M) →
Hq(Γ;M) is surjective for all q ≥ 2, and it now follows from a lemma of Serre [59] (see
Ex 1 Chapter 2, and also Lemma 2.1 of [41]) that Hq(Γ̂;M)→ Hq(Γ;M) is injective
for all q ≥ 2. We also refer the reader to the discussion below on cohomological
dimension for another approach.

Goodness is hard to establish in general. One can, however, establish goodness for
a group Γ that is LERF if one has a well-controlled splitting of the group as a graph
of groups [30]. In addition, a useful criterion for goodness is provided by the next
lemma due to Serre (see [59, Chapter 1, Section 2.6])

Lemma 7.2 The group Γ is good if there is a short exact sequence

1→ N → Γ→ H → 1,

such that H and N are good, N is finitely-generated, and the cohomology group
Hq(N,M) is finite for every q and every finite Γ-module M .

We summarize what we will need from this discussion.

Theorem 7.3 The following classes of groups are good.

• Finitely generated Fuchsian groups.

• The fundamental groups of compact 3-manifolds.

• Fully residually free groups.

• Right angled Artin groups.

Proof The first and third parts are proved in [30] using LERF and well-controlled
splittings of the group, and the fourth is proved in [41]. The second was proved by
Cavendish in his PhD thesis [23]. We will sketch the proof when M is closed.

Note first that by [30] free products of residually finite good groups are good, so
it suffices to establish goodness for prime 3-manifolds. As is shown in [30] goodness
is preserved by commensurability, and so finite groups are clearly good. Thus it
remains to establish goodness for prime 3-manifolds with infinite fundamental group.
For geometric closed 3-manifolds, goodness will follow immediately from Lemma 7.2
(using the first part of the theorem) when Γ = π1(M) and M is a Seifert fibered space
or has SOL geometry. For hyperbolic 3-manifolds the work of Agol [2] and Wise [62]
shows that any finite volume hyperbolic 3-manifold has a finite cover that fibers over
the circle, and once again by Lemma 7.2 (and the first part of the theorem) we deduce
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goodness. For manifolds with a non-trivial JSJ decomposition, goodness is proved
in [61]. �

7.3. Let G be a profinite group. Then the p-cohomological dimension of G is the
least integer n such that for every finite (discrete) G-module M and for every q > n,
the p-primary component of Hq(G;M) is zero, and this is denoted by cdp(G). The
cohomological dimension of G is defined as the supremum of cdp(G) over all primes p,
and this is denoted by cd(G).

We also retain the standard notation cd(Γ) for the cohomological dimension (over
Z) of a discrete group Γ. A basic connection between the discrete and profinite
versions is given by

Lemma 7.4 Let Γ be a discrete group that is good. If cd(Γ) ≤ n, then cd(Γ̂) ≤ n.

Proof If cd(Γ) ≤ n then Hq(Γ,M) = 0 for every Γ-module M and every q > n. By
goodness this transfers to the profinite setting in the context of finite modules. �

Discrete groups of finite cohomological dimension (over Z) are torsion-free. In
connection with goodness, we are interested in conditions that allow one to deduce
that Γ̂ is also torsion-free. For this we need the following result that mirrors the
behavior of cohomological dimension for discrete groups (see [59, Chapter 1 §3.3]).

Proposition 7.5 Let p be a prime, let G be a profinite group, and H a closed sub-
group of G. Then cdp(H) ≤ cdp(G).

This quickly yields the following that we shall use later.

Corollary 7.6 Suppose that Γ is a residually finite, good group of finite cohomolog-
ical dimension over Z. Then Γ̂ is torsion-free.

Proof If Γ̂ were not torsion-free, then it would have an element x of prime order,
say q. Since 〈x〉 is a closed subgroup of Γ̂, Proposition 7.5 tells us that cdp(〈x〉) ≤
cdp(Γ̂) for all primes p. But H2k(〈x〉; Fq) 6= 0 for all k > 0, so cdq(〈x〉) and cdq(Γ̂)
are infinite. Since Γ is good and has finite cohomological dimension over Z, we obtain
a contradiction from Lemma 7.4. �

Note that this can be used to exhibit linear groups that are not good. For example,
in [45], it is shown that there are torsion-free subgroups Γ < SL(n,Z) (n ≥ 3) of finite
index, for which Γ̂ contains torsion of all possible orders. As a corollary of this we
have:

Corollary 7.7 For all n ≥ 3, any subgroup of SL(n,R) commensurable with SL(n,Z)
is not good.

7.4. When the closed subgroup is a p-Sylow subgroup Gp (i.e., a maximal closed
pro-p subgroup of G) then we have the following special case of Proposition 7.5 (see
[56] §7.3). Note that cohomology theory of pro-p groups is easier to understand
than general profinite groups, and so the lemma is quite helpful in connection with
computing cohomology of profinite groups.
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Lemma 7.8 Let Gp be a p-Sylow subgroup of G. Then:

• cdp(G) = cdp(Gp) = cd(Gp).

• cd(G) = 0 if and only if G = 1.

• cdp(G) = 0 if and only Gp = 1.

Example 7.9 Let F be a finitely generated free group. Since a p-Sylow subgroup
of F̂ is Zp, Lemma 7.8 gives an efficient way to establish that cd(F̂ ) = 1.

7.5. In this subsection we point out how goodness (in fact a weaker property suffices)
provides a remarkable condition to establish residual finiteness of extensions. First
suppose that we have an extension:

1→ N → E → Γ→ 1.

Using right exactness of the profinite completion (see [56] Proposition 3.2.5), this
short exact sequence always determines a sequence:

N̂ → Ê → Γ̂→ 1.

To ensure that the induced homorphism N̂ → Ê is injective is simply again the
statement that the full profinite topology is induced on N . As was noticed by
Serre [59], this is guaranteed by goodness. Indeed the following is true, the proof
of which we discuss below (the proof is sketched in [59] and see also [30] and [41]).

Proposition 7.10 The following are equivalent for a group Γ.

• For any finite Γ-module M , the induced map H2(Γ̂;M) → H2(Γ;M) is an
isomorphism;

• For every group extension 1→ N → E → Γ→ 1 with N finitely generated, the
map N̂ → Ê is injective.

Before discussing this we deduce the following.

Corollary 7.11 Suppose that Γ is residually finite and for any finite Γ-module M ,
the induced map H2(Γ̂;M) → H2(Γ;M) is an isomorphism. Then any extension E
(as above) by a finitely generated residually finite group N is residually finite.

Groups as in Corollary 7.11 are called highly residually finite in [41], and super
residually finite in [22].

Proof By Proposition 7.10, and referring to the diagram below, we have exact se-
quences with vertical homomorphisms iN and iΓ being injective by residual finiteness.
Now the squares commute, and so a 5-Lemma argument implies that iE is injective;
i.e., E is residually finite.

1 −→ N −→ E −→ Γ −→ 1yiN yiE yiΓ
1 −→ N̂ −→ Ê −→ Γ̂ −→ 1

�
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Proof We discuss the ”if” direction below, and refer the reader to [41] for the “only
if”. We will show that it suffices to prove the result with N finite. For then the case
of N finite is dealt with by Proposition 6.1 of [30].

Thus assume that N is finitely generated and J a finite index subgroup of N . Recall
that from §4.5 we need to show that there exists a finite index subgroup E1 < E such
that E1 ∩N < J .

To that end, since N is finitely generated we can find a characteristic subgroup
H < J of finite index in N that is normal in E. Thus we have:

1 −→ N −→ E −→ Γ −→ 1y yπ
1 −→ N/H −→ E/H −→ Γ −→ 1

Assuming that the result holds for the case of N finite we can appy this to N/H.
That is to say we can find E′0 < E/H such that E′0 ∩ (N/H) = 1. Set E0 = π−1(E′0),
then E0 ∩N < H < J as required. �

Given Corollary 7.11 and Theorem 7.3 we have:

Corollary 7.12 Let Γ be a group as in Theorem 7.3. Then Γ is highly residually
finite.

Examples of groups that are not highly residually finite are SL(3,Z) (see [33]) and
Sp(2g,Z) ([24]). In particular in [24] lattices in a connected Lie group are constructed
that are not residually finite. These arise as extensions of Sp(2g,Z).

7.6. We now return to Question 1, and in particular deduce some consequences
about a group Γ in the same genus as a finitely generated free group. To that end,
the following simple observation will prove useful.

Corollary 7.13 Let Γ1 and Γ2 be finitely-generated (abstract) residually finite groups
with Γ̂1

∼= Γ̂2. Assume that Γ1 is good and cd(Γ1) = n < ∞. Furthermore, assume
that H is a good subgroup of Γ2 for which the natural mapping Ĥ → Γ̂2 is injective.
Then Hq(H; Fp) = 0 for all q > n.

Proof If Hq(H; Fp) were non-zero for some q > n, then by goodness we would have

Hq(Ĥ; Fp) 6= 0, so cdp(Ĥ) ≥ q > n. Now Ĥ → Γ̂2 is injective and so Ĥ ∼= H.

Hence Γ̂1 contains a closed subgroup of p-cohomological dimension greater than n, a
contradiction. �

Corollary 7.14 If Γ contains a surface group S, and Ŝ → Γ̂ is injective, then Γ̂ is
not isomorphic to the profinite completion of any free group.

In particular, this also shows the following:

Corollary 7.15 If L is a non-abelian free group, then L̂ does not contain the profinite
completion of any surface group, nor that of any free abelian group of rank greater
than 1.
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Remark 7.16 Note that L̂ does contain surface subgroups S of arbitrary large genus
(as shown in [12] for example) and free abelian subgroups of arbitrary rank, but the
natural map Ŝ → L̂ is never injective. The surface subgroup examples of [12] are in
fact dense in L̂.

Next we single out a particular case of an application of the above discussion that
connects to two well-known open problems about word hyperbolic groups, namely:

(A) Does every 1-ended word-hyperbolic group contain a surface subgroup?

(B) Is every word-hyperbolic group residually finite?

The first question, due to Gromov, was motivated by the case of hyperbolic 3-
manifolds, and in this special case the question was settled recently by Kahn and
Markovic [35]. Indeed, given [35], a natural strengthening of (A) above is to ask:

(A′) Does every 1-ended word-hyperbolic group contain a quasi-convex surface sub-
group?

Theorem 7.17 Suppose that every 1-ended word-hyperbolic group is residually finite
and contains a quasi-convex surface subgroup. Then there exist no 1-ended word-
hyperbolic group Γ and free group F such that Γ̂ ∼= F̂ .

Proof Assume the contrary, and let Γ be a counter-example, with Γ̂ ∼= F̂ for some
free group F . Let H be a quasi-convex surface subgroup of Γ. Note that the finite-
index subgroups of H are also quasi-convex in Γ. Under the assumption that all
1-ended hyperbolic groups are residually finite, it is proved in [3] that H and all its
subgroups of finite index must be separable in Γ. Hence by Lemma 4.6, the natural
map Ĥ → H < Γ̂ is an isomorphism. But as above this yields a contradiction. �

Corollary 7.18 Suppose that there exists a 1-ended word hyperbolic group Γ with
Γ̂ ∼= F̂ for some free group F . Then either there exists a word-hyperbolic group that
is not residually finite, or there exists a word-hyperbolic group that does not contain
a quasi-convex surface subgroup.

8 Fuchsian groups, 3-manifold groups and related groups

In this section we prove several results in connection with distinguishing free groups
within certain classes of groups. In addition we also prove some results distinguishing
3-manifold groups.

In what follows we denote by F the collection of Fuchsian groups, and L the
collection of lattices in connected Lie groups.

8.1. In this section we sketch the proof of the following result from [19].

Theorem 8.1 Let Γ ∈ F , then G(Γ,L) = {Γ}.

Before commencing with a sketch of the proof, we remark that there exist lattices
in connected Lie groups that are not residually finite (recall the discussion at the
end of §7.5). For simplicity, in the sketch below we will simply assume all lattices
considered are residually finite. This can be bypassed, and we refer the reader to [19]
for details on how this is done.
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Proof Suppose that ∆ ∈ G(Γ,L) is residually finite. Then, Corollary 6.7 shows that

b
(2)
1 (∆) 6= 0. It now follows (see [43] Lemma 1 for example) that ∆ fits into a a short

exact sequence
1→ N → ∆→ F → 1

such that N is finite and F is a lattice in PSL(2,R).
We next claim that this forces N to be trivial and so ∆ is Fuchsian. To see this,

suppose that N 6= 1. Since N is finite, and ∆ is residually finite, it follows that the
short exact sequence above can be promoted to a short exact sequence of profinite
groups (recall §7.5). Hence the full profinite topology is induced on N by ∆, and we
deduce that ∆̂ contains a non-trivial finite normal subgroup. But, ∆̂ ∼= Γ̂, where Γ is
a Fuchsian group. This is excluded by the following result proved in [19]. We will
not comment on the proof of this result other than to say that it uses profinite group
actions on profinite trees. We recall some notation. Write cf(Γ) to denote the set of
conjugacy classes of maximal finite subgroups of a group Γ.

Theorem 8.2 If Γ is a finitely generated Fuchsian group, then the natural inclusion
Γ→ Γ̂ induces a bijection cf(Γ)→ cf(Γ̂). More precisely, every finite subgroup of Γ̂ is
conjugate to a subgroup of Γ, and if two maximal finite subgroup of Γ are conjugate
in Γ̂ then they are already conjugate in Γ.

It follows from this that if Γ is a finitely generated non-elementary Fuchsian group,
then Γ̂ cannot contain a finite non-trivial normal subgroup, since Γ does not.

Given this discussion, to prove Theorem 8.1, it suffices to prove:

Claim: G(Γ,F) = {Γ}.

Proof of Claim: Suppose that ∆ ∈ G(Γ,F). If Γ is torsion-free then ∆ is torsion-
free by Corollary 7.6. Still assuming that Γ is torsion-free, if Γ is a cocompact surface
group of genus g then so is ∆. That is to say, ∆ cannot be free—this was ruled out by
the discussion in §4.7 or Corollary 7.15. In addition, it also cannot be the case that
Γ is cocompact and ∆ is not (or vice versa). For if this were so, then we could pass
to torsion-free subgroups of common finite index that would still have isomorphic
profinite completions and this is ruled out by the previous sentence.

If neither Γ1 nor Γ2 is cocompact, then each is a free product of cyclic groups.
We know that b1(Γ) = b1(∆), and so by Proposition 3.2 the number of infinite cyclic
factors in each product is the same. By Theorem 8.2, the finite cyclic factors, being
in bijection with the conjugacy classes of maximal finite subgroups, are also the same.
Hence the claim follows in this case too.

It only remains to consider the case where both Γ and ∆ are cocompact groups with
torsion. The genus of Γ is determined by b1(Γ), and so, by Proposition 3.2, Γ and ∆
are of the same genus. The periods of Γ and ∆ are the orders of representatives of
the conjugacy classes of maximal finite subgroups of Γi, and so by Theorem 8.2 these
must also be the same for Γ and ∆. Thus Γ and ∆ have the same signature, and are
therefore isomorphic.

This completes the proof of the claim and also Theorem 8.1. �
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8.2. In this subsection we focus on proving results distinguishing 3-manifold groups.
We summarize this in the following theorem.

Theorem 8.3 1. Let M be a prime 3-manifold. Then π1(M) is Grothendieck
Rigid.

2. Let Γ be a finitely generated free group of rank r ≥ 2, and let M be a closed
3-manifold with π1(M) ∈ G(Γ). Then M is a connect sum of r copies of S2×S1.

3. For i = 1, 2, let Mi = H3/Γi where M1 closed and M2 non-compact. Then Γ̂1

is not isomorphic to Γ̂2.

4. Let M be a closed hyperbolic 3-manifold and N a geometric 3-manifold. Then
if π1(N) ∈ G(π1(M)), N is a closed hyperbolic 3-manifold.

Proof 1. We have already seen that this holds if M is geometric. Thus we can
assume that M is not geometric. Since M is prime, it must therefore have a non-
trivial JSJ decomposition. By Theorem 7.3 π1(M) is good. Since M is prime it is
aspherical and so we have H3(M ; Fp) = H3(π1(M); Fp) = Fp for all primes p. On
the other hand, if (π1(M), H) is a Grothendieck Pair, where H is finitely generated
subgroup of π1(M), then by the discussion in §5.2, H is of infinite index. Moreover, H
is also good by Theorem 7.3, and the cover of M corresponding to H, denoted by MH

is still aspherical. However, since this is an infinite sheeted cover, 0 = H3(MH ; Fp) =
H3(H; Fp), and hence a contradiction.

2. First, it is clear that π1(M) is infinite. If M is prime, then using the remark

at the end of §6, b
(2)
1 (π1(M)) = 0 and the result follows from Corollary 6.4. Thus we

can assume that M decomposes as a connect sum X1#X2# . . .#Xs. Again using the
remark in §6 and Example 6.2, we have s = r. Also, each Xi has infinite fundamental
group since free groups are good and so Lemma 7.6 excludes torsion in the profinite
completion.

Now π1(M) has the structure of a free product and so by Lemma 4.8, the profinite
topology is efficient. In particular each π1(Xi) is a closed subgroup of π1(M). Suppose
that some Xi is not homeomorphic to S2×S1. Then Xi is aspherical, and then either
there exists a subgroup A ∼= Z⊕Z which is closed in the profinite topology on π1(Xi)
and for which the full profinite topology is induced on A (by [57] in the case of Seifert
manifolds and [61] for the case where Xi has a non-trivial JSJ decomposition), or
there exists a closed surface subgroup of genus > 1 (by [35]) which is closed in the
profinite topology and for which the full profinite topology is induced (by [2]). In

either case we deduce that π̂1(M) contains a closed subgroup to which we can apply
Corollary 7.13 and deduce a contradiction (by Corollary 7.15).

3. This follows easily from Theorem 7.3 since for all primes p, H3(M2; Fp) =
H3(π1(M2); Fp) = 0 and H3(M2; Fp) = H3(π1(M2); Fp) 6= 0.

4. Since M is closed and hyperbolic, as above, by Theorem 7.3, we can assume
that N is closed. It is well known that π1(M) has infinitely many non-abelian finite
simple quotients (see [39] for example). Thus we quickly eliminate all possibilities
for N apart from those modelled on H2 × R and S̃L2. In this case, π1(N) has a
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description as:
1→ Z → π1(N)→ F → 1

where Z is infinite cyclic, and F is a cocompact Fuchsian group (we can pass to a
subgroup of finite index if necessary so as to arrange the base to be orientable). Since
π1(N) is LERF, this short exact sequence can be promoted to (recall the discussion
in §4.5):

1→ Ẑ → π̂1(N)→ F̂ → 1.

Setting G = π̂1(N) we have that G ∼= π̂1(M) and so π1(M) is a dense subgroup of G.
If π1(M) ∩ Ẑ 6= 1, then it follows that π1(M) contains an abelian normal subgroup,
and this is impossible (as M is a closed hyperbolic 3-manifold). Thus π1(M)∩ Ẑ = 1
and therefore π1(M) projects injectively to a dense subgroup of F̂ . However, this
then contradicts Proposition 6.3. This completes the proof. �

Remarks:

1. Part 1. of Theorem 8.3 was proved in the PhD thesis of W. Cavendish [23]
(assuming the then open virtual fibration conjecture for finite volume hyperbolic
3-manifolds).

2. There appears to be no direct proof that distinguishes closed hyperbolic 3-
manifolds from finite volume non-compact hyperbolic 3-manifolds by the profi-
nite completions of their fundamental groups. In particular the issue of detect-
ing a peripheral Z⊕ Z seems rather delicate.

3. In a similar vein, at present it also seems hard to distinguish a closed prime
3-manifold with a non-trivial JSJ decomposition from a closed hyperbolic 3-
manifold by the profinite completions of their fundamental groups. As above
the issue of detecting a Z⊕ Z is rather subtle.
However, the author has recently been informed that Wilton and Zalesskii
claimed to have now shown that a closed prime 3-manifold with a non-trivial JSJ
decomposition from a closed hyperbolic 3-manifold by the profinite completions
of their fundamental groups.

4. Funar [26] has shown that there are non-homeomorphic geometric 3-manifolds
whose fundamental groups have isomorphic profinite completions. The known
examples are torus bundles with SOL geometry. At present, we do not know
whether other torus bundles modelled on NIL geometry (which are Seifert
fibered), or more generally other Seifert fibered spaces can be distinguished
by their finite quotients (even amongst Seifert fibered spaces).

8.3. In this subsection we discuss further properties of a group that is in the same
genus as a finitely generated free group. The starting point for this discussion is
Section 4 of Peterson and Thom [51] which contains a number of results concerning
the structure of finitely presented groups that satisfy their condition (?) and have

non-zero b
(2)
1 . We will not state their condition (?) here, but rather remark that the

condition is known to hold for left orderable groups and groups that are residually
torsion-free nilpotent. We prove the following:
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Theorem 8.4 Let Γ be a finitely presented group in the same genus as a free group F
of rank r ≥ 2. Then:

(1) the reduced group C∗-algebra C∗λ(Γ) is simple and carries a unique normalised
trace.

(2) Γ satisfies a the following Freiheitssatz; every generating set S ⊂ Γ has an
r-element subset T ⊂ S such that the subgroup of G generated by T is free of
rank r.

Recall that the reduced C∗-algebra C∗λ(Γ) is the norm closure of the image of
the complex group algebra C[Γ] under the left-regular representation λΓ : C[Γ] →
L(`2(Γ)) defined for γ ∈ Γ by (λΓ(γ)ξ) (x) = ξ(γ−1x) for all x ∈ Γ and ξ ∈ `2(Γ). A
group Γ is C∗-simple if its reduced C∗-algebra is simple as a complex algebra (i.e.,
has no proper two-sided ideals). This is equivalent to the statement that any unitary
representation of Γ which is weakly contained in λΓ is weakly equivalent to λΓ. We
refer the reader to [32] for a thorough account of the groups that were known to be
C∗-simple by 2006. The subsequent work of Peterson and Thom [51] augments this
knowledge.

An important early result in the field is the proof by Powers [55] that non-abelian
free-groups are C∗-simple. In contexts where one is able to adapt the Powers argu-
ment, one also expects the canonical trace to be the only normalized trace on C∗λ(Γ)
(cf. Appendix to [16]). By definition, a linear form τ on C∗λ(Γ) is a normalised trace
if τ(1) = 1 and τ(U∗U) ≥ 0, τ(UV ) = τ(V U) for all U, V ∈ C∗λ(Γ). The canonical
trace is uniquely defined by

τcan

∑
f∈F

zfλΓ(f)

 = ze

for every finite sum
∑

f∈F zfλΓ(f) where zf ∈ C and F ⊂ Γ contains 1.

Proof Note that Γ is necessarily torsion free since Γ̂ ∼= F̂ . By assumption, we have

from Corollary 6.7 that b
(2)
1 (Γ) = r − 1 6= 0 and so both parts of the theorem will

follow from [51] once we establish that Γ is left orderable (see Corollary 4.6 and 4.7
of [51]). For this we will make use of a result of Burns and Hale [20] that states that
if a group Γ is locally indicable (i.e., every finitely generated non-trivial subgroup A
admits an epimorphism to Z), then Γ is left orderable. Thus the result will follow
from the next theorem. Details of the proof will appear elsewhere, we sketch some of
the ideas.

Theorem 8.5 Γ as in Theorem 8.4 is locally indicable.

Sketch Proof: Let A < Γ be a finitely generated non-trivial subgroup. Since Γ is
residually finite, A injects in Γ̂ ∼= F̂ for a finitely generated free group F of rank ≥ 2.
Consider the closure A < Γ̂ which by a slight abuse of notation we view as sitting
in F̂ . As a closed subgroup we have from Proposition 7.5 that cd(A) ≤ cd(F̂ ) = 1
(recall Example 7.9). Since A 6= 1, and cd(F̂ ) = 1 we must have that cdp(A) = 1 for
some prime p (see Lemma 7.8). The proof is completed by establishing the following
claims:
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Claim

(1) There is an epimorphism A→ Z/pZ.

(2) The epimorphism A→ Z/pZ in (1) lifts to an epimorphism A→ Zp.

Given these claims we can now complete the proof that A surjects onto Z. For
A being a dense subgroup of A must surject all the finite quotients arising from
A→ Zp → Z/pnZ. That is to say A must surject onto Z.

To prove (1) we exploit the fact that cdp(A) = 1 for some prime p, which allows us
to conclude that H1(A;M) 6= 0 for some finite A-module M which is p-primary. To
prove (2) we use the fact that since cd(A) = 1, A is a projective profinite group (see
[56] Chapter 7.6). In particular this allows for lifting problems to be solved, which is
needed to pass from (1) to (2). �

Note that fully residually free groups are residually torsion-free nilpotent and non-

abelian fully residually free groups have b
(2)
1 6= 0 (by [17]). As noted above, (?) of [51]

applies, and so these groups also satisfy a similar Freiheitssatz.

9 Parafree groups

Recall that a residually nilpotent group with the same nilpotent genus as a free group
is called parafree. Many examples of such groups are known (see [7], [8] and [10]).
Although much is known about finitely generated parafree groups, a good structure
theory for these groups is as yet out of reach. Being in the same nilpotent genus as a
parafree group, one might wonder about what properties of a free group are shared
by a parafree group. For example, in [10], Baumslag asks:

Question 6: Let G be a finitely generated parafree group and let N < G be a finitely
generated, non-trivial, normal subgroup. Must N be of finite index in G?

This was answered affirmatively in Corollary 6.8 for groups in the same genus as a free
group, and using similar methods, in [18] we showed this also holds for the nilpotent
genus. In particular we showed that if Γ is a finitely generated parafree group in

the same nilpotent genus as a free group of rank r ≥ 2, then b
(2)
1 (Γ) ≥ r − 1 and in

particular is non-zero. Hence the argument given for proving Corollary 6.8 can still
be applied. The argument in [18] uses the following variation of Proposition 6.3.

Proposition 9.1 Let Γ be a finitely generated group and let F be a finitely presented
group that is residually-p for some prime p. Suppose that there is an injection Γ ↪→ F̂p

and that Γ = F̂p. Then b
(2)
1 (Γ) ≥ b(2)

1 (F ).

This has various other consequences for parafree groups; for example the reduced
group C∗-algebra is simple and carries a unique normalised trace, and recovers Baum-
slag’s result ([8] Theorem 4.1) that parafree groups also satisfy a Freiheitssatz.

We now discuss some other properties of finitely generated parafree groups. In
[37], it was shown that a non-abelian finitely presented parafree group is large (i.e.,
it contains a finite index subgroup that surjects a non-abelian free group). Another
property of free groups (which has come to prominence of late through its connections
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to 3-manifold topology) is Agol’s RFRS condition (see [1]). To define this recall that
the rational derived series of a group Γ is defined inductively as follows. If Γ(1) =

[Γ,Γ], then Γ
(1)
r = {x ∈ Γ : there exists k 6= 0, such that xk ∈ Γ(1) }. If Γ

(n)
r has been

defined then define Γ
(n+1)
r = (Γ

(n)
r )

(1)
r .

A group Γ is called residually finite rationally solvable (RFRS for short) if there is
a sequence of subgroups:

Γ = Γ0 > Γ1 > G2 . . .

such that
⋂
i Γi = 1, [Γ : Γi] <∞ and (Γi)

(1)
r < Gi+1.

Theorem 9.2 Let Γ be a finitely generated parafree group with the same nilpotent
genus of a free group of rank r ≥ 2. Then Γ is RFRS.

Proof Fix a prime p, and let G denote the pro-p completion of Γ (which by as-
sumption is the free pro-p group of rank r ≥ 2). Consider the tower of finite index
subgroups defined as P1(G) = G, and Pi+1(G) = (Pi(G))p[G,Pi(G)]. Note that each
Pi(G) is a closed normal subgroup of G, that {Pi(G)} forms a basis of open neigh-
bourhoods of the identity,

⋂
Pi(G) = 1 and Pi(G)/Pi+1(G) is an elementary abelian

p-group.
Since Γ→ G is injective, we will consider the subgroups {∆i = Pi(G) ∩ Γ}. These

are then normal subgroups of finite index in Γ that intersect in the identity. RFRS

will follow once we show that (∆i)
(1)
r < ∆i+1.

To see this, first note that since each quotient ∆i/∆i+1 is an elementary abelian
p-group, then each ∆i is normal of p-power index in Γ. Hence ∆̂i,p → ∆i < G is
an isomorphism (since Γ is residually p and ∆i is normal and of p-power index, the
full pro-p topology is induced). Hence ∆̂i,p is a free pro-p group of rank l say. It
follows that ∆i has first Betti number equal to l (see [18] Corollary 2.9 for example).
Moreover, ∆i and the free group of rank l have the same p-group quotients, and so
it follows that |Tor(H1(∆i; Z)| is not divisible by p. The proof is completed by the
following lemma. �

Before stating and proving this, we make a preliminary remark. If H is a finitely

generated group, then trivially [H,H] < H
(1)
r , and if H1(H; Z) is torsion-free, then

H
(1)
r = [H,H]. The next lemma is a variation of this.

Lemma 9.3 Let p be a prime, H be a finitely generated group and K a normal
subgroup of H satisfying:

• H/K is an elementary abelian p-group.

• |Tor(H1(H; Z)| is not divisible by p.

Then H
(1)
r < K.

Proof As noted above, if Tor(H1(H; Z)) = 1 then we are done since H
(1)
r = [H,H] <

K. Thus we may suppose that Tor(H1(H; Z)) 6= 1. Let x ∈ H(1)
r , so that xd ∈ [H,H]

for some d ≥ 1. We will assume that x /∈ K, otherwise we are done. In particular,
d ≥ 2 since [H,H] < K by the first assumption. Hence x projects to a non-trivial
element in H/[H,H] and H/K.
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Since H/K is an elementary abelian p-group, it follows from the previous discus-
sion that d is divisible by p. On the other hand, the second assumption is that
|Tor(H1(H; Z)| is not divisible by p. Putting these statements together, it follows
that the image of x must have infinite order in H/[H,H], and this is false. In par-
ticular we conclude that d cannot be greater than or equal to 2; i.e., x ∈ [H,H] < K
and the lemma is proved. �

Perhaps the most famous open problem about parafree groups is the Parafreee Con-
jecture. This asserts that if Γ is a finitely generated parafree group, then H2(G; Z) =
0. Although goodness seems like it may be relevant here, it is not quite the right
thing—since the nilpotent genus is only concerned with nilpotent quotients. How-
ever, a variation is relevant.

One says that a group Γ is pro-p good if for each q ≥ 0, the homomorphism of
cohomology groups

Hq(Γ̂p; Fp)→ Hq(Γ; Fp)

induced by the natural map Γ → Γ̂p is an isomorphism. One says that the group
Γ is cohomologically complete if Γ is pro-p good for all primes p. Many groups are
known to be cohomologically complete. For example finitely generated free groups,
RAAG’s [42], and the fundamental group of certain link complements in S3 (see [11]).
However, as is pointed out in [18], there are link complements (even hyperbolic) for
which the fundamental group is not cohomologically complete. Note that such an
example is good by Theorem 7.3.

The connection with the Parafree Conjecture is the following.

Proposition 9.4 If finitely generated parafree groups are cohomologically complete,
then the Parafree Conjecture is true.

Proof Suppose that Γ is a finitely generated parafree group. Since Γ is parafree,
Γ̂p is a free pro-p group for all primes p. If we now assume that H2(Γ; Z) 6= 0, then
for some prime p we must have H2(Γ; Fp) 6= 0. But then the Universal Coefficient
Theorem implies that H2(Γ; Fp) 6= 0. If Γ is pro-p good a contradiction is obtained. �

10 Questions and comments

We close with a list of problems and comments motivated by these notes. First, call
a finitely generated discrete group profinitely rigid if G(Γ) = {Γ}. We begin with
various strengthenings of Question 1.

Question 7: Are finitely generated Fuchsian groups profinitely rigid?

Question 8: Are finitely generated Kleinian groups profinitely rigid?

Restricting to lattices in PSL(2,C) we can ask by analogy with the hard part of
Theorem 8.1:

Question 9: Let Γ1 and Γ2 be lattices in PSL(2,C). If Γ̂1
∼= Γ̂2 is Γ1

∼= Γ2?

Much more ambitious is the following:
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Question 10: Are lattices in rank 1 semisimple Lie groups profinitely rigid?

There is some chance this may be false. In particular, an answer to this question
seems closely related to the status of CSP for lattices in Sp(n, 1) (n ≥ 2). This is also
related to the next three questions.

Question 11: Does there exist a residually finite word hyperbolic group that is not
good?

Question 12: Does there exist a residually finite torsion free word hyperbolic group
Γ for which Γ̂ contains non-trivial elements of finite order?

Question 13: Does there exist a residually finite word hyperbolic group that is not
highly residually finite?

Question 14: Does there exist a word hyperbolic Γ for which G(Γ) contains another
word hyperbolic group?

Using Proposition 5.1(2) Grothendieck Pairs (Γ, N) can be constructed so that Γ is
word hyperbolic. However, in the known examples, N is not word hyperbolic.

As discussed in §3.4, there are lattices of higher rank for which the genus con-
tains more than one element. However, some interesting special cases seem worth
considering.

Question 15: Is SL(n,Z) profinitely rigid for all n ≥ 3? Is SL(n,Z) Grothendieck
Rigid for all n ≥ 3?

Note that using [15] and [54], for large enough n examples of subgroups H < Γ <
SL(n,Z) can be constructed so that (Γ, H) is a Grothendieck Pair.

Motivated by the Parafree Conjecture and a desire to have some type of structure
theory for finitely generated parafree groups we raise:

Question 16: Are finitely generated parafree groups cohomologically complete? How
about good?

We saw in Theorem 9.2 that finitely generated parafree groups are RFRS. The
RFRS property holds for groups that are special (see [1]). That parafree groups are
special seems too much to ask, however, the following seems plausible:

Question 17: Are finitely generated parafree groups virtually special?

Note that a positive answer to Question 17 would also imply that finitely generated
parafree groups are linear. This is still an open question (see [10] Question 8).

On a slightly different topic. Let Γg denote the Mapping Class Group of a closed
orientable surface of genus g ≥ 2.
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Question 18: Is Γg profinitely rigid?

Question 19: Is Γg good?

This question was raised in [38] in connection with the geometry of moduli spaces of
curves of genus g. As pointed out in [38], the answer is known for g ≤ 2 (the case
g = 1 follows from Theorem 7.3).
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