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1. Introduction

Let Γ be a torsion-free Kleinian group, so that M = H3/Γ is an orientable hy-
perbolic 3-manifold. The non-trivial elements of Γ are classified as either parabolic
or hyperbolic. If γ ∈ Γ is hyperbolic, then γ has an axis in H3 which projects to
a closed geodesic gγ in M (which depends only on the conjugacy class of γ in Γ).
The element γ acts on its axis by translating and possibly rotating around the axis.
In terms of eigenvalues, if γ ∈ Γ is hyperbolic, we let

λ = λγ = rγe
iθγ

be the eigenvalue of γ (more accurately of a pre-image of γ in SL(2,C)) for which
|λ| > 1. The angle θγ takes values in [0, 2π), and is the rotation angle mentioned
above. We will usually suppress the subscripts. A hyperbolic element is called
purely hyperbolic if and only if θ = 0, or equivalently, if tr(γ) ∈ R.

The length of the closed geodesic gγ is given by 2 ln |λ| and the collections of
these lengths counted with multiplicities is a well-known important geometric in-
variant of the manifold M (see [3] and [4] and the references therein). On the other
hand, little seems known about the “angle spectrum” for hyperbolic 3-manifolds.
If Γ is not Fuchsian, then there must be hyperbolic elements that are not purely
hyperbolic. However, the following question naturally arises as a first step beyond
this.

Question 1: Let M = H3/Γ be a finite volume orientable hyperbolic 3-manifold,
does Γ contain infinitely many conjugacy classes of hyperbolic elements, no power
of which is purely hyperbolic?

It is implicit in [3] (see the discussion in §4.1 below) that Question 1 has an affirma-
tive answer for arithmetic Kleinian groups. The purpose of this note is to establish
that this holds more generally. Namely we prove:

Theorem 1.1. Let M = H3/Γ be as in Question 1. Then Γ contains infinitely
many conjugacy classes of primitive hyperbolic elements with the property that they
have no power which is purely hyperbolic.
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The proof of Theorem 1.1 is given in §3 and proceeds by first establishing
the existence of one primitive hyperbolic element for which no power is purely
hyperbolic. The extension which shows that there are infinitely many conjugacy
classes of such elements can be made either by an algebraic argument or a geometric
argument, and we include both.

There is an obvious generalization of the previous discussion to higher dimen-
sions, and in §5 we provide a proof of the following result.

Theorem 1.2. Let M = Hn/Γ be an orientable hyperbolic n-manifold of finite
volume, where n > 3. Then Γ contains infinitely many primitive hyperbolic elements
with the property that they have no power which is purely hyperbolic.

As in the proof of Theorem 1.1, the proof of Theorem 1.2 proceeds by first
establishing the existence of one primitive hyperbolic element for which no power
is purely hyperbolic. However, the method of proof is different to that given for
dimension 3.

This paper is a revised version of a paper where we proved a more general
version of Theorem 1.1. However, it was subsequently pointed out to us by Gopal
Prasad, that the main results of that paper follow from very general results con-
tained in his work with Rapinchuk ([12]). We have therefore decided to give a proof
only in the case of finite volume hyperbolic manifolds so as to illuminate the ideas
in that setting, and thereby avoiding some of the issues in the general case of [12].

Acknowledgments: We thank Mahan Mj for email correspondence on the “angle
spectrum” that prompted us to write this down carefully, and Chris Leininger, Alex
Lubotzky and Gopal Prasad for comments on the previous version of this paper.
We also wish to thank Ted Chinburg and Emily Hamilton for many interesting
conversations on matters related to this arising from [3]. We also thank the referee
for their careful reading of the paper, and many very useful comments. The second
author wishes to thank the Institute for Advanced Study for its hospitality whilst
this paper was written.

2. Some preliminaries for the proof of Theorem 1.1

2.1. By a number field k we will mean a finite extension of Q. The ring of
integers of k will be denoted Rk, and RS = Rk[S] will denote a subring of k where a
finite number of k-primes S are inverted. A place ν of k will be one of the canonical
absolute values of k. The finite places of k correspond bijectively to the prime ideals
of Rk. We denote by kν the local field obtained as the completion of k at a place
ν. In the case of finite places we sometimes abuse notation and write the prime P
rather than the associated place ν when referring to the completions.

If A is an ideal of Rk, the norm of A is the cardinality of the quotient ring
Rk/A and is denoted by NA. When A is a prime ideal, then NA = pt for some
rational prime p, and Rk/A is a finite field of characteristic p. We will denote this
finite field by FA; this is usually called the residue class field.

2.2. For convenience we record two well-known results about extensions of
number fields. We refer the reader to [5] for example for more details.

The first of these follows from the fact that if ζ = e2πi/n is a primitive n-th
root of unity, then [Q(ζ) : Q] = φ(n) (where φ denotes the Euler φ-function) and
φ(n) is well-known to go to infinity with n.
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Proposition 2.1. There are only finitely many roots of unity ζ for which Q(ζ)
has bounded degree over Q.

The second result we need requires some additional notation. Let k be a number
field and L a proper subfield. Suppose that p is a rational prime, P is an L-prime
lying over p, and P is a k-prime lying over P . Then we get extensions of local fields,

Qp ⊂ LP ⊂ kP ,

and extensions of finite fields

Fp ⊂ FP ⊂ FP .

Note that, even though L is a proper subfield of k, the field extensions shown above
may all be equalities. With this we have the following standard consequence of the
Cebotarev Density theorem (see for example [10] Chapter VII, 13.4). We sketch a
proof for convenience.

Proposition 2.2. In the notation above, there exist infinitely many rational
primes p for which the field extension FP/FP has degree at least 2.

Proof: Let K denote the Galois closure of k. Since L is a proper subfield of k
there exists a Galois automorphism σ ∈ Gal(K/L) such that σ is trivial on L and
non-trivial on k. The Cebotarev density theorem provides a positive density set
of primes of Q in K for which the induced Galois automorphism σ of the Galois
extension FQ/FP has order |σ|. In particular σ is trivial on FP but not on FP ; i.e.
FP is a proper extension of FP as required. ��

2.3. We will also make use of the classification of elements in PSL(2,F) where
F is a finite field. The following is easily deduced from [15] §6.23. We will exclude
the prime 2 from all considerations and henceforth any prime p that is mentioned
is odd.

Proposition 2.3. Suppose that F is a finite field of order pt, and x ∈ PSL(2,F)
a non-trivial element. Then either x is unipotent and has order p, or the order of
x is a divisor of (pt ± 1)/2. Moreover, for each divisor m of (pt ± 1)/2, there is an
element of PSL(2,F) of order m.

3. Proof of Theorem 1.1

Before commencing with the proof we introduce some notation and make some
preliminary comments. First observe that if γ ∈ Γ is a primitive hyperbolic element,
∆ < Γ a subgroup of finite index and γn = δ ∈ ∆ is a hyperbolic element for which
no power is purely hyperbolic, then it is easy to see that γ also has the property
that it has no power which is purely hyperbolic.

Also note that to prove Theorem 1.1, it suffices to establish Theorem 1.1 for a
normal subgroup of finite index in Γ. Briefly, suppose that ∆ < Γ of index N , and
{δj} is a collection of non-conjugate (in ∆) of primitive (in ∆) hyperbolic elements
with the property that no power of δj is purely hyperbolic. Let γj be primitive
hyperbolic elements in Γ with γnj = δj . From the previous paragraph, no power of
γj is purely hyperbolic. Thus it suffices to show that infinitely many of the elements
γj are not conjugate in Γ. Therefore suppose to the contrary that infinitely many
of the elements γj are conjugate, and fix one such element which we denote by γ

with γn = δ ∈ ∆. Thus, there are elements xj ∈ Γ such that xjγx
−1
j = γj . Then
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we have, xjγ
Nx−1

j = γN
j . Since ∆ is a normal subgroup of index N , then N is

divisible by n and nj for each j. Hence we deduce that

xjδ
mx−1

j = δ
mj

j for some integers m,mj bounded by N.

Thus, the elements δ
mj

j have bounded translation lengths, so the elements δj
have bounded translation lengths, and therefore, infinitely many of the elements
δj are conjugate in ∆ (being of finite co-volume). However, this contradicts the
assumption on {δj}.

A well-known consequence of Mostow-Weil Rigidity is that the trace-field of Γ is a
number field (see [9] for example). In addition, this field is obviously not a subfield
of R, for if it were, then Γ would be conjugate into PSL(2,R), contradicting the
hypothesis that M has finite volume. Let k denote the invariant trace-field of Γ; i.e.
the trace-field of the normal subgroup of finite index Γ(2) < Γ (see [9] for more).
Given the discussion above, to prove Theorem 1.1 we may assume that Γ = Γ(2).
As is well-known, and is discussed in [7] for example, for all but a finite number of
k-primes ν, there are natural reduction homomorphisms

πν : Γ −→ PSL(2,Fν).

Since Γ is a non-elementary Kleinian group, it is Zariski dense. Letting Ad
denote the adjoint representation of SL(2,C), a theorem of Vinberg [17] shows
that k coincides with the field Q(trAd(γ) : γ ∈ Γ) and Strong Approximation in the
form of [18] Theorem 10.5 applies (see [11], or [7] for a more elementary approach
for SL(2) in the case of ν dividing a rational prime p which splits completely in k).
More precisely, for infinitely many of the primes ν as above, the homomorphism πν

is surjective. This is the reason for the passage to the group Γ(2).
We need to be more selective in the primes ν as we now discuss. The trace of

a purely hyperbolic element is real, so such a trace will generate a real subfield of
k, which by the remarks above, is a proper subfield of k. We will denote by kR the
maximal real subfield of k. Clearly, this contains all the fields Q(tr(γ)) where γ is
a purely hyperbolic element of Γ. Applying Proposition 2.2 to the field extension
k/kR, we can find infinitely many rational primes p such that if ν and ω denote a
k-prime and kR prime with ν|ω|p, then the extension of residue class fields Fν/Fω

has degree at least 2. We will denote by S the set of such primes in k for which the
homomorphism πν is surjective.

Completing the proof of Theorem 1.1:

We will first establish the following claim.

Claim 1: There exists a primitive hyperbolic element in Γ with the property that
no power is purely hyperbolic.

Proof of Claim 1: We begin by noting that if γ ∈ Γ is a hyperbolic element for
which some power is purely hyperbolic, then λ = reiθ and eiθ is a root of unity.
Given this, we have the following simple lemma.
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Lemma 3.1. Let Γ be as above. Then there is a positive integer N so that if
reiθ is an eigenvalue of a hyperbolic element of Γ with eiθ a root of unity, then
eiNθ = 1.

Proof: Let d denote the degree of k over Q. Hence the eigenvalue λ = reiθ has
degree at most 2d over Q. Let K = k(λ). The complex conjugate field K has the
same degree, so that the smallest field containing K and K has degree at most
(2d)2. This field contains λ/λ = e2iθ.

If now eiθ is a root of unity, then the above paragraph shows that it lies in
a field of degree at most 2(2d)2 over Q, thus bounding the degree of the root of
unity. Proposition 2.1 now shows there are only finitely many such roots of unity,
and this provides the required N . ��

Thus to establish Claim 1, we need only show that there is a hyperbolic element
for which γm is not purely hyperbolic for all 0 < m ≤ N , (where N is as in Lemma
3.1). To achieve this we argue as follows.

With N as in Lemma 3.1, we fix ν ∈ S with ν|p and assume that p >> N .
Proposition 2.3 shows that the orders of the elements in PSL(2,Fν) are either p,
or divisors of (|Fν | ± 1)/2, and in the latter case, the maximal possible order is
attained. Denote this maximal order by Rν , and let δ ∈ PSL(2,Fν) be an element
of order Rν . Note that δ is not unipotent, since these only have order p.

Using Proposition 2.3, observe that since Fν/Fω is at least two, Rν is around p
times larger than the maximal possible order for any element of PSL(2,Fω). Denote
this maximal possible order by Rω. We then have that Rν is around p ·Rω. Notice
that since traces control the order of an element, this implies that Rν is around p
times larger than the order of any element whose trace lies Fω.

Pick some γ ∈ Γ lying in π−1
ν (δ). We claim that γ cannot have any power

which is purely hyperbolic. The reason is this. If there is such a power, then γm

is purely hyperbolic for some 0 < m ≤ N . It follows that γm now has real trace,
so that the order of δ is bounded above by m ·Rω. However, we chose p >> N , so
that Rν ∼ p · Rω >> m · Rω, contradicting our choice of δ as an element of order
Rν .

Given such an element γ, then a primitive element in the cyclic subgroup
containing γ finishes the proof of Claim 1. ��

Remark: This argument shows that all the elements γ in π−1
ν (δ) are hyperbolic

and no power is purely hyperbolic.

We now complete the proof of the existence of infinitely many conjugacy classes
of elements with no purely hyperbolic power. We give both an algebraic argument
and a geometric one.

Algebraic argument: We argue as follows. Let α1 be any primitive hyperbolic
element that is produced via the method of Claim 1. Let Γ2 = ker(πν). Now we can
choose a different prime ν′ ∈ S (with residue class field Fν′) so that the reduction
homomorphism

πν′ : Γ −→ PSL(2,Fν′),
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restricted to Γ2 is onto. Moreover, an easy argument (e.g. Theorem 4.6 of [6]) now
shows that the homomorphism

Γ −→ PSL(2,Fν)× PSL(2,Fν′)

is also onto. Choose a γ2 ∈ Γ with the property that in the second coordinate
it maps to an element of maximal order and in the first coordinate it maps to a
unipotent element ξ. Notice that ξ has order precisely p and Proposition 2.3 shows
that < ξ > is a maximal cyclic subgroup of PSL(2,Fν).

Now choose the primitive element in Γ associated to the element γ2, and denote
this element by α2. As above, consideration of the image of α2 in the second factor
shows that no power is pure hyperbolic. We claim that no power of α1 is conjugate
to any power of α2. The reason is this. Hyperbolic elements with this property must
simultaneously conjugate into a single cyclic subgroup of Γ. Since the elements α1

and α2 are primitive in Γ, they must both be generators of this cyclic group, and
this implies that they are conjugate (up to inverting one of them) before taking
powers. However, α2 has order p in the first factor and α1 has maximal order in
the first factor, and in particular much larger than p. Hence, these elements can
never be conjugate.

The theorem is proved by repeating this argument making use of the infinitude
of primes in the set S. ��

Geometric argument: As in the previous setting, we fix one primitive element
provided by the proof of Claim 1, α = α1 say, so that π−1

ν (δ) = α · ker(πν).
Now by construction, everything in this coset maps to an element of order R, and
therefore all the primitive elements associated to such elements map to elements
of maximal order too. Hence, as remarked above, they are all hyperbolic elements
with no power being purely hyperbolic. To construct infinitely many non-conjugate
primitive elements in this case we argue as follows. We will use  to denote the
hyperbolic length in the hyperbolic 3-manifold M = H3/Γ.

Fix a numberK >> 10(gα) say, and let g ⊂ M be a closed geodesic with length
(g) > K. Now choose a point p on g and some small compact ball B1 ⊂ M = H3/Γ
centered at p which is disjoint from all the primitive closed geodesics in M which
have length at most K. Fix some lift of B1 (still denoted B1) and some lift of g
(still denoted g) in H3 which passes through B1. We next choose very small open
neighbourhoods N+, N− of the endpoints of this lift of g to the sphere at infinity,
so that any geodesic in H3 with one endpoint in N+ and one endpoint in N− must
run through B1.

Now ker(πν) and Γ have limit sets the entire sphere-at-infinity. Thus, there
exists an element β ∈ ker(πν) with one fixed point in N+ and one in N−. By
standard arguments, for k sufficiently large, the element βkαβk also has fixed points
in those neighbourhoods. Let α2 be the primitive hyperbolic element in the cyclic
group containing βkαβk. By construction, gα2

runs through the ball B1 in M ,
so that by choice of B1 it has length > K > 10(α) and in particular, α2 is not
conjugate to α. However α2 is conjugate to αβ2k which lies in π−1(δ), so that it
has no power which is purely hyperbolic.

Now repeat this argument by choosing a small ball B2 missing all geodesics of
length at most K2 >> 10(α2). It is clear that repeating this construction provides
infinitely many distinct primitive elements (up to conjugacy). ��
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4. Comments on the case of arithmetic Kleinian groups

4.1. We begin by discussing the proof of Theorem 1.1 for arithmetic hyperbolic
3-manifolds that is implicit in [3]. It is convenient to work with arithmetic Kleinian
groups derived from a quaternion algebra (i.e. those for which the invariant trace-
field coincides with the trace-field). We refer the reader to [3] and [9] for more
details. In the notation of §3, if k denotes the trace-field and kR the maximal
real subfield, then the analysis in [3] breaks into two cases: either [k : kR] > 2 or
[k : kR] = 2.

The former case is straightforward to handle, since there are no purely hyper-
bolic elements in this case (see [9] Theorem 5.3.1).

The latter case is handled using Lemmas 4.3 and 5.2 of [3]. Briefly, Lemma
5.2 of [3] provides infinitely many hyperbolic elements for which the eigenvalue λ
generates a field Q(λ) which is distinct from Q(λ). However, if λ is the eigenvalue
of a hyperbolic element for which some power is purely hyperbolic it can be shown
that Q(λ) = Q(λ), and hence a contradiction.

4.2. More is implicit in [3] as we now discuss, and that we are unable to
establish in general.

If λ = reiθ is the eigenvalue for a hyperbolic element for which no power is
purely hyperbolic, then eiθ is an algebraic number that is not a root of unity. A
stronger version of Question 1 to ask is:

Question 2: For those eigenvalues associated to hyperbolic elements no power of
which is purely hyperbolic, is the collection of fields Q(eiθ) infinite?

Claim 2: Question 2 has an affirmative answer in the arithmetic case.

Proof: As in §4.1, is convenient to work with arithmetic Kleinian groups derived
from a quaternion algebra. Suppose that there are only finitely many such fields.
Then there are only finitely many fields Q(e2iθ) = Q(λ/λ). Now it is shown in
[3] (see Lemma 5.2 and Proposition 4.4), that we can find infinitely many distinct
hyperbolic elements (no power of which is purely hyperbolic) such that the Galois

closure Q(λ)cl of Q(λ) over Q coincides with Q(λλ)cl (the Galois closure of Q(λλ)
over Q). Furthermore, the proof of Lemma 5.2 of [3] shows that these hyperbolic
elements can be taken to be primitive and non-conjugate (since their respective
eigenvalues generate distinct quadratic extensions of the invariant trace-field). Now

for these λ, it can be shown that Q(λλ)cl = Q(λ/λ)cl (the Galois closure of Q(λ/λ)

over Q). Hence Q(λ)cl = Q(λ/λ)cl.
Consequently, if there are only finitely many fields Q(λ/λ), there are only

finitely many fields arising as Q(λ)cl, and this implies that there are in fact only
finitely many possibilities for λ, which is a contradiction. ��

5. The higher dimensional setting

Throughout this section, we shall always assume that n ≥ 4. We begin with
some preliminary discussion.

5.1. A hyperbolic element γ ∈ SO0(n, 1) is conjugate in SO0(n, 1) to an element
of the form
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(
αγ | 0
0 | Tγ

)
,

where αγ has real eigenvalues λ and 1/λ with |λ| > 1, and Tγ ∈ O(n− 1). In this
case, a hyperbolic element is called purely hyperbolic if Tγ = 1. If γ is a hyperbolic
element that has a purely purely hyperbolic power, then Tγ must have finite order.

Let M = Hn/Γ be orientable and have finite volume. As is well-known (see
[13]), Γ can be conjugated in O0(n, 1) to have entries in a (real) number field.
Furthermore, Vinberg [16] showed that there is a minimal field of definition for
this number field. We will denote this by k in what follows. Using this number
field, an argument similar to that used in Lemma 3.1 proves the following lemma.

Lemma 5.1. Let Γ be as above. Then there is a positive integer N such that if
γ ∈ Γ has a purely hyperbolic power, then TN

γ = 1.

Remark: As is well-known there are infinitely rational primes that split completely
in k (see [5]). We will denote by V be the collection of such primes. As in the case
of dimension 3, for convenience, we will exclude any prime from V for which the
residue class field has characteristic 2.

5.2. We will use some facts about the simple groups of orthogonal type (see
[15] or [2] for more details).

Let f be an m-dimensional quadratic form over the finite field F of cardinal-
ity q, where to simplify some of the discussion we assume q is an odd prime. In
the case when m is also odd, there is a unique orthogonal group O(m, q) up to
isomorphism, and when m is even there are two O±(m, q) (see [15] p 377 The-
orem 5.8). Let SO(m, q) and SO±(m, q) denote the special orthogonal groups in
these cases, and let Ω(m, q) = [O(m, q),O(m, q)] when m is odd (resp. Ω±(m, q) =
[O±(m, q),O±(m, q)] when m is even) where [G,G] denotes the commutator sub-
group of a group G. When m is even Ω±(m, q) has index 2 in SO±(m, q) and has
a center of order 1 or 2. Let PΩ±(m, q) be the central quotient group.

We summarize the important facts for us in the following theorem (see [15] loc.
cit. or [2] pp. 6-7 for a discussion):

Theorem 5.2.
1. Ω(2m + 1, q) is a simple subgroup of O(2m + 1, q) of index 4 and has order
1
2q

m2 ∏m
1 (q2i − 1).

2. Ω(2m, q) is a subgroup of O(2m, q) of index 4 and the central quotient groups
PΩ±(2m, q) are simple groups whenever m ≥ 3. These groups have orders

1

d
qm(m−1)(qm − 1)

m−1∏
1

(q2i − 1), where d = (4, qm − 1), (in the case of +)

and

1

d
qm(m−1)(qm + 1)

m−1∏
1

(q2i − 1), where d = (4, qm + 1), (in the case of -).

Remark: The cases of ± are distinguished by the discriminant of the quadratic
form. When the discriminant is a square in Fq, we are in the case of +, and the
non-square case corresponds to −.
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As in §3 (using the minimal field of definition k), we will consider reduction homo-
morphisms

πν : Γ → SO(n, 1; q),

for ν ∈ V .
Strong Approximation in this case gives ([11], [18] or [8] for a discussion of the

proof of the version stated below):

Theorem 5.3. In the notation above, for all but a finite number of primes
ν ∈ V, we have
1. Ω(n+ 1, q) ≤ πν(Γ) ≤ SO(n+ 1; q), when n+ 1 is odd.

2. PΩ±(n+1, q) ≤ Pπν(Γ) ≤ PSO±(n+1; q), when n+1 is even (where the notation
indicates that only the correct sign is chosen in the subscript).

It is necessary for us to sharpen this discussion a little so as to better suit our
needs. In particular we will pass to an infinite subset of primes V0 ⊂ V that have
some additional constraints. (Actually we need only that V0 is nonempty.) Firstly,
Lemma 5.1 provides an integer N such that if β ∈ Γ is a hyperbolic element that
has some power that is purely hyperbolic, then TN

β = 1. Thus the eigenvalues of

Tβ are N -th roots of unity. Secondly, in the case when (n+ 1) is even, we wish to
restrict to those primes so as to ensure that −1 is a square in Fq, and so the form
of signature (n, 1) determines a form over Fq whose discriminant is a square (recall
the Remark after Theorem 5.2).

Given the remarks of the previous paragraph, henceforth, we will restrict atten-
tion to those reduction homomorphisms arising from the (infinite) subset of primes
V0 ⊂ V that divide rational primes that split completely in the field K obtained by
adjoining to k the N -th roots of unity together with a square root of −1. That V0

is still infinite is a well-known consequence of the Cebatorev Density theorem. In
particular, we have arranged that when n + 1 is even, we are in the case of + in
Theorems 5.2 and 5.3.

We prove the following rather general lemma:

Lemma 5.4. Suppose in the notation established above, that Tβ is the rotational
part of some element of Γ which has finite order rβ (in particular, this order divides
N).

Then for any ν ∈ V0 lying over a rational prime q, rβ divides |O(n− 1; q)|.

Proof: Note that it suffices to construct any element of order rβ in O(n− 1; q).
Since by constructionK contains all the relevantN -th roots of unity, it contains

c = cos(2π/rβ) and s = sin(2π/rβ). Note that c, s ∈ K, and that 2c and 2s are
algebraic integers. Consider the element

⎛
⎝ c s | 0

−s c | 0
0 0 | Id

⎞
⎠ ∈ O(n− 1;K),

where the orthogonal group is that of the standard positive definite quadratic form
over R of signature (n− 1, 0) with coefficients in K. Observe that for the primes q
under consideration, the appropriate reduction homomorphism carries this element
into O(n− 1; q).

205



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

10 D. D. LONG AND A. W. REID

The proof of the lemma is completed with the observation that the image of this
element has order rβ in O(n− 1; q). This will follow from a theorem of Minkowski
(see Lemma 2.4 of [8] for example).

Lemma 5.5. Let L be a number field, S be a finite collection of prime ideals
in RL, and ℘ ⊂ RS be a prime ideal lying over the rational prime p 	= 2. Then
ker{π℘ : GL(n,RS) → GL(n,RS/℘)} contains no q-torsion for any primes q not
divisible by ℘.

We will apply Lemma 5.5 with S the set of K-prime divisors of 2. Recall that
we are considering a subset of those reduction homomorphisms associated to primes
splitting completely in K. In addition, since a rational prime t|N will be ramified
in Q(ζN ), t cannot be divisible by any prime in the set V0. That is to say, the
above element must have order rβ in O(n− 1; q) as required. ��

5.3. Proof of Theorem 1.2. We need one more ingredient before embarking
on the proof of Theorem 1.2. As in the proof of Theorem 1.1, we need control on
the orders of certain elements in the finite simple groups given in Theorem 5.2. To
that end, for convenience we recall Zsigmondy’s Theorem [19] (see also [14] for a
short proof of this and some related results).

Theorem 5.6. Let a and n be integers greater than 1. Exclude the cases
(1) a = 2r − 1, r ≥ 2 and n = 2; and (2) a = 2 and n = 6.

Then there exists a prime s such that s|(an − 1), but for each j < n, s does not
divide aj − 1.

A prime divisor as in the conclusion of Theorem 5.6 is called a primitive prime
divisor (or sometimes a Zsigmondy prime).

We now complete the proof of Theorem 1.2 by arguing as follows. Since the prop-
erty of being a hyperbolic element having no power that is purely hyperbolic is
preserved by passage to subgroups of finite index, we will assume that the reduc-
tion homomorphisms πν surject Γ onto the finite simple groups as given in Theorem
5.3. Since n ≥ 4 is fixed, for convenience of notation, we will simply denote any of
these finite simple groups by Ωq.

Fix some such prime ν ∈ V0 lying over the rational prime q, and let p be a
primitive prime divisor of q2m − 1 (when n = 2m, i.e. n+ 1 is odd) or a primitive
prime divisor of q2(m−1) − 1 (when n = 2m − 1, i.e. n + 1 is even). Note that
since we are always assuming n ≥ 4, and q is odd we can apply Theorem 5.6. By
Cauchy’s theorem, there is an element δ ∈ Ωq of order p. Pick some γ ∈ Γ, with
πν(γ) = δ. Then the proof is completed by the following claim.

Claim 3: No power of γ is purely hyperbolic.

Proof of Claim 3: To begin with, suppose that β ∈ Γ is a hyperbolic element
for which some power is purely hyperbolic. Then applying Lemma 5.4, we see
that if we raise β to the power |O(n − 1; q)|, it becomes purely hyperbolic. Now
since such any purely hyperbolic element is conjugate in SO0(n, 1) to an element
with rotational part being the identity, it follows that the image under the reduction
homomorphism πν is an element whose order divides q(q2−1)/2 (recall Proposition
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2.3). Putting these two observations together we see that the image of the given β
under πν is an element whose order divides q(q2 − 1)|O(n− 1; q)|/2.

We next claim that that p does not divide |O(n − 1; q)|. The reason is this:
the order of O(n − 1; q) differs from the order of the corresponding finite simple
group of that orthogonal type by a factor of most 4 (cf. Theorems 5.2 and 5.3).
As remarked above, we have arranged that when n is odd (by choice of q) that the
finite simple group which arises is of + type. Now it is visible from the formula of
Theorem 5.2 that the property that p is a primitive prime divisor ensures it cannot
divide the order of |O(n− 1; q)|.

Finally, recall that we chose γ ∈ Γ so that πν(γ) = δ, an element of order p.
We claim that no power of γ is purely hyperbolic. The argument is that the above
discussion shows that if it were, its order would divide q(q2 − 1)|O(n − 1; q)|/2.
However note that p being a primitive prime divisor and the condition n ≥ 4,
means that p does not divide q2 − 1 and we have already argued that p does not
divide |O(n− 1; q)|. This contradiction finishes the proof of Claim 3. ��

The proof of Theorem 1.2 is completed using the geometric argument provided in
§3. Briefly, notice that the argument to produce one element given above, shows
that any element γ in π−1

ν (δ) is hyperbolic and no power is purely hyperbolic. The
argument now proceeds as before. ��

Remark: It was pointed out to us by Alex Lubotzky that the argument given above
still works in dimension 3. In this case, running the arguments of §5.2 and 5.3, we
have (in the notation above) m = 2, so the exponent is 2. Now the excluded values
in Theorem 5.6(1) would be primes q of the form 2r − 1; i.e. Mersenne primes. It
is still an open problem as to whether there are infinitely many Mersenne primes,
however, even if this is the case, it is known that the density of Mersenne primes is
small [1] and one can still therefore find a primitive prime divisor.
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