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1 Introduction

Let Og denote the ring of integers in Q(v/—d). An orientable finite volume cusped
hyperbolic 3-manifold M is called arithmetic if the faithful discrete representation
of m (M) into PSL(2, C) is conjugate to a group commensurable with some Bianchi
group PSL(2,0,). If M is a closed orientable 3-manifold, we say a link L C M
is arithmetic if M \ L is arithmetic. Since the figure-eight knot complement is
well-known to be arithmetic [19] and universal [14], it follows that every closed
orientable 3-manifold contains an arithmetic link. In the case of S3, the figure-eight
knot is the only arithmetic knot [18]. A natural question therefore is; does every
closed orientable 3-manifold contain an arithmetic knot? One motivation for this
question is that if every closed orientable 3-manifold contained an arithmetic knot,
this would imply the Poincare Conjecture. For the methods of [18] show that the
figure-eight knot in S3 is the only arithmetic knot in a homotopy 3-sphere. Our
main result is the following:

Theorem 1.1 There exist closed orientable 8-manifolds which do not contain an
arithmetic knot.

Our methods give much more precise versions of Theorem 1.1, particularly for
non-hyperbolic 3-manifolds. For example, for certain Lens Spaces, we can give fairly
complete statements. By Lens Space we shall always mean a closed orientable 3-
manifold of Heegaard genus 1 and finite fundamental group. Thus we exclude
52 x S1. There are well-known examples of arithmetic knots in Lens Spaces; namely
the double cover of the figure eight knot complement (a knot in L(5,2)) and the
sister of the figure eight knot complement (a knot in L(5,1)). We show (see §2 for
definitions):

Theorem 1.2 Let L be a Lens Space, and assume that L contains a knot K derived
from a quaternion algebra then L\ K 1is homeomorphic to the sister of the figure
eight knot complement or the double cover of the figure eight knot complement.
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The figure-eight knot complement admits no Lens Space filling ([21]), however
the sister of the figure eight knot complement has three such fillings, L(5,1) (twice),
and L(10,3) (see [6] for example). Using standard properties about invariant trace
fields (see §2 for more details) we have the following corollary of Theorem 1.2 pro-
viding many examples for Theorem 1.1.

Corollary 1.3 Let L be a Lens Space, with |m1(L)| = r of odd order. Ifr # 5, then
L does not contain an arithmetic knot.

The assumption on odd order is necessary, since RP® does contain an arithmetic
knot (see Table 1). This occurs as —2-surgery on one component of the Whitehead
link (see [5]) and is not derived from a quaternion algebra.

Little seems known about the set of 1-cusped arithmetic hyperbolic 3-manifolds.
We suspect that they are very rare. However, at present it is unknown whether there
are only finitely many commensurability classes of 1-cusped arithmetic hyperbolic
3-manifolds. Some discussion of what is known is contained in §5 and 6.

The case of links of at least 2 components is very different. In this generality
there are infinitely many arithmetic links in S3. Indeed the first author recently
observed [3], that every knot can be realized as a component of an arithmetic link
in S%.

Acknowledgement: The authors thank Darren Long and Cameron Gordon for
some useful conversations.

2 Preliminaries

Here we collect some well-known facts.

2.1

Recall that if T' is a Kleinian group, then the invariant trace-field of I", denoted
by kT, is the field Q((try)? : « € I'), see [17]. An equivalent reformulation of
arithmeticity in the setting of cusped manifolds is (see [18] for example):

Theorem 2.1 Let M = H3/T be a cusped hyperbolic 3-manifold of finite volume.
Then M is arithmetic if and only if kI’ = Q(v/—=d) for some d, and tr’>y € Oy for
alyel. O

When M is a link complement in a Zy-homlogy 3-sphere, it follows from Corol-
lary 2.3 of [17] that the trace-field coincides with the invariant trace-field, so we
have,

Corollary 2.2 Let M = H3/T be a link complement in a Zy-homology 3-sphere.
Then M is arithmetic if and only if there is a d such that try € Og4 for ally € T'. O

In the notation of [18] and [17], when the conclusion of Corollary 2.2 holds,
then I’ (or M) is derived from a quaternion algebra. This is equivalent to I' being
conjugate into PO?! for an order O C M (2,Q(v/—d)).
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As an extension to the notion of an arithmetic knot, we say a knot K C M
is derived from a quaternion algebra if M \ K = H3/T, and I is derived from a
quaternion algebra.

Note that Corollary 1.3 is now immediate from Theorem 1.2 and Corollary 2.2.

2.2

We now fix some notation that will be maintained throughout, and make some
standard deductions about arithmetic knots in 3-manifolds. In what follows, Q4 =
H3/PSL(2,04).

Proposition 2.3 Let M be a closed orientable 3-manifold and K C M a knot
derived from a quaternion algebra. Then, M \ K — Q4 where Q(+v/—d) has class
number 1. Furthermore, if M is a rational homology 3-sphere, then

de{1,2,3,7,11,19}.

Proof: Let M \ K = H3/T. By assumption and from the remarks in §2.1, there
is a maximal order O of M(2,Q(v/—d)), such that T' < PO'. By Lemma 2 of [18],
if the class number of Q(v/—d) is greater than 1, any group PO' has more then
one cusp. By assumption M \ K has only 1 cusp, so we are forced to have the class
number of Q(v/—d) equal 1. In this case there is only one type of maximal order,
and so we can assume without loss of generality that I' < PSL(2, O,) of finite index.
This proves the first part.

If M is a rational homology 3-sphere, then M\ K has trivial cuspidal cohomology.
In this case the solution to the Cuspidal Cohomology Problem ([22]) allows us to
reduce to those d given by d € {1,2,3,7,11,19}. O

An immediate corollary of Proposition 2.3 and Lemma 2.2 is

Corollary 2.4 If M is a Zs-homology 3-sphere and K C M arithmetic, then M \
K —Qqandde {1,2,3,7,11,19}. O

We make some additional comments. Let M be a closed orientable 3-manifold
and assume we have a finite cover

M\ K =H*/T = Q.

Then since PSL(2, O4) obviously contains parabolic elements fixing oo, there is

a parabolic element p in I' fixing co which is a “meridian” of K, in the sense that
trivially filling M \ K along p gives back M. Let p = (1

z
0 1), for some z € Oj.
This notation will be fixed throughout.

2.3

We will make use of the following elementary fact about horoballs.
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Lemma 2.5 Suppose I' is a non-elementary Kleinian group containing a parabolic
element fixing co. If for any (CCL g) € T with ¢ # 0 we have |c| > 1, then a

mazimal horoball at infinity has Euclidean height at most 1.

Proof.
Let H be a maximal horoball at infinity at Euclidean height h say. An elementary

calculation shows that the image of H under an element (Z Z) € I' is a horoball

based at a/c of diameter 'h_jlc_lf Thus if this ball is also maximal, then h = ﬁ[’f and

so h = 1/|c|. Since |¢| > 1 the lemma follows. O
As an application of this lemma we have the following which will be useful to
us (this has also been observed by I. Agol).

Theorem 2.6 Let M = H?/T be a finite volume hyperbolic 3-manifold with a single
cusp. Assume I' contains the elements a = <(1) 1{) and B = (11) (1)) where:

1. a and B are conjugate in ', and

2. |u| =|v|=1.

Then M is homeomorphic to the figure-eight knot complement in S°.

Proof. Let T = (a b
c d

to T and « gives,

) € I' with ¢ # 0. Then Jgrgenson’s Inequality applied

tr[a, T] — 2| = |uc|* > 1.

By assumption 2, we deduce that |¢| > 1. Thus Lemma 2.5 implies the height of a
maximal horoball at infinity is at most 1.
0 iyE
5 for some

An element conjugating o to f has the form T = i /T

6 € C. As noted in the proof of Lemma 2.5, if the maximal horosphere is at
height h then the image of this horosphere under 7', S say, has height Fl—vl7ﬂ Since
|u| = |v| = 1, S has height 1/h. The height of a maximal cusp is at most 1, with
h < 1. Putting these statements together, we see that h = 1 in this case, with S
being maximal.

Recall that the waist size of a 1-cusped hyperbolic 3-manifold is just the length
of the shortest translation in a maximal cusp. From above the maximal cusp is at
height 1, so we deduce the length of « is 1. Since the waist size is at least one ([1]),
the waist size of the manifold M must be exactly 1. However, a result of Adams
[1], says that the unique hyperbolic 3-manifold with a maximal cusp of waist size 1
is the complement of the figure-eight knot. O

3 Lens Spaces

In this section we establish Theorem 1.2.
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3.1 Proof of Theorem 1.2:

Assume that K is a knot in L which is derived from a quaternion algebra. Let
L\ K = H3/T". By Proposition 2.3, and the remarks after Corollary 2.4, we have

I’ < PSL(2,04), with d € {1,2,3,7,11,19}, and a parabolic element p = ((1) T)

in T fixing oo which is a meridian of K.
The argument now breaks up into two cases, depending on whether z is, or is
not, a unit in Oy.

Case 1: z is a unit

We begin with a preliminary comment. Since I has finite index in PSL(2, O,), there
is a parabolic element v € I' which is a I'-conjugate of u fixing 0. Such an element

has the form v = (11/ (1) . Now y is also a unit. To see this, note v is I'-conjugate

to p and so there is an element of PSL(2,O4) whose form is that of the element T
given in the proof of Theorem 2.6. The off-diagonal entries must therefore be units,
and direct calculation shows y is a unit.

Using the fact that the only quadratic imaginary units are +1, +i, +w and £
where w? +w + 1 = 0, u is one of the following elements:

(6 %) (1) 6T) 67

and v is one of the following elements,

(&1 (& 1) (& 9) (& 1)

In particular we are in the situation of Theorem 2.6, and so we deduce L \ K is
homeomorphic to the complement of the figure eight-knot in S. But there is no
Lens Space filling on the figure-eight knot complement ([21]), so this completes the
proof. O

Remark: In the case of d # 1,3, an elementary argument can be used. In these
cases, there are no units apart from =41, so that it is easy to see from above that I’

contains the group
< 11 10 S
0 1/’\1 1

which is simply PSL(2,Z). But I is torsion free, so this is a contradiction.
Case 2: z is not a unit

Since z € Oy is not a unit I =< z > is a non-trivial ideal of O4. For an ideal
B C Oy, let T'(B) denote the principal congruence subgroup of PSL(2,0y) of level
B.

Associated to the S® covering of L we have a link J C S® and a cyclic cover
S3\ J — L\ K. Notice that J has at least 2 components, since if not, this would
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force J to be the figure-eight knot and it is well-known that this knot complement
cannot cover (non-trivially) any other hyperbolic 3-manifold.

Let S\ J = H3/T';. Note that u € T'(I) by hypothesis, and u € T'; by definition
of the covering. Furthermore since I'; is generated by I' conjugates of y, and these
will also lie in T'(I) we deduce that T'y < T'(I). Thus we have the diagram of
coverings shown below:

S3\ J

YN\
H?/T(I) I\K
\ A
Qq

Figure 1

\

Consider the cyclic covering f3 : S®\J — L\ K. Let M € T be an element
generating this cyclic covering group. We have:

' = <I'yy,M> c <I'I),) M >.

Since L \ K has one cusp, if we let A(I) =< I'(I), M >, then H®/A(I) has one
cusp. As we now show, this situation is very rare.

Lemma 3.1 In the notation above, H3 /A(I) does not have one cusp except possibly
in the following cases:

1. d € {1,2,7}, I is a prime ideal of norm 2 and H3/T'(I) has 3 cusps.
2. d=3, I is a prime ideal of norm 4, and H3/T'(I) has 5 cusps.

8.d =1, =< 1£i >", where n = 2,3 and H3/T(I) has 6 or 12 cusps
respectively.

4od=7,1=<8E0 52 4nd H3/T(I) has 6 cusps.

Deferring the proof of Lemma 3.1 until §3.2, we complete the proof of Theorem
1.2.
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We begin with an observation (in this setting) which is implicit in the proof of
Lemma 4 of [18].

If G is a group, we let < b >¢ denote the normal closure of the element b € G
in G. We claim:

Claim: In the setting of cases 1, 3 and 4 of Lemma 3.1

< B >r=< 4 >PSL(2,0,) -

To establish this claim, we fix some notation. Let P denote the peripheral subgroup
of PSL(2,0y) fixing co. Since L\ K and Qg both have 1-cusp it follows as in [18]
that PSL(2,0,4) = P.I". Note if d # 1, 3, the only elements fixing oo are translations

and so p commutes with these. In the case of d = 1, the element ( 8 —07,) fixes

oo and conjugates p to p~t. With these statements we see:
<K >PSL(2,0)=< # >Pr=< [>T,
as required.

Remark: Note this argument does not a priori work in the case of d = 3 since it

is not clear that
w 0 w? 0
0 )P\l o0o w

Returning to the proof of Theorem 1.2, since < p >r=I';, we have, in particular
< K >PSL2,0,) has finite index in PSL(2, Oy).

lies in < p >r.

d= 2: In this case since there are no non-trivial units, we can assume x = /—2. A
presentation for PSL(2, O) is given in [20]

<a,byp| b= (ab)® = (b pu " op)? = 1,[a,u] =1>.
Setting u = 1, we obtain Zs * Z3 which is infinite and so a contradiction.

d = 1, 7: We will make use of Magma ([8]) in our considerations. Presentations
for PSL(2,0;) and PSL(2,07) can be found in [13] or [20]:

PSL(2,0:) =< a,£,t,u | [t,u] = £ = (t0)® = (ul)® = (al)? = a® = (ta)® = (uak)® =

PSL(2,07) =< a,b,c | b*> = (ab)® = (bac™'bc)* = 1,[a,c] =1 > .

Consider first case (1) in Lemma 3.1 with d =1 or 7. Thatis I =< 1+¢ > or
< Li—ﬁzﬂ >. In these cases the index [PSL(2,04) :< p >r] is finite and in fact we
get as quotient groups Sy and Ss respectively (as can be checked directly from the
presentation using Magma). The minimal index of a torsion-free subgroup in these

1>,
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Bianchi groups is 12 and 6 respectively, see [13]. Since f3 is a covering of degree > 1,
this rules out the case d = 7 immediately. For the case d = 1, we deduce from the
above remarks that [PSL(2,0;) : I'] = 12. However, the minimal index torsion free
subgroups in PSL(2, 0;) all have 2 cusps, see [7] or [13].

We now consider the last two cases. First assume that ] =<2 > or < 2424 >.
So that up to sign z = 2,2 or (2 £ 27). To complete the proof in this case, we shall
show that for these values of z, PSL(2,01)/ < 1 >pg[,5,0,) is infinite and this will
be the desired contradiction. Again we make use of Magma. We wish to set p =1
for u as above. In terms of the given presentation this means setting one of ¢? = 1,
u? =1, t?u? = 1 and t>u=2 = 1. We can then check directly using Magma that
the groups PSL(2,01)/ < pt >p§,(5,0,) 2ll have subgroups of index 6 with infinite
abelianization, hence the required quotient groups are infinite.

When d = 7, we can argue as follows. With the ideal I =< “—i‘Q/—j—) >2, the

only possibilities for z (up to sign) are z = Lii{@, and so

1 (=3£v=T7)
M= 2 .
(0 1 )

These can be written as a~?c and a~'c™! in the above generators. Setting these
equal to 1 in the above presentation produces a group of order 48 (again using
Magma for example). The image of < a,c > in this quotient group has order 8.
Thus we deduce that in either of these cases S® \ J = H?/ < pu >pg[,5,0,) has 6
cusps, and the cyclic cover f3 has degree 6. However, this forces the covering f; in
this case to be degree 8. However, PSL(2, O;) has no torsion-free subgroup of index
8 (see [13]).

We are therefore reduced to the second case of Lemma 3.1. Let A = A(I), then
for H%/A to have one cusp, the only possibility is that the cover H®/T'(2) — H3/A
is a regular cyclic cover of degree 5, with the cyclic group permuting the cusps.
Furthermore H?/T'(2) is a manifold (it is a link complement in S®), and so A cannot
contain elements of finite order since the only elliptic elements in PSL(2,0,) are of
orders 2 and 3. Thus A is torsion-free and index 12 in PSL(2,O3). There are only
two such conjugacy classes of groups, [13]; being represented by the fundamental
groups of the figure-eight knot complement and its sister. However, the fundamental
group of the figure-eight knot complement does not contain I'(2). To see this,
suppose that A is the fundamental group of the figure-eight knot complement.
Then I'(2) is a normal subgroup of A of index 5. For homological reasons, the
figure-eight knot has a unique such covering, and this has only one cusp. This
is a contradiction. Thus H3/A = X is homeomorphic to the sister of the figure
eight-knot.

We now consider the covering g : L\ K — X. We claim the following:

Claim: g extends to a cover ¢’ : L — X (s) where for some Dehn filling X (s) of
X.

Deferring the proof of this claim for the moment we complete the proof of Theorem
1.2. Since L is finite cyclic, X(s) has finite fundamental group. There are 5 such
fillings on the sister of the figure eight knot (see [6] for example). These are L(5,1)
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(twice), L(10, 3), and two fillings giving a manifold with fundamental group T X Zs,
where T is the binary tetrahedral group.

The case of L(5,1) just gives manifolds homeomorphic to the sister (the covering
degree of ¢' = 1). L(10,3) gives examples where the covering degree is 2 and the
manifold is homeomorphic to the unique double cover of the figure eight knot and
its sister.

To handle the final case, we again make use of Magma. In the notation above X
is the sister of the figure eight knot, and using its description as a once-punctured
torus bundle over the circle, a presentation for m (X) is:

<a,bt|t tat =abalt7 bt = b 30t >,

with a framing for m (0X) being < t,£ > where £ = aba~'b~!. In this framing the
two fillings giving manifolds with fundamental group T x Zs, are (3,1) and (3,2).

We now fix attention on (3,1)-filling, denoted M below, the argument in the
other case is exactly the same. Let ¢ : 7 (X) — m (M) = T x Zs be the surjective
homomorphism induced by (3,1)-filling. A calculation with Magma (for example)
shows that ¢(m1(0X)) is a cyclic group C of order 6. Hence the coverings of X
determined by C and ker ¢ both have 20 cusps. Now we are assuming (by the
claim) that there is a covering L — M, with L a Lens Space, and knots K and k
with L\ K — M \ k = X. Notice also that the covering ¥ of X determined by
ker ¢ covers L\ K. Since Y has 20 cusps, the only possiblity for m; (L) is a cyclic
group of order 20, 40 or 60. Now it is easy to see that the group T' x Zs has no
subgroup of index 2, and has a unique subgroup of index 3 which is not cyclic. Thus
it suffices to check whether X has any 6-fold covers which are knots in Lens Spaces.
One can check using Snap Pea ([23]) for instance that this is not the case. There is
a 2-cusped example arising from a Lens Space L with m (L) =20. O

Proof of Claim: We have y = (é 31;) € I' and by Lemma 3.1 || = 2. Thus p =
é 21u where u € {%1, +w,+w?}. Such an element lies in ['(2), and therefore

A(2). Note this element is primitive in A(2). For if not, then the only possibilities
are (é 1{) with u as above. However A(2)/T'(2) is cyclic of order 5 so this implies

((1) 51U> € I'(2) which is clearly absurd. Now filling X and L\ K along curves in
1

their boundaries determined by p = < 0 21u ) extends the cover. O

3.2

We now prove Lemma 3.1 by showing that for those d € {1,2,3,7,11,19}, it is
impossible to get a 1-cusped orbifold as a quotient of H® by adjoining a single
element to I'(I), apart possibly from the cases listed in Lemma 3.1. We recall some
facts that we will appeal to:
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1. The ramification theory of primes in quadratic imaginary number fields implies
that |F| = £ or £? where £ is the characteristic of F (see [16]). Let

Op : PSL(2, Od) — PSL(Z, Od/P)
denote the induced homomorphism obtained reduction modulo P.
2. If F is a finite field of ¢ = ¢™ elements then (see [10]):

21
oL )| = { oyt ]
(q2 - 1)q 76 =2
3. Unipotent elements of PSL(2,F) (with F as in 2) have order ¢, and non-
unipotent elements in PSL(2, F) (with F as in 2) have orders at most %ﬂ or
g + 1 dependent on whether £ # 2 or £ = 2 ([10]).

Consider first the case when I = P a prime ideal of Oy of residue field of
characteristic £. When d # 1,3 a peripheral subgroup P; of PSL(2,0y) fixing oo
consists only of translations and so is isomorphic to Z & Z. Thus 6p(P;) is cyclic
of order £ or abelian non-cyclic of order £2. In which case, we see that the number
of cusps of I'(P) is ¢> — 1 or q22"1 (dependent on whether £ = 2 or not) where ¢ = /¢
or £2.

We are assuming that a single element M is adjoined to I'(P) resulting in a
group with one conjugacy class of peripheral subgroups. Thus M acts cyclically on
the cusps of H3/T'(P) identifying them to one. However, this is impossible when
P is a prime of norm at least 3 (in the cases d # 1,3). To see this, consider the
case where £ # 2, then from above I'(P) has 5127_1 cusps which are identifed by M.
But M has order g or order at most g% It is then easy to check the conclusion
on the norm of P holds. A similar argument applies when £ = 2. That d = 2,7 of
(1) of Lemma 3.1 are the only allowable d's (other than d = 1,3) is completed by
observing that there is no prime of norm 2 in O;; or O19. The number of cusps
given can be computed from above.

In the case when d = 1,3, the group P; of PSL(2,0,) fixing oo has additional
elliptic elements. This adds some complication to the above analysis but arguing
as above gives in these cases bounds on the norm of P of at most 5 (d = 1) and
7 (d = 3). In O; there are no primes of norm 3, but a prime of norm 2 generated
by (1 + i) and two of norm 5, (2 +4). For d = 3, there are no primes of norm
2, or 5 but a prime of norm 3 generated by v/—3 and two of norm 7, generated
by (2 £+ v/3). Now from above I'(< 2 &4 >) has 6 cusps, and the quotient group
PSL(2,0:)/T(< 2 £4 >) = As. But there is no element of order 6 in As and so
there cannot be an element M as claimed. A similar argument works for d = 3
in the case of a prime ideal of norm 3 (there is no element of order 4 in A4) and
norm 7 (there is no element of order 8 in PSL(2,F7)). This completes (1) and (2)
of Lemma 3.1.

Now suppose that I is not prime. If < M,T'(I) > has one cusp, then for any
prime P with P|I it follows that < M,T'(P) > has one cusp. Thus we are reduced
to considering products of powers of the prime ideals given in (1) and (2) of Lemma
3.1. Consider the case of d = 1, in which case we must deal with powers of the
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ideal P =< 1+ >. Now PSL(2,0,)/T'(P) = S; and for each positive integer
t, T(PY)/T(Pt*!) = Z3. Using these facts and a description of 6p(P;) one may
check that I'(P) has 3 cusps, I'(P?) has 6 cusps, I'(P3) has 12 cusps and I'(P*)
has 96 cusps. However, using the structure of the quotient groups discussed above,
there cannot be an element of order 96 in PSL(2,0;)/I'(P*) which would induce
an isometry cyclically permuting all the cusps. Note this naive argument fails for
the exponent of P being 2 and 3. Hence all exponents > 4 can be eliminated.
The other cases of Lemma 3.1 are handled similarly. O

Remark: The arguments above actually show more. For instance the hypothesis
that L is a Lens Space can be weakened to L simply having finite cyclic funda-
mental group. Going through the proof it can be seen that S® can be replaced
by a homotopy 3-sphere, since all that is used are the facts that a link group in
a homotopy 3-sphere is normally generated by a meridian, and that an arithmetic
knot complement in a homotopy 3-sphere is the figure eight knot complement in S®

(by [18)).

4 Other non-hyperbolike constructions

Although not as complete as the results for Lens Spaces, we have results for some
other classes of manifolds.

4.1

An important role in some of what follows is played by the 2r-Theorem of Gromov
and Thurston (see [12] and [4]). In fact it will be convenient to use the more refined
version due to Agol and Lackenby, [2],[15]. Recall the terminology of [11], that a
closed orientable 3-manifold is called hyperbolike if it is irreducible, and has infinite
fundamental group containing no Z @ Z.

Theorem 4.1 Let M be a finite volume hyperbolic 3-manifold with a single cusp.
Let C be a horospherical cusp torus. If a is a slope on C' whose length (as measured
on C) is at least 6, then the manifold obtained by a-Dehn filling on M is hyperbolike.
0O

4.2

Throughout this section we let M be a closed orientable non-hyperbolike 3-manifold,
and K C M a knot derived from a quaternion algebra. As before we get a group
I' < PSL(2,0,) (with d as before) of finite index with H?®/T' = M \ K and p =

1 =z 1.
(0 1) a meridian.

Lemma 4.2 |z| < 6.

Proof.
Since M is not hyperbolike, so Theorem 4.1 implies the length of the meridian
on any horospherical cusp cross-section is less than 6. Consider a maximal cusp of
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L\ K, and lift it to H®. A point of tangency of the maximal horoball at infinity,
denoted by H, occurs at some height h. Note that since I' < PSL(2, O,4) any element

c d
h<1.
By definition of the hyperbolic metric, the length of x measured on the horo-
sphere H is |z|/h. Since h < 1, and we require this length to be less than 6, it
follows that |z| < 6. O

<a b) € T not commuting with u satisfies |¢| > 1. Hence Lemma 2.5 implies

Remark: Note that there are only a finite number of quadratic imaginary integers
satisfying the bound in Lemma 4.2. Indeed, the values of d given in §2.2 restrict
this even more.

Using Lemma 4.2 we can prove a variety of non-existence results for arithmetic
knots in non-hyperbolike 3-manifolds. For example,

Theorem 4.3 Let M be a closed orientable 3-manifold whose fundamental group
18 isomorphic to that of a connect sum of Lens Spaces L; of prime order p; with

pi > 31 for p1,...,pm.
Then M does not contain an arithmetic knot.

Proof

Note that by assumption M is a Zs homology 3-sphere. Hence Corollary 2.4
reduces us to the case when the knot is derived from a quaternion algebra and we
are in the setting of §2.2.

The case when z is a unit is handled by Theorem 2.6, with the extra observation
that we deduce that M could be one of the non-hyperbolic fillings on the figure-eight
knot. However, in this case there are no reducible surgeries, [21].

Thus, assume z € Oy is not a unit, and so as before, there is a prime ideal P of
Og4 with P| < z >. Consider the homomorphism 6p from §3.2 restricted to I'. By
construction 6p(u) = 1, and so we induce a homomorphism

¥ m (M) — PSL(2,04/P),

with ¢(I') = ¢ (m1(M)).

Fix a generating set {z1, ..., Zn} for m1 (M), with z; of order p;. Since p; is prime
9 (z;) is trivial or order p;. We claim 9 (z;) = 1. This will complete the proof in this
case, since if ¥ (z;) = 1 for each ¢ = 1,...,m, then ¢(m (M)) = 1, which implies
#() =1 and so I' < T'(P). However, these congruence subgroups always have at
least two cusps—the parabolic fixed points 0 and oo being inequivalent under the
action of I'(P). But M \ K has only 1 cusp, and so we get a contradiction.

Thus it remains to rule out the image having order p;. This will follow once
we establish that the order of cyclic subgroups of PSL(2,0,/P) in our setting is
bounded.

From Lemma 4.2, |z| is bounded, and hence the norm of the prime ideal P is
bounded. By definition, this means the field O4/P has bounded cardinality. This
in turn then bounds the order of the finite group PSL(2,04/P) and hence the order
of the cyclic subgroups.
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We need to sharpen this slightly. From Lemma 4.2 and the fact that the (field)
norm of a quadratic imaginary integer z is simply |z|?, we see that any prime ideal
P| < z > has norm at most 36. Thus the order of the field O4/P is bounded by 36.
As discussed in §3.2 if F is a field with £™ (¢ a rational prime) elements the order of
an element in the finite group PSL(2, F) is either £ or at most %*’—1—. This bounds
the order of cyclic groups at 31. O

Remarks: 1. The hypothesis in Theorem 4.3 cannot be removed completely. For, as
we indicate in §6, RP*#RP?, RP3#(S2 x S1), RP3#L(4,1), and L(4,1)#L(4,1)
all contain an arithmetic knot.

2. The p;’s in the statement of Theorem 4.3 need not be prime, just that all divisors
are primes given by the restrictions in Theorem 4.3.

3. A similar argument can be made to show many Seifert fibered spaces over S?
which are Z, rational homology 3-spheres do not contain an arithmetic knot. One
simply replaces the conditions on the orders of the cyclic groups appearing in The-
orem 4.3 with appropriate conditions on the exceptional fibers.

5 The arithmetic number of a 3-manifold

Let M be a closed orientable 3-manifold, and define the arithmetic number of M,
denoted A(M), to be the minimal number of components of a non-empty arithmetic
link in M. As remarked in §1, M contains an arithmetic link, A4(M) is finite.
Understanding the complexity of A(M) seems quite challenging as we now discuss.

5.1
We begin by discussing spherical 3-manifolds.

Example 1: A Lens Space L is surgery on the Whitehead link, so that A(L) < 2.
Theorem 1.2 therefore shows A(L) = 2 for L with 71 (L) odd order # 5.

Example 2: The Poincare homology sphere ¥ contains a 2-component arithmetic
link (see [7], Example D), so A(X) < 2. This prompts:

Question: Does the Poincare homology sphere contain an arithmetic knot?

Example 3: As discussed in the proof of Theorem 1.2, the sister of the figure eight
knot has filling a spherical 3-manifold X with fundamental group T x Zs, with T the
binary tetrahedral group. Thus A(X) = 1. If we consider the spherical 3-manifold
with fundamental group T, this has a surgery description on the Whitehead link (it
is a surgery on the trefoil, which in turn is a surgery on the Whitehead link).

In fact these small arithmetic numbers for spherical 3-manifolds is no accident.

Theorem 5.1 Let M be a 8-manifold finitely covered by S*. Then A(M) < 4.
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Proof: Any such M is orientable, and Seifert fibered. We have already dealt
with the case of Lens Spaces, so we assume that M is spherical and not a Lens Space.
Any such manifold admits a Seifert fibration, with base S? and 3 exceptional fibers.
Removing the exceptional fibers produces D x S, where D is a twice punctured
disc. This is homeomorphic to the complement of the connect sum of two Hopf
links. By removing an additional component, we can then convert this link to the
4-chain link 85 whose complement is arithmetic, being commensurable with Q; see
[17] for example. O

Motivated by this, we ask:
Question: Do there exist spherical 3-manifolds with arithmetic numbers 3 and 47

In fact, at present we have no example of any closed 3-manifold with 4 > 2.

5.2

One can say a little more regarding upper bounds for A(M) for some other classes
of manifolds.

Theorem 5.2 Let M be a connect sum of Lens Spaces L;, i = 1,...,m. Then
AM) <2m +1.

Sketch Proof: Let Cy denote the k-component alternating chain link in S3.
Now Cy, is arithmetic for only finitely many values of k (see [17]). However, we
can remove an additional unknotted component to obtain a link whose complement
is commensurable with that of the Whitehead link complement. Briefly, we can
arrange the chain link Cj to lie in a standardly embedded solid torus V C S3. Let
v& be a meridian of Vj, and define Dy, = Cy U,. Then S3\ Dy is a cover of the
Whitehead link complement (see [17] for more details).

Now observe that M can be obtained by a sequence of surgeries on Cy,,. This
proves the result. O

Remark: 2m +1 is not best possible. For example the connect sum of any two Lens
Spaces has a surgery description on the Borromean rings, and this link is arithmetic
(see [7]). Thus the arithmetic number of such a manifold is at most 3.

Spherical 3-manifolds all have Heegaard genus at most 2, and manifolds as in The-
orem 5.2 have Heegaard genus m. Motivated by this we ask:

Question: Is there a relation between A(M) and the Heegaard genus of M?

5.3

As is apparent, all our methods are restricted to the case when M is non-hyperbolic.
At present we cannot prove A(M) > 1 for any closed hyperbolic manifold. We
suspect that this indeed so. In fact we suspect that there exists a sequence of closed
hyperbolic 3-manifolds {M;} with A(M;) — oo.
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5.4

We conclude this section with some additional questions:
Questions: 1. Which closed orientable 3-manifolds contain an arithmetic knot?
2. Classify the spherical 3-manifolds containing an arithmetic knot.

3. Let M be a closed orientable 3-manifold, does M contain at most finitely many
distinct arithmetic knots?

4. The arithmetic number of a 3-manifold makes sense in the setting of manifolds
with only toroidal boundary components. What can one say in this setting?

6 Final Remarks

As remarked in §1, little seems known about manifolds that do contain an arithmetic
knot. In Table 1 below we list some examples from the census of cusped manifolds
through 7 tetrahedra given by Snap Pea (see also the exact version Snap and the
discussion of this program in [9]). The nomenclature in column 1 being that of
the census, and d in column 3 stands for the appropriate Q(v/—d) which is the
invariant trace-field. Of the manifolds listed in Table 1, m003, m004, m206, m207,
s784, s958, s960 and s961 are derived from a quaternion algebra, the rest are not.

In the table there are descriptions as knot complements in manifolds M; for
1 =1,...4. M; is a manifold of odd D-type whose fundamental group has order
24, M, is a manifold of even D-type whose fundamental group has order 24, Mj3
is a manifold of odd D-type whose fundamental group has order 40, and My is a
manifold of Q-type whose fundamental group has order 40 (for terminology see [6]
for instance). The manifold @ is the spherical space form with fundamental group
the quaternion group of order 8. We have been unable to identify the manifolds, s956
and v2787. Also some of the Lens Spaces are not determined up to homeomorphism,
since we only have information about the fundamental group. This is indicated by
use of * in the description of the standard form for the Lens Space. Note that unlike
the case of S3, there are at least two arithmetic knots in S? x S1, RP*#RP3
RP3#(S% x S'), RP*#L(4,1), L(4,1)#L(4,1) and M,.

Many hyperbolic 3-manifolds contain arithmetic knots, for example those ob-
tained by Dehn surgery on the figure-eight knot. For some other examples of arith-
metic knots in closed 3-manifolds, see [5] and [7].

One final remark on the table, in certain cases we have implicitly assumed the
Poincare Conjecture and the Spherical Space Form Conjecture in passing from fun-
damental groups given by Snap Pea to a statement of what the manifolds are.
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Table 1 - 1-cusped arithmetic hyperbolic 3-manifolds

Census Description Volume d Description
m003 2.0298832128 | 3 Knot in L(5,1)
m004 2.0298832128 | 3 Figure eight knot
m009 2.666744783 | 7 Knot in RP?
m010 2.666744783 | 7 Knot in L(6,1)
m130 3.6638623767 | 1 Knot in L(16, )
m135 3.6638623767 | 1 Knot in RP*#L(4,1)
m136 3.6638623767 | 1 Knot in RP*#RP?
m139 3.6638623767 | 1 Knot in L(24, x)
m140 3.6638623767 | 1 Knot in L(4,1)
m206 4.059766426 | 3 Knot in L(5,3)
m207 4.059766426 | 3 Knot in L(3,1)#L(3,1)
m208 4.059766426 | 3 Knot in L(20, )
s118 4.059766426 | 3 Knot in L(8, %)
s119 4.059766426 | 3 Knot in @
m410 5.074708032 | 3 | Knot in RP*#(S? x S1)
$594 5.074708032 | 3 Knot in RP?#L(8, %)
5595 5.074708032 | 3 Knot in RP°#L(4,1)
sT72 5.3334895669 | 7 Knot in L(24, %)
s773 5.3334895669 | 7 | Knot in RP#(S? x ST)
sT75 5.3334895669 | 7 Knot in M;
sTT77 5.3334895669 | 7 Knot in S? x S?
s778 5.3334895669 | 7 Knot in L(24, )
s779 5.3334895669 | 7 Knot in M,
s781 5.3334895669 | 7 Knot in L(4,1)#L(4,1)
s784 5.3334895669 | 7 | Knot in L(3,1)#(S? x ST)
5786 5.3334895669 | 7 Knot in L(4,1)#L(4,1)
sT87 5.3334895669 | 7 Knot in M,
v1858 5.497935651 | 1 Knot in RP*#L(4,1)
v1859 5.497935651 | 1 Knot in RP #L(8, *)
v2787 6.02304602 | 2 Not identified
v2789 6.02304602 | 2 Knot in RP°#L(8, *)
5955 6.089649638 | 3 Knot in L(40, )
$956 6.089649638 | 3 Not identified
8957 6.089649638 | 3 Knot in M3
5958 6.089649638 | 3 Knot in L(4,1)#L(3,1)
5960 6.089649638 | 3 Knot in M,

5961 6.089649638 | 3 | 3-fold cyclic cover of m004
v2873 6.089649638 | 3 Knot in S? x S?
v2874 6.089649638 | 3 Knot in RP°#RP?
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