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1. INTRODUCTION

In the mid 1970s, 3-manifold topology was revolutionized by the ideas of Thurston. The main
thrust of Thurston’s ideas was that geometric structures existed on most 3-manifolds, and
these geometries could be used to study the topology of 3-manifolds. By far the most
complicated and interesting geometry is hyperbolic geometry, and the study of hyperbolic
3-manifolds has become a focal point for much recent work in 3-manifold topology. It is the
intention of this paper to survey some of the applications of the existence of a hyperbolic
structure on knot complements in S°. The survey is for the most part self-contained,
developing with the aid of examples, some of Thurston’s ideas, and subsequent applications
to knot theory.

The paper is organized as follows; in Section 2 we quickly review some of the basic theory
of knots, their complements and fundamental groups. Section 2.3 consists of a collection of
definitions and some terminology and it may be best to treat this section as reference whilst
reading the paper. In Section 3 we review some hyperbolic geometry, and in Section 4 we
give some discussion on the computation of volume in hyperbolic 3-space. Section 5 discusses
hyperbolic structures on knot complements, culminating in a statement of Thurston’s
remarkable theorem (Theorem 5.1). The remaining sections, Sections 6-10, concern
applications of the existence of a hyperbolic structure. We make no pretensions towards
completeness, but rather the paper merely intends to survey some of the many applications
of hyperbolic geometry in 3-manifolds.

2. KNOTS AND THEIR COMPLEMENTS

In this section we bring together some of the basic facts from knot theory we shall make
use of, we refer the reader to [7], [14] or [57] for further details.

2.1

By a knot in $* we shall mean a smooth embedding of a circle in S°, with S\K denoting
the knot complement (it is often useful to work in R’ and view §° as the one point
compactification of R*). It will sometimes be convenient to work with the knot exterior,
Xg = S8\Int(n(K)), where n(K) is a tubular neighborhood of K. The only difference with the
knot complement is that X is a compact 3-manifold with boundary consisting of a torus. The
fundamental groups of the knot complement and knot exterior are isomorphic groups (which
are also isomorphic to 7,(R*\K)), which we simply call the knot group of K, and denote it by
m,(S7\K). n(K) is a solid torus, and by a meridian of K we mean any simple closed curve on
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dn(K) which is nulthomologous in n(K) but not in dn{K). Any two meridians (suitably
oriented) are isotopic. By a longitude for K we mean any simple closed curve on dn(K)
which intersects some meridian transversely in a single point. It is usual to have a preferred
longitude, namely the unique longitude that is nullhomologous in Xx. If # is a meridian of K
and ¢ a longitude meeting # as described, then the pair {#,€} determines a framing of Xy
and any essential (does not bound a disc in dX) simple closed curve on dXx is described as
MPE9 for coprime integers p and g. The subgroup {#,€) of (S \K), is called a peripheral
subgroup.

We will occasionally require the notion of a /ink in S°, and by this we simply mean a finite
collection of disjoint smoothly embedded circles in S°. Much of what is discussed for knots
has obvious reformulations for links.

22

We briefly recall the construction of the Wirtinger presentation of 7,(S\K). For this we
view K = R?. Begin by projecting K onto the x-y plane P, yielding a finite collection of arcs
aq,..., &, as shown in Fig. 1.

The projection should be regular in the sense that there are only a finite number of
multiple points, and these multiple points are double points. Each «; is assumed connected to
a;_; and a;,, mod n, as shown in Fig. 1. We equip K with an orientation in such a way that
the arcs «; become oriented arcs, with the orientation compatible with the order of the
subscripts.

Now fix a basepoint * above the projection plane P, say the point (0,0,1) and form n
oriented loops xi,...,, x,, each based at * which pass under «,,..., @, respectively. Figure 1
shows the loops x; represented by a short arrow under the arc a,. The loop is completed in
the obvious way by viewing the loop as the oriented triangle from * to the tail of x,
traversing x; and returning to *.

At each crossing in the projection of K, there is a relation among the x;’s which has the
form given by one of the possibilities shown in Fig. 2.

With this notation we have the following theorem describing the Wirtinger presentation of
the knot group.

0q
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Theorem 2.1. w,(S*\K) is generated by the (hamotopy classes of the) x; and has a presentation:

<x1,...,x,,| rlv-‘arn)s

where r; is as in Fig. 2. Moreover, any one of the r; may be omitted and the above remains true.
O

Example. Referring to Fig. 1, the discussion above yields the following as relations for the
figure-eight knot group:

X1X3 = X3Xy, (1
XgXy = X3Xy, (2)
X3X| = X1Xg. 3)

We can use (1) and (3) to eliminate x, = x5 'x,x; and x, = x; 'x3x,. Substituting in (2) gives
the equivalent presentation:

(xw\’_%‘ Xy lx,?rxlx_{ lxlei = XXy l353)51>-

As a final remark in this subsection we note that all meridians are conjugate in 7,(S*\K).

2.3

We conclude this section by recalling some terminology. Two knots K and K' are equivalent
if there exists a homeomorphism 4: $° — S° such that 4(K)=K'. A knot K is non-trivial if it is
not equivalent to a standardly embedded circle (the unknot) in S°. If two knots are
equivalent, this implies that their complements are homeomorphic. The following result of
Gordon and Luecke [21] provided the converse of this in the context of prime knots. A knot
K is called composite or the connect sum of non-trivial knots K; and K if there is a 2-sphere
§ in S? meeting K in two points, dividing K into K, and K,, see Fig. 3(a). Otherwise a knot is
called prime.

Theorem 2.2. If K and K' are prime knots in S° which have homeomorphic complements then
they are equivalent. [J

Remark. Thus the fundamental group completely determines the knot. Unfortunately, the
fundamental group is a rather intractable object to use as an invariant of the knot. We shall
return to this point in the guise of hyperbolic structures.

A knot is called alternating if it admits a projection in which the crossings alternate over—
under upon traversing the knot in a fixed direction. A torus knot is one that can be
embedded as a simple closed curve on a standardly embedded (i.e. unknotted) torus in S°.
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More precisely, the torus knot 7,,, of type p,q is the knot which wraps around the standard
solid torus p times in the longitudinal direction, and ¢ times in the meridinal direction.
Figure 3(b) shows the trefoil knot, which is the torus knot T ;.

To define a satellite knot we proceed as follows; refer to Fig. 3(c). Let V, be an unknotted
solid torus in $%, and K, « V, a knot. Now knot the solid torus V| as shown; more precisely
let 2 be a homeomorphism V| — V onto a tubular neighborhood V of a non-trivial knot K.
The knot K obtained as 4(K,) is called a satellite knot, and X, its companion.

If S+ S? is an orientable surface properly embedded in Xy (so that 45 < 4X), S is called
incompressible, if the induced map (S < 7,(S*\K) is injective. Otherwise the surface is
called compressible.

If K is a non-trivial knot the torus ¢X is embedded and incompressible. For the unknot,
the exterior is simply a solid torus in which case the boundary torus is compressible. Notice
that in the exterior of a satellite knot K there is an embedded torus T which is the boundary
of the knotted solid torus V,. The torus Ty is also incompressible, but is ‘distinct’ from Xy in
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Fig. 4

the sense that by construction T is not parallel to dXj. Algebraically this means 7, (Tx) is
not conjugate in 7,(S°\K) to 7,(dX k).

If K is a composite knot the exterior admits an embedded torus, the so-called ‘swallow-
follow’ torus as it swallows one of the factor knots and follows the other, see Fig. 4. The
swallow-follow torus is always incompressible if the knots in the composition are non-trivial.
Thus composite knots are subsumed in the family of satellite knots.

The crossing number of a knot K is the minimal number of crossings in a projection of the
knot in a projection plane. A knot K admits an m-bridge presentation if there exists a
2-sphere S embedded in S meeting K transversely in 2m points and dividing S° into two
3-balls B,, such that KN B, consists of arcs which are unknotted, unlinked and trivially
embedded in B;. The bridge number of K is the minimal integer » for which K admits an n-
bridge presentation.

By a Seifert surface for a knot K we mean a connected, orientable surface in S* with
dS =K. The genus of a knot, is the minimal genus of an orientable Seifert surface for the
knot.

3. HYPERBOLIC STRUCTURES

Here we shall summarize some of the material from hyperbolic geometry, and discrete
groups that we shall need. We refer the reader to [12], [48] or [62] for details.

3.1

Hyperbolic n-space, H" is the upper half space {x € R"x,>0} in R” equipped with the
metric defined by the length element.

n

L dxi+ ..+ dx?
dS"— = —"“‘"—2"—
x'l

With this metric, H” is a complete Riemannian manifold all of whose sectional curvatures
are — 1. Moreover H" is the unique connected, simply connected, complete Riemannian
manifold of constant curvature — 1. Geodesics in this metric space are straight-lines and
semi-circles orthogonal to the sphere-at-infinity {x € R":x, =0} U, denoted in what follows
by $%7
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The group of isometries is denoted Isom(H") and is a real Lie group. In low dimensions
there are isomorphisms Isom, (H?) = PSL(2,R) and Isom, (H?)=PSL(2,C). It is this latter
group that is of most interest to us.

A hyperbolic structure on an n-manifold M is a Riemannian metric on M such that every
point in M has a neighborhood isometric to an open subset of hyperbolic n-space. We will
also have cause to speak about incomplete hyperbolic metrics on 3-manifolds, we will refer to
this as incomplete hyperbolic structures. Hopefully there will be no confusion.

If T' is a discrete, torsion-free subgroup of Isom,(H"), then I' acts discontinuously and
freely on H" and so H"/T" admits a hyperbolic structure. More generally given any hyperbolic
structure on an orientable manifold M there is a homomorphism of #,(M) into Isom, (H")
called the holonomy representation associated to the hyperbolic structure. This
homomorphism is defined up to conjugacy as follows.

Any hyperbolic structure on M induces one on the universal cover M. There is a local
isometry, called the developing map,

D:M —H",
defined by choosing a small open set, U, in M and identifying it via an isometry, ¢, with an
open set in H". One then extends this map by analytic continuation to all of M. This depends
on an arbitrary choice of ¢, and it is easy to see that a different choice results in a
developing map which differs from the first choice by composition with an isometry of H".
The developing map provides a homomorphism

pim(M) — Isom , (H")

which is the holonomy representation of the hyperbolic structure. The group p(m (M))
coincides with I in the special case described above. Covering transformations of M are
conjugate, via D to isometries of H”.

The restriction that a group act freely can be removed without too much loss. A quotient
of H” which arises in this way is called a hyperbolic n-orbifold.

It is a deep theorem of Mostow and Prasad ([40] and [47]) that if a compact orientable n-
manifold n =3, admits a hyperbolic structure of finite volume then this structure is unique.
An equivalent reformulation says that if I'; and I', are discrete isomorphic subgroups of
Isom, (H") with H"/T, and H"/T’, finite volume, then I'; and I, are conjugate in Isom(H"). A
corollary of this is the following: we denote the hyperbolic volume of M by Vol(M).

Corollary 3.1. Let M a compact orientable n-manifold, n= 3 admitting a complete hyperbolic
structure of finite volume. Then Vol(M) is a topological invariant of M. (]

3.2

We will now expand on some of the above discussion in dimension 3. By a hyperbolic
3-manifold we will now always mean an orientable 3-manifold equipped with a complete
Riemannian metric of constant curvature — 1. A discrete subgroup of PSL(2,C) is called a
Kleinian group. Thus a hyperbolic 3-manifold M is identified with H*T where T is a torsion-
free Kleinian group. Since the faithful discrete representation of 7,(M) into PSL(2,C) can be
lifted to a faithful discrete representation into SL(2,C) (cf. [62] chapter 35) it is often
convenient to view elements of Kleinian groups as matrices. An elementary but important
fact from the structure of subgroups of SL(2,C) is the following lemma (see [48])

Lemma 3.2. Let I be a discrete subgroup of SL(2,C) isomorphic to ZDZ. Then T is
1
conjugate in SL (2,C) to a subgroup Of{(() )1c ) |x e @}. O
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1
An element conjugate in SL(2,C) to one of the form (O )1c ) is called parabolic. If T is a

torsion-free Kleinian group then it is known that any Z@® Z subgroup is peripheral, that is
conjugate in I' to m,(T) where 7 is a boundary component of H*/T. If M=H>T is a closed
hyperbolic 3-manifold, there is a lower bound to the length of the shortest closed geodesic in
M, and this is easily seen to imply (from the definition of the hyperbolic metric) that I’
cannot contain parabolic elements. Summarizing this discussion, we have:

Theorem 3.3. Let M =H>/T be a finite volume hyperbolic 3-manifold. Then

e if Mis closed, " contains no Z @ Z subgroup or,
® M is the interior of a compact manifold with boundary which consists of a disjoint union
of a finite number of tori. Furthermore, any Z (@ Z subgroup of T is peripheral. O

Additionally, if M is as above and y e I' is not parabolic then, vy is called loxodromic. In
terms of the action on H>, y preserves a unique geodesic, A, in H°, called the axis of y. y acts
by translating along A, by a distance /(y), and rotating by some angle 6, 0 <6 < 7 about A.,.
On projecting to M, we obtain a closed geodesic of length /(y) in M. We remark that the
elements which commute with y are precisely those with axis A.. The following fact about
Kleinian groups follows from this discussion.

Lemma 3.4. The center of a Kleinian group of finite covolume is trivial. []

We finish this section by quoting a standard result from Kleinian groups. Let I" be a
Kleinian group, and

Norm(T') ={g e Isom(H?) |gl'g ' =T}
the normalizer of I' in Isom(H?).

Theorem 3.5. Let M=H>T be a hyperbolic 3-manifold of finite volume. Then Norm(T') is a
Kleinian group and H*/Norm(T') has finite volume. [

4. COMPUTING HYPERBOLIC VOLUMES
We describe here some features on the computation of volumes of hyperbolic 3-manifolds

(see [35] and [62], chapter 7, for more details.

4.1
The Lobachevsky function JI(#) is defined by the formula:

e
N9 = - J log |2 sin u |du.
0

For practical calculations, the following series which converges for |8 | =< 7 is useful,

H(9)=0<1 —log |20|+2£’3£2—6~)—21—>,

2n(2n + 1)!
where B, is the nth Bernoulli number.

4.2

To relate the Lobachevsky function to the calculation of hyperbolic volume, we discuss
ideal tetrahedra in hyperbolic 3-space.
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Fig. §

Definition 4.1. By an ideal polyhedron we mean a polyhedron in H* U S2 all of whose vertices
lie on the sphere-at-infinity, and all of whose edges are hyperbolic geodesics.

Figure 5 shows an ideal tetrahedron which will be of most interest to us.

A horosphere ¥ in H?, is defined to be the intersection in H? of a Euclidean sphere in
H® U S2 tangent to S2 at p € S2. p is referred to (confusingly perhaps) as the center of ¥.
The interior of a horosphere is a horoball. When p is the point at «, a horosphere is just a
horizontal plane at some height 7 up the x;-axis.

If 7'is an ideal tetrahedron, a horospherical cross-section of 7 obtained by truncating T by
a horosphere centered at the ideal vertex v cuts out a Euclidean triangle L(v), most
conveniently seen by locating v at « via an element of PSL(2,C). As Thurston describes in
chapter 4 of [62], L(v) determines 7 up to isometry, and moreover, T is completely
determined up to isometry by the dihedral angles «, 8 and y along edges incident to v with
a+B+y=m. It also follows from relations between angles at the other vertices that the
dihedral angles on opposite edges of T are equal (see [62], chapter 4). Thus 7 has the form
shown in Fig. 5.

To compute the volume of T we have [62], chapter 7 or [35).

Theorem 4.2. The hyperbolic volume of an ideal tetrahedron with dihedral angles a, B and y
with a +B+y=mis
H(a)+ () + (7). O

Of particular interest is the ideal tetrahedron all of whose dihedral angles are /3. In what
follows this will be denoted 7. One of the reasons for its importance in the theory of
hyperbolic 3-manifolds is (see [35]),

Theorem 4.3. The maximal possible volume of an ideal hyperbolic tetrahedron occurs for
with volume vy=3J1(7/3), which is approximately 1.0149416.... O

5. HYPERBOLIC STRUCTURES AND 3-MANIFOLD TOPOLOGY

The seminal work of Thurston (see [62, 63]) involved the deep insight that geometry had a
fundamental role to play in understanding the topology of 3-manifolds. Recall that in
dimension 2 a classical theorem states that every closed orientable 2-manifold is
‘uniformizable’, that is if S is a closed orientable 2-manifold, then § is homeomorphic to X/T
where X is the 2-sphere $°, the Euclidean plane E° or the hyperbolic plane H? and T a
discrete group of isometries of X. Thurstons work led to a program in dimension 3 that is
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analogous to this, the so-called Uniformization or Geometrization Conjecture. We will not go
into this here, but will content ourselves by saying that ‘most’ compact orientable 3-manifolds
are conjectured to admit a hyperbolic structure and will only expand on this in the context of
knot complements. However we begin with a discussion and some examples, in particular
Example 2, due to Riley [53], that has been fundamental in the development of the subject.

5.1 Example 1: The unknot

If K denotes the unknot, then 7,(S*\K) is isomorphic to Z and so we can equip the knot
complement with a hyperbolic structure by simply identifying this infinite cyclic group with a
subgroup (y) of PSL(2,C) generated by a unique loxodromic element y. However, regardless
of how one does this, the resulting hyperbolic structure is always of infinite volume.

If a knot complement admits a hyperbolic structure, then we deduce from Lemma 3.2 that
a peripheral subgroup consists of parabolic elements, and hence as all meridians are
conjugate, every meridian maps to a parabolic element under the holonomy representation
into SL(2,C). This is an example of what Riley called a parabolic representation or p-rep for
short. Completely independently of hyperbolic structures, in the late 1960s and 1970s Riley
(see [52], [53], and [54]) was searching for p-reps of knot groups into PSL(2,C), by simply
starting from a Wirtinger presentation and looking for homomorphisms of the knot group
into PSL(2,C) where the meridians map to parabolic elements. This work led (inadvertently)
to the following important example [S3] (one of many Riley computed).

5.2 Example 2: The figure-eight knot

From Section 2.2 we have the following presentation for the figure-eight knot group
obtained by simplifying the Wirtinger presentation.

e | x0T xs xas = xaxy ).

To exhibit a hyperbolic structure on the complement of the figure-eight knot, Riley
produces [53] a faithful discrete representation of I' (as above) into PSL(2,C). Let
(- 1+V -3

2

[

, and define a map ¢ from I into SL(2,C) by

‘ 1 0
d(x)=A= ((]) i) and ¢(x;) =B = (—w 1).

That this defines a homomorphism can be checked by showing the relation in I' is satisfied by
the matrices A and B. To determine faithfulness and discreteness Riley constructs a
fundamental polyhedron for the action of ¢(I') on H>. Standard results in Kleinian groups
imply the identification space of this polyhedron obtained by certain face pairings provide a
hyperbolic 3-manifold of finite volume. To show that this manifold is homeomorphic to the
complement of the figure-eight knot, Riley invokes the work of Waldhausen [65], by
observing that the quotient manifold has the same fundamental group and peripheral
structure as the figure-eight knot complement.

5.3  Example 3: Torus and satellite knots

It is not too hard to see given our discussion Sections 2.3 and 3.2 that the complement of a
torus knot or satellite knot cannot admit a hyperbolic structure. For a torus knot it is known
that the complement admits a so-called Seifert fibration and so in particular the knot group
has a non-trivial center (see [14]) which is impossible for a Kleinian group by Lemma 3.4. For
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a satellite knot K, as discussed in Section 2.3 the knot group 7;(S°\K) contains a Z@Z
subgroup that is not peripheral. However, this is excluded by the existence of a hyperbolic
structure by Theorem 3.3.

As discussed above, Riley’s work on p-reps led him to discover the existence of hyperbolic
structures on many knot complements. He was also aware of the obstructions to a hyperbolic
structure on the complement of a torus or satellite knot as discussed in Example 3 above.
From this he was able to guess that apart from these obstructions, the complements of prime
knots should admit a hyperbolic structure of finite volume. However it was the remarkable
pioneering work of Thurston that provided the deep machinery to establish the following
theorem which shows that the obstructions above are the only obstruction to a hyperbolic
structure, see [63], [37] for a discussion of the proof. A complete proof of Thurston’s
hyperbolization theorem, of which Theorem 5.1 is a special case, has been written up by Otal
[44, 45]. An amusing personal account by Riley is given in [56] where he describes the
development of his work till the time he met Thurston.

Theorem 5.1. Let K = S* be a prime non-trivial knot. Then S\K has a hyperbolic structure of
finite volume if and only if K is not a torus knot or a satellite knot. (]

The Six Smallest Known Knot Complements in the 3-Sphere

7D
g {5

Figure-8 knot Vo0l=2.0298832... -2,3,7 pretzel Vol=2.8281221...
Tweeny knot 5, Vol=2.8281221... Twist knot 6, Vol=3.1639632...

Y

Twist knot 7, Vol=3.3317442... Census: M5, Vol=3.4179148...
Fig. 6
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Definition 5.2. By a hyperbolic knot we shall mean a knot K whose complement admits a
hyperbolic structure of finite volume.

It may seem on first sight that the existence of a hyperbolic structure is a rather esoteric
object. However, remarkably, it seems well-suited to provide the basis for many
(computable) invariants to distinguish hyperbolic knots. Much of the remainder of the paper
takes up this point. Before proceeding with this we make some observations on Theorem 5.1
to indicate that ‘most knots are hyperbolic’. For instance for knots through 8 crossings all but
four are hyperbolic, see Appendix 2 ([9] has lists through 10 crossings). Even more
remarkable, is that from tables constructed by Hoste and Thistlethwaite [24], out of 313 230
prime knots through 15 crossings, only 21 are not hyperbolic. Some examples are given in
Fig. 6 (calculation of volumes will be discussed below).

A specific corollary of Theorem 5.1 which establishes hyperbolicity for a large class of
knots, and in particular for many of the knots through 10 crossings is the following
established by Menasco [30].

Corollary 5.3. Let K be a prime alternating knot that is not a torus knot. Then K is hyperbolic.
|
For extensions of this result to certain classes of non-alternating knots we refer the reader
to [8] and [5].

6. THE SMITH CONJECTURE

An early (major) application of Thurston’s Theorem 5.1 was to the solution to the Smith
Conjecture. We give only but the briefest of accounts here; the book [38] contains the proof
and has a detailed discussion of history and partial results.

Smith [60] proved in 1938 that any periodic (finite-order) orientation-preserving
homeomorphism of $* to itself with fixed points has a fixed point set homeomorphic to the
circle. He then asked if the circle must be unknotted. There are counter-examples [36] if the
homeomorphism is not a diffeomorphism. The differentiable version of the question of
unknottedness of the fix-point set is what became known as the Smith Conjecture.

6.1 Smith Conjecture

Let h:5°>— S° be an orientation-preserving, periodic diffeomorphism (different from the
identity) with non-empty fixed-point set K. Then K is an unknotted circle.

In a tour de force involving the ideas of several mathematicians and much of the
established (i.e. pre-Thurston) ideas of 3-manifold topology, Thurston’s theorem became a
catalyst for a complete proof.

Theorem 6.1. The Smith Conjecture is true. [

The proof proceeds by assuming for the sake of contradiction that K is knotted. It can be
shown that if there is a counter-example to the Smith Conjecture there is one where K is a
prime knot. The proof then naturally divides into two parts; namely when Xy does or does
not contain a closed embedded incompressible surface of genus at least 1 which is not
boundary parallel. When there is no such surface then Thurston’s Theorem 5.1 applies (as
discussed in Shalen’s article in [38]) to give a contradiction. In the case of the existence of
such a surface the article by Gordon and Litherland in [38] again establishes a contradiction.
The work of Gordon and Litherland does not use hyperbolic structures, but crucially uses the
so-called equivariant loop theorem due to Meeks and Yau (see their article in [38]) proved
via the techniques of minimal surfaces.
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A proof dependent only on hyperbolic structures is a consequence of the Orbifold
Conjecture (see [26]) which is still to be resolved (see also the discussion in Section 10.2).

7. IDEAL TRIANGULATIONS

Thurston’s Theorem 5.1 provides the existence of hyperbolic structures on a large class of
knot complements. A natural question is how best to visualize, work with, and use this
(unique) hyperbolic structure. We now discuss another beautiful idea due to Thurston [62]
which illuminates the construction of a hyperbolic structure. We begin by expanding on the
discussion of ideal tetrahedra given in Section 4.2.

7.1

Recall from Section 4.2 that an ideal tetrahedron is a tetrahedron in H* U S2 all of whose
vertices lie on the sphere-at-infinity, and whose edges are hyperbolic geodesics. If T is an
ideal tetrahedron, then as discussed in Section 4.2, T is determined up to isometry by the
dihedral angles «, B and y or, equivalently by the Euclidean triangle cut out by a
horospherical cross-section at a vertex. However, as Thurston describes in Chapter 4 of [62]
this triangle, and hence the ideal tetrahedron is essentially completely determined by a single
complex number with positive imaginary part. We expand on this briefly below following the
accounts in [62] and [48].

Let A=A(u,v,w) be a Euclidean triangle in the complex plane with vertices u, v and w
labelled counter-clockwise. To each vertex of A we associate the ratio of the sides incident at
that vertex (see Fig. 7)
uUu—v v W

U
s 2(v) = s z(w) = :
— U w — v u—w

z{u) = ad

v
These vertex invariants depend only on the (orientation-preserving) similarity class of the

triangle A. Notice that if we use an element of PSL(2,C) to locate the vertices v and w at 0

and 1 respectively, then the third vertex is located at z(u), and from this and the discussion

above, it follows that z(u) completely determines z(v) and z(w). Explicitly

__ _ w1
z(v) = 2 and z(w) = )
w
w-u z(u)= z:z
»—
U V-U 1%
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Furthermore z(u) has positive imaginary part and arg(z(u)) is the angle at the vertex u.
Using this description allows the following parametrization of Euclidean triangles which
summarizes the above discussion.

Theorem 7.1. Let A = A(u,v,w) be a Euclidean triangle in the complex plane with vertices u, v
and w labelled counter-clockwise, and let z,= z(u), z,= z(v) and z5= z(w) be its vertex
invariants. Then z,, Z, and 75 have positive imaginary parts and satisfy the equations

1. 7;2,2;=—1, and
2. 1~ Zz+2122=0.
Conversely, if z, 7, and z; are complex numbers with positive imaginary parts satisfying (1)
and (2) above, then there is a Euclidean triangle A in C that is unique up to orientation-
preserving similarity whose vertex invariants in counter-clockwise order are z,, 7, and z5. O

With this theorem, our previous discussion on ideal tetrahedra can be succinctly
summarized in the following. First, observe that if T is an ideal tetrahedron in H® and v is a
vertex we can label the edges of T incident at v with the vertex invariants z,, z, and z; of the
Euclidean triangle L(v) described above. Then opposite edges of T have the same labels. The
complex numbers z;, z, and z5 are called the edge invariants of T. Summarizing we have:

Theorem 7.2. Let 7., z, and 7 be complex numbers with positive imaginary part satisfying (1)
and (2) of Theorem 7.1. Then, there is an ideal tetrahedron T in H> unique up to orientation-
preserving isometry, whose edge invariants are z,, 7, and z5. O

Furthermore, as noted above the complex numbers z, and z; are given in terms of z;.
Therefore, with a slight ambiguity, the tetrahedron T is completely determined by a single
complex number z, which we call the tetrahedral parameter of T. The ambiguity is removed by
fixing an edge and associating z as its edge parameter; the other edge parameters are then
1/(z—1)and 1 — (1/z).

7.2

Thurston’s idea to give a concrete description of hyperbolic structures on certain
3-manifolds was simply to give necessary and sufficient conditions so that gluing a finite
collection of ideal tetrahedra together resulted in a 3-manifold admitting a hyperbolic
structure of finite volume.

Thus suppose we have a 3-manifold M obtained by gluing ideal hyperbolic tetrahedra 7j,...,
T, by hyperbolic isometries, and we have fixed, as discussed above, an edge in each 7; and
labelled this edge by the tetrahedral parameter z;,. We wish to decide conditions guaranteeing
the z, correspond to a complete hyperbolic structure of finite volume on M.

The decomposition of M into these ideal tetrahedra determines a not necessarily complete
hyperbolic structure on M\l-skeleton which we wish to extend to M. This is done by
considering the image of the developing map (recall Section 3.1) in a neighborhood of an
edge. Briefly, consider an edge E in M, lift to H>, and take a horospherical cross-section
determined by a horosphere # centered at an ideal vertex v at an endpoint of E. The
existence of a hyperbolic structure (not necessarily complete) forces triangles cut out of
adjacent tetrahedra to E to line up ‘neatly’ around E—see Fig. 8. Each

1 1
z(e;) E{Ziy—_">1 - —}
zi— 1 Zi

This condition is known as the consistency condition for a hyperbolic structure and is given
algebraically by:
z(ey)z(ey)...z(e,,) = 1 and arg z(e,) + ...arg z(e,,) =27
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z(e; )
'3 z(e,-z)
"’ Z(e,-l)
L}
[y .
xe;, )
Fig. 8

To exhibit completeness, we note first that it is a consequence of the discussion in Section
3.2 that near an ideal vertex a complete hyperbolic structure of finite volume has the form
(horoball)/Z ® Z. Therefore, we must ensure that the developing map near the ideal vertex v
yields a Euclidean structure on the horosphere #. This is seen by ensuring the developing
map yields a tesselation of # by Euclidean triangles similar to those with parameters z;...., z,,.
To clarify this discussion we give some examples below.

7.3 Example 1: The figure-eight knot (see Fig. 9 (a))

The complement of the figure-eight knot admits a decomposition into two ideal tetrahedra,
1+v-=3)
2

cross-section is shown below. This yields the volume shown in Fig. 6.

Using this decomposition into two tetrahedra both isometric to 7, the volume of the
figure-eight knot complement can be computed as in Section 4.2. By Theorem 4.3 we deduce
that this volume is 2v, (which gives the volume shown in Fig. 6).

The two examples below show horospherical cross-sections of a decomposition of the
complements of the 5, knot and ( — 2,3,7)-pretzel knots (recall Fig. 6) into ideal tetrahedra.
The first is a decomposition into 4 tetrahedra and the second into 3. The tetrahedral
parameters of the tetrahedra are listed below. Volumes can computed from this using Section
4.2.

both isometric to 7, The tetrahedral parameter of 7, is . A horospherical

7.4 Example 2: The knot 5, (see Fig. 9(b))

Each tetrahedron is similar to one where the tetrahedral parameter is a root of either
x*—x+1=0 or x*—5x’+4x—1=0. The approximate values of the roots are
0.66235897862 + 0.56227951206i or 0.460202188254 +0.182582254557i respectively. These
roots generate the same cubic extension.

7.5  Example 3: The ( — 2,3,7) — pretzel knot (see Fig. 9(c))
The tetrahedral parameters in this case are all given by a root of x® —x+1=0.

This very concrete realization of the hyperbolic structures on knot complements is most
useful. One reason, as we have seen, is in computation of volumes, and another is provided
by the following theorem due to Epstein and Penner [17].
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Theorem 7.3. Every non-compact finite volume hyperbolic 3-manifold admits a decomposition
into a finite number of ideal polyhedra. []

It is conjectured that this subdivision can be further subdivided to give a decomposition
into ideal tetrahedra. Indeed, in all known examples this is the case, see [66] and [59] for
more on this.

For hyperbolic knot complements, following ideas Thurston used for the figure-eight, there
are many instances where an ideal triangulation can be explicitly built from a projection of
the knot. We briefly describe the heuristics on how this is done; for a fuller discussion of this
see [1,31,46].

Let K be a hyperbolic knot, P a projection plane in S* (recall Section 2.1) for K, and G(K)
the graph on P which is the projection of K (we assume the projection is regular). The graph
G(K) induces a cell decomposition of S*; the 0-cells being the crossings, the 1-cells are the
edges of G(K), the 2-cells being the complementary regions of PAG(K) and the 3-cells the
components of $*\P which are simply two 3-balls. Now modify this cell decomposition of S*
at each vertex of G(K) as follows. At each vertex of G(K) there is an overpassing arc and an
underpassing arc. Push the overcrossing arc above P and the undercrossing arc below P, and
add a short vertical segment joining the branches. This gives a new complex, where the 0-cells
are the endpoints of these short segments, the 1-cells consist of edges of G(K) and the
additional segments, the 2-cells are the complementary regions as above which are modified
near the crossings of $>\P by sewing in appropriate twisted discs, and the 3-cells are seen to
be a pair of open 3-balls. It is from this basic cell decomposition that a decomposition of the
complement into tetrahedra can often be done.

Using Theorem 7.3 as a starting point, it is possible to modify the decomposition provided
by Theorem 7.3 to produce a canonical decomposition of any non-compact hyperbolic
3-manifold of finite volume into a finite number of ideal hyperbolic polyhedra. By canonical
we mean that the decomposition depends only on the geometry of the manifold, and not on
the ideal decomposition used as input data. We will not go into the details of this
construction here, see [66] for details. Moreover, this construction is entirely algorithmic
which makes it most useful in practical applications. In particular the computer program
SnapPea due to Jeff Weeks [67] has implemented this algorithm. Using SnapPea it is
remarkable that canonical decompositions can then be computed from knot diagrams of up
to around 50 crossings in just a few seconds. Once a canonical cell decomposition is known,
the combinatorial structure completely determines the topological type of the manifold, and
hence by the Rigidity theorem of Mostow and Prasad two such manifolds (and hence two
hyperbolic knots) are isometric (resp. equivalent) if and only if they have the same canonical
cell decompositions.

The canonical decomposition also has applications in computing symmetry groups of
hyperbolic knot complements as we will discuss below in Section 8.

Remark. It follows from the Rigidity theorem of Mostow and Prasad that for the complete
structure the tetrahedral parameters of any tetrahedra occurring in a decomposition of a
non-compact finite volume hyperbolic 3-manifold are algebraic numbers. For more on related
topics, see Section 10.

7.6

The existence of an ideal decomposition of a non-compact finite volume hyperbolic
3-manifold into ideal tetrahedra also allowed Thurston to exhibit hyperbolic structures on
closed 3-manifolds by hyperbolic Dehn surgery. We briefly describe this for hyperbolic knots
in S, see [62,12,41] for more details.
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Let K be a hyperbolic knot with a decomposition into ideal tetrahedra T;,..., T, as above.
As described above, one can equip S™\K with many incomplete hyperbolic structures by
varying the shapes of the 7,. These are paramaterized by tetrahedral parameters satisfying
the consistency conditions above (cf. Section 7.2). Thurston [62] proved that the metric
completion of many of these incomplete structures on S*\K give rise to complete hyperbolic
structures on certain closed 3-manifolds. This procedure is called hyperbolic Dehn surgery.
Moreover the closed manifolds turn out to be those obtained by topological Dehn surgery on
K. By this we mean the following. Let a be an essential simple closed curve on dXg, V be a
solid torus and r a meridional curve of V. Now glue V to X along their boundaries so that o
is identified with r. The result is a closed 3-manifold obtained by a-Dehn surgery on K. From
Section 2.1, upon specifying a framing {#,£}, « can be described as #,£? and a-Dehn surgery
is referred to as (p,g)-Dehn surgery and denoted Xx(p,q). For instance, Xx(1,0)=S> for any
knot K. In the notation just introduced, Thurston’s Hyperbolic Dehn Surgery Theorem says,

Theorem 7.4. Let K be a hyperbolic knot. For all but finitely many (p,q), Xx(p,q) is a closed
hyperbolic 3-manifold. ]

Thurston also shows that for those (p,q) which yield hyperbolic Dehn surgeries,
Vol( X «(p.q)) < Vol(S*\K ) and the volumes Vol( X «(p.q)) accumulate on Vol($\K).

The structure of the set of volumes of hyperbolic 3-manifolds is itself very interesting. We
will not discuss this here; we refer the reader to [62] and the article by Gromov [22] for more
information. The only facts we will have recourse to are included in:

Theorem 7.5. There is a lower bound to the volume of a hyperbolic 3-manifold. Furthermore,
there are only finitely many hyperbolic 3-manifolds of the same volume. []

An immediate corollary of the existence of this lower bound together with the fact that
under a covering of degree d volume multiplies by a factor of d, is that a hyperbolic
3-manifold of finite volume covers at most finitely many hyperbolic 3-manifolds (indeed
orbifolds).

Remarks.

1. Describing exactly what non-hyperbolic Dehn surgeries can be obtained by Dehn surgery
on a hyperbolic knot is currently an important question in 3-manifold topology. We refer
the reader to [20] for a survey of some recent results.

2. By definition, the fundamental groups of those closed hyperbolic 3-manifolds obtained by
hyperbolic Dehn surgery on a hyperbolic knot K admit a holonomy representation into
SL(2,C). As these manifolds are the result of topological Dehn surgery, the fundamental
group of S*\K subjects the groups m(Xx{(p,q)). By composing this map with the holonomy
representation, we obtain many more homomorphisms of 7,(S*\K) into SL(2,C). These
yield points in the Representation Variety of 7,(S™\K) and this algebraic object turns out to
have a powerful influence on the topology of Xx. For more on this topic see the article by
Cooper and Long in this issue [16].

8. SYMMETRIES

A topic that has been the subject of much attention in classical knot theory is identifying
symmetries of a knot (see the references in [14] for some of this work). A symmetry of a knot
K is a homeomorphism of the pair ($°K) to itself, and the collection of symmetries forms a
group Symm(K).
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Equipping S* and K with orientations, we have:

e Suppose h:(S>,K)— (5°,K) preserves the orientation of S° but reverses the orientation of
K, then K is called invertible. Such a symmetry is called an inversion.

* Suppose h:(S°,K)— (S°,K) reverses the orientation of S* then K is called amphicheiral.
There are two types of amphicheiral symmetries: if & preserves the orientation of K then A
is called +amphicheiral. If h reverses the orientation of K then 4 is called — amphicheiral.
A knot with both types of orientation-reversing symmetries is called + amphicheiral.

If we fix a framing {#,€}, it is not hard to check that K is invertible (resp. amphicheiral) if
and only if there is a homeomorphism ¢ of Xy such that ¢(M)=.4"" and ¢(£)=€ ' (resp.
G(M)=M"" and $(€) =£).

Consider the diagram of the figure-eight knot below (Fig. 10).

A 180 degree rotation about the y-axis takes the knot back to itself preserving both the
orientation of §° and the knot. A 180 degree rotation about the x-axis preserves the
orientation of $* but reverses the orientation of the knot (note that this axis hits the knot in
two places, this is called a strong inversion). There is also an orientation-reversing symmetry
of S* which sends the knot back to itself. This involution preserves the orientation of the
knot, hence it is amphicheiral. If we compose this symmetry with the strong inversion
mentioned above we get an orientation-reversing symmetry of S which reverses the
orientation of the knot (hence it is — amphicheiral). Thus the figure-eight knot possesses all
four types of symmetry.

Fig. 10
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=

Fig. 11

Finding symmetries can be easy if one is presented a ‘nice’ symmetric diagram of the knot.
However, it is quite difficult in general to find all symmetries of a knot, or prove there are no
symmetries. As evidence of this, it was not until 1963 that Trotter [64] gave the first example
of a knot that was not invertible. This knot turns out to be the knot 8, in the tables of [57] (it
is pictured in Fig. 11).

For hyperbolic knots, the Rigidity theorem of Mostow and Prasad coupled with work of
Waldhausen [65] implies that Symm( K') is isomorphic to the group of isometries of the knot
complement Isom(S*\K) which additionally is a finite group, see [62] Chapter 5. Let
Isom, (S*\K) denote the group of orientation-preserving isometries of SK. Then
Isom, (§\K) is a subgroup of the index at most 2 in Isom(S*K), the index being 2 exactly
when K is amphicheiral. If 'y denotes the Kleinian group obtained as the image of the
holonomy representation of 7,(5>\K) into PSL(2,C), and Norm(K ), the normalizer of I'x in
Isom(H?) (resp. Norm, (K) is the normalizer of I'x in PSL(2,C)), then the group Isom(S*\K)
is isomorphic to the finite quotient group Norm( K )/T'x (recall Theorem 3.5). The solution to
the Smith Conjecture (Theorem 6.1) provides the following restrictions on Symm(K) (cf. the
discussion in [55] or [27]).

Theorem 8.1. Let K be a hyperbolic knot. Then Isom , (S>\K) is either the dihedral group D,, of
order 2n, or a cyclic group of order n. Isom(S>\K) is at most a Z,-extension of Isom (S \K).
|

For hyperbolic knots, the canonical decomposition into ideal polyhedra can be used to
calculate the group of symmetries of K. In this case the symmetry group of the knot is the
same as the symmetry group of the canonical decomposition. These combinatorial
symmetries can then be checked to see how they act on dX so as to determine the exact
type of each symmetry. Henry and Weeks [23] implemented a routine into SnapPea for
calculating the symmetry groups via this method. They used this in [23], to calculate the
symmetry groups of all the knots in the tables of [57], and verify the independent work of
[27]. We briefly discuss some examples (see Table 1 of Appendix B).

In Example 1 of Section 7.2, a decomposition of the figure-eight knot complement into two
ideal tetrahedra was described. This is in fact the canonical decomposition, and it can be
quickly deduced from this that the full symmetry group of the figure-eight knot is D, the
dihedral group of order 8.

Examples 2 and 3 in Section 7.2 describe decompositions of the complements of the knot
5, and the ( —2,3,7)-pretzel knot into 4 and 3 ideal tetrahedra respectively. Again this is the
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canonical decomposition, and the symmetry groups can be shown to be Z,®Z, and Z,
respectively. Both knots are non-amphicheiral.

The knot 8,; (shown below) is the first non-invertible knot in the tables of [57].

It has a canonical decomposition into 16 ideal tetrahedra. One can then check using
SnapPea that Isom(S*\8,,) =Z, and the non-trivial symmetry reverses the orientation of both
the knot and S* so 8,; is — amphicheiral. This agrees with Trotter’s calculation discussed
above.

Some further remarks concerning detection of symmetries via the existence of a hyperbolic
structure are discussed below in Section 10.1. Table 1 of Appendix B at the end of this paper
includes a list of the symmetry groups of hyperbolic knots with small numbers of crossings.

9. INVARIANTS ASSOCIATED WITH THE HYPERBOLIC STRUCTURE

In this section we discuss applications of the existence of a hyperbolic structure to knot
theory.

9.1

The problem of determining when knots are or are not equivalent has long occupied knot
theorists. By Theorem 2.2, knots are determined by their complements, which in the context
of hyperbolic knots, together with the Rigidity theorem of Mostow and Prasad mentioned in
Section 3.1, shows that hyperbolic knots are equivalent if and only if their complements
are isometric as hyperbolic 3-manifolds, or that the fundamental groups as Kleinian groups
are conjugate in IsomH®. For instance if K, and K, are hyperbolic knots with
Vol(S$*\K ;) # Vol(S*\K,) then K, and K, are not equivalent. By Theorem 7.5 there can only
be finitely many hyperbolic knots whose complements have the same volume and so volume
is a most useful tool in distinguishing knots—especially in view of the decomposition of
hyperbolic knot complements into ideal tetrahedra. It is worth comparing this with the fact
that there are infinitely many knots with the same Alexander polynomial [39] or HOMFLY
polynomial [25].

However, there are many knots whose complements have the same volume. These are
produced by a well-known construction in knot theory called mutation, which produces knots
that tend to be hard to distinguish. As we now discuss, hyperbolic volume is of no use here
(although we will see that more subtle invariants of the hyperbolic structure can be).
Informally, knots K, and K, are mutants of one another if a diagram for K, can be obtained
from one of K, by cutting out a tangle (shown below as the interior of the dotted circle) and
then sewing it back in via a rotation through .

To define this more carefully, we require some notation.

Definition 9.1. Let K be a knot. A Conway sphere for K is an embedded 2-sphere in S°* meeting
the knot transversely in four points.

Let K be a knot, S a Conway sphere for K. Write (§°,K)=(B>.,K ) U (B> ,K_) where
B, are the 3-balls bounded by S, and K . = B%. N K. Any sphere with four punctures admits
three obvious symmetries which are rotations through 7. Let u be any of these three
involutions. The mutation of K via u is obtained by cutting open SN\K along S and then
regluing via u. Thus,

(S K*)=(B ,K.)U (B> K_)

It is known that mutants have the same abelian invariants, and same Jones polynomial (see
[61.28]). The following theorem was proved by Ruberman [58], giving the hyperbolic volume
version.
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Fig. 12

Theorem 9.2. Let K be a hyperbolic knot, S an incompressible Conway sphere and u an
involution of S as above. Then K* is hyperbolic and Vol(S*\K) = Vol(S\K*). O

Figure 12 shows a pair of famous mutants due to Conway (on the left) and Kinoshita—
Terasaka. The common volume is approximately 11.219117725.... However, the canonical cell
decompositions of the complements of the mutant knots shown in Fig. 12 are comprised of 14
and 15 ideal tetrahedra respectively, and so from the discussion in Section 7.2 are definitely
not equivalent. These were first shown to be distinct by Riley [51], and later Gabai [18], who
explicitly computed their genus which also showed them to be distinct.

Remark. By Theorem 7.5 there are only finitely many hyperbolic knot complements of the
same volume. One can show using sequences of mutations on Montesinos knots (see [14])
that for any positive integer N there are N distinct hyperbolic knots whose complements
have the same volume. The crucial feature about Montesinos knots is that their classification
is very explicit, see [14].

9.2

There are several obvious questions that arise at this point. Can the volumes of hyperbolic
knot complements be made arbitrarily large? What is the smallest volume of a hyperbolic
knot complement? Recall Theorem 7.5 states that there is a lower bound to the volume of a
hyperbolic 3-manifold. The answer to the first question is yes, but the answer to second
question is not yet known.

Conjecture. The figure-eight knot complement has the smallest volume of any hyperbolic
knot complement.

As stated in Example 1 of Section 7, the volume of the figure-eight knot complement is
2v,. This volume is in fact conjectured to be the smallest volume of any non-compact finite
volume hyperbolic 3-manifold.

Theorem 9.3. The volumes of hyperbolic knot complements can be made arbitrarily large.

Sketch Proof Recall the notion of a framing from Section 2.1. Consider an unknot in $* with
the ‘obvious’ framing. The effect of (1,n)-Dehn surgery (recall Section 7.3) on this unknot in
$3 is to give back S°. Now consider a link in $” for which some part of a projection has the
form shown in Fig. 13(a). If we fix a framing of this unknotted component (as above) and
perform (1,n)-Dehn surgery on this unknotted component, we obtain a link in §3 (with 1
fewer components) and the effect on the two strands is to twist them together as shown in
Fig. 13(a).

Now consider the family of links shown in Fig. 13(b). It is proved in [1] that these links are
hyperbolic with volume approximately (m — 1)(7.32772...). On choosing a framing for each
unknotted component L,,....L, of %, we can perform (1,n) Dehn surgery on each of the
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unknotted components L,,...,.L,, of £, For suitable n, this produces a family of knots which
are hyperbolic and Thurston’s Hyperbolic Dehn Surgery Theorem in this context says that
the volume of these knot complements approach the volume of the manifolds S°\%,,. Since
these volumes are getting arbitrarily large the result follows. [J

9.3

Classical measures of complexity of a knot include the crossing number, the bridge number
and the genus of a knot (recall Section 2.3).

However the crossing number of a knot does not in general reflect the geometric
complexity of the complement. For example, for fixed m, the family of knots shown in
Fig. 13(a) can have arbitrarily large crossing number, but have volume bounded by
(m —1)(7.32772...). The number of tetrahedra in the canonical decomposition also increases
as the number of crossings increase, and so one might be tempted to look for a correlation
between the crossing number of a knot and the number of tetrahedra in the canonical
decomposition of its complement, but this also does not tend to be true. The knot shown in
Fig. 14 has crossing number 23, yet its complement has volume approximately 3.6086890618...
and decomposes into 4 ideal tetrahedra (it appears as M4;, in the census of finite volume
non-compact hyperbolic 3-manifolds [15]).

There is however an upper bound for the volume of a hyperbolic knot in terms of the
crossing number due to Adams [1]. This arises from producing an ideal decomposition for the
knot complement that is built from a diagram of the knot (recall Section 7.2), and then apply
Theorem 4.3.

Theorem 9.4. Let K be a hyperbolic knot of crossing number m, different from the figure-eight
knot. Then Vol (S'\K) < (4m — 16)v,. O
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Fig. 14

The knot in Fig. 14 is also interesting because, despite its small volume it is of genus 10.
The ( —2,3,7)-pretzel knot has genus 5 and so it would appear that genus does not seem to
have much correlation to the complexity of the hyperbolic structure.

Bridge number and more particularly runnel/ number do seem to be much more closely
related to the complexity of the hyperbolic structure on a hyperbolic knot complement.
Roughly speaking this is because the fundamental group is getting more complicated as these
invariants increase. The tunnel number of a knot K is the minimal number of properly
embedded arcs in X such that the complement of an open regular neighborhood of the arcs
is a handlebody. Such a collection of arcs are called unknotting tunnels for K. Figure 15 shows
an unknotting tunnel for the figure-eight knot.

It is not hard to see that the tunnel number of K = (the bridge number of K — 1). We refer
the reader to [6,10] for much more on the connections of tunnel number to the complexity of

Fig. 15
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the hyperbolic structure. We simply quote the following results contained in [6] that also
gives some partial evidence to the conjecture that the figure-eight knot ‘is the smallest
hyperbolic knot’. Recall the figure-eight knot complement has volume 2v,,

Theorem 9.5. There exists a universal constant C such that if K is a hyperbolic knot with tunnel
number t, then Vol(S*\K) = Ct. [

Theorem 9.6. Let K be a hyperbolic knot of tunnel number at least 2. Then Vol($’\K) is at
least 3vy/2. [

9.4

In light of the conjecture that the figure-eight knot complement is the smallest hyperbolic
knot, it is natural to try estimate the volume of a hyperbolic knot (we have already seen
some results in this direction). Here we discuss this further.

We begin by discussing a method of obtaining a lower bound on the volume originating in
work of Meyerhoff [32] and pursued by Adams [2] and [3]. We will discuss their work only in
the context of hyperbolic knots, but the applications are more widespread.

If K is a hyperbolic knot, the knot complement has a topological end of the form
T? X [0,), called a cusp. The knot complement can then be informally viewed as a ‘thick’
part together with a cusp. To estimate the volume of $>\K one can try to estimate the volume
of a cusp. More precisely, lifting to H* the cusp is covered by an infinite set of disjoint
horoballs in H* all of which are identified under covering transformations. Expand these
horoballs equivariantly until two first touch. Projecting to $*\K gives a maximal cusp, and the
volume of this maximizes the volume of a cusp, and hence the volume of a maximal cusp is
what could be computed to give a lower bound to the volume of S*\K. This discussion is valid
for any non-compact finite volume hyperbolic 3-manifold. We have the following from [3]:

Lemma 9.7. Let M be a finite volume non-compact hyperbolic 3-manifolds and C a maximal
cusp for M. Then Vol(C) =V3/2. 0

This result can be used directly to estimate the volume of a hyperbolic knot complement,
however, using sphere packing arguments due to Boroczky [13] and work in [32], a rather
better estimate can be made, see [3].

Theorem 9.8. Let K be a hyperbolic knot, then Vol(S\K) =v,. O

We have been focused only on orientable manifolds, if we allow non-orientable hyperbolic
3-manifolds of finite volume, then [2] identifies the smallest non-orientable hyperbolic
3-manifold of finite volume. It is the Gieseking manifold and is obtained by identifying the
faces of 7, in pairs. It has volume v, and is double covered by the figure-eight knot
complement. This result together with Theorem 9.4 allows one to estimate the orders of
fixed-point free symmetries of hyperbolic knots. Namely,

Corollary 9.9. Let K be a hyperbolic knot with m crossings different from the figure-eight knot.
If g is a fixed-point free symmetry of S’\K then g has order at most 4m — 16.

Proof. By Theorem 9.4 the volume of $*\K is at most (4m — 16)v,. If we denote by 1, the
subgroup of Isom(S*\K) generated by g, then (SN\K)/I, is a finite volume non-compact
hyperbolic 3-manifold, which may be non-orientable. However, as discussed the minimum
volume of any non-compact hyperbolic 3-manifold is v,. and so the corollary now follows as
the order of I, is then bounded above by (4m — 16)vy/v,. O

There are also similar applications where the isometry has fixed points using the results of
[33] which identifies the minimal volume non-compact hyperbolic 3-orbifold (recall Section
3.1), see also [4].
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Indeed there are constraints on the possible orders of homeomorphisms acting fixed-point
freely simply from the volume of a maximal cusp. Using Lemma 9.7 and arguing similarly to
the proof of Corollary 9.9 the following can be established [3].

Corollary 9.10. Let K be a hyperbolic knot and g a fixed-point free orientation-preserving
symmetry of S\K, then g has order at most Vol(C)2/V'3 where C is a maximal cusp for
SAK. O

The horoballs described above are centered at parabolic fix-points of the elements in the
holonomy representation of ,(S'\K) into SL(2,C). By locating one of these fix-points at
infinity, we produce an invariant of the knot called the horoball diagram for K. Although
hard to work with directly, SnapPea computes a portion of the horoball diagram by
specifying a radius of the smallest horoball to be computed and this can be used to
distinguish knots. For instance the horoball diagrams of the mutant knots in Fig. 12 are
included in Appendix A of this paper, and a quick inspection shows these are different.

Remark. Other geometric invariants that arise from the hyperbolic structure are the Chern
Simons invariant, the eta invariant and the length spectrum. We will not discuss these
invariants here—a discussion is given in [34].

10. ALGEBRAIC INVARIANTS ASSOCIATED WITH A HYPERBOLIC STRUCTURE

In this section we discuss algebraic properties related to the existence of a hyperbolic
structure.

10.1
Suppose we have a decomposition of S\K into ideal tetrahedra
S, US,U..US,

with tetrahedral parameters z,, z,...., z,. Define the field of tetrahedral parameters of K
denoted k,(K) to be Q(z;|i=1...., n). This is a finite extension of Q.

Some examples of this field computed from Section 7.2 are figure-eight knot, the 5, knot,
and the (—2,3,7)-pretzel knot. These give Q(V —3), and Q(z) where z*—z2+1=0
respectively.

The existence of a hyperbolic structure provides the holonomy representation of 7;(S*\K)
into PSL(2,C), and thus an isomorphism of 7,($*\K) onto a Kleinian group I'x. As noted in
Section 3.2 this representation may be lifted to SL(2,C). We can then define the trace-field of
I'x to be the field Q(try |y e T'). Since the trace of a 2 X 2 matrix is a conjugacy invariant,
the Rigidity theorem of Mostow and Prasad implies that the trace-field is an invariant of the
knot. The Rigidity theorem also implies that the trace-field is a finite extension of Q. The
following theorem is proved in [42] which allows one to establish that the tetrahedral
parameters are algebraic numbers.

Theorem 10.1. Let K be a hvperbolic knot, then Q(try|y e Tg) = Q(z;li=1,...n). O

We will abbreviate the ‘trace-field of I'x’ to simply the ‘trace-field of K’ and denote it by
Q(trI'x). Theorem 10.1 has some interesting applications of which we discuss only a few.

It is extremely efficient at distinguishing knots. In Appendix B at the end of this paper we
list the trace-field for knots up through 8 crossings. These were computed by Craig Hodgson.

Two Kleinian groups I'y and I', are called commensurable if T'y NI, have finite index in
both of I'; and I';. It is not hard to see that two finite volume hyperbolic 3-manifolds
M,=HT, and M,=HT, have a homeomorphic finite cover exactly when I'; and some
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conjugate of I', are commensurable. The following proves invariance of the trace-field of a
hyperbolic knot, see [49] and [42]:

Theorem 10.2. Let K be a hyperbolic knot, then Q(try|y e Tx) = Q(z;]li =1,..., n) is an
invariant of the commensurability class of S7\K. O

Topologically deciding when manifolds have homeomorphic finite covers is in general quite
hard. Theorem 10.2 is most useful given the existence of a hyperbolic structure. For instance,
the knots in the table of Appendix B are all mutually non-commensurable. However note
that the trace-field for the ( — 2,3,7)-pretzel knot and 5, knot are the same.

As discussed in Section 9.1 mutant knots are not distinguished by hyperbolic volume.
Unfortunately, the trace-field is also mutation invariant [43].

Theorem 10.3. Let K be a hyperbolic knot and K* a mutant of K. Then, K and K* have the
same trace-field. [

The trace-field also detects the properties of amphicheirality, and whether a knot admits a
symmetry of order p with non-trivial fixed-point set. The next theorem is relatively easy to
establish, see [SS5].

Theorem 10.4. Let K be a hyperbolic knot. Then,

e if K is amphicheiral K = K and so contains real subfield of index 2.
e if K admits an orientation-preserving symmetry of order p with non-trivial fixed point set,
then Q(#r1'x) contains the field Q(cos 2#/p). O

Table 1 of Appendix B can be used to quickly prove many knots up through crossings cannot
be amphicheiral, and limit symmetries to order 2 or 3.

10.2

A particularly interesting class of hyperbolic 3-manifolds are the arithmetic hyperbolic
3-manifolds. If M=H?T is a non-compact finite volume hyperbolic 3-manifold, then M is
arithmetic if some conjugate of I" is commensurable with a group PSL(2,0,), where Oy is the
ring of integers in the quadratic imaginary number field Q(V — d). For instance Example 2 of
Section 5 shows that the figure-eight knot complement is arithmetic. From this, and his other
examples, Riley conjectured that the only ‘arithmetic knot’ was the figure-eight knot. From
the list of fields in Appendix B of the paper it is easy to see that none of the knots through 8
crossings are arithmetic since if a knot is arithmetic the trace-field is a quadratic imaginary
extension of Q. Riley’s conjecture was established in [50].

Theorem 10.5. Let K be a hyperbolic knot, and suppose that S\K is arithmetic. Then K is the
figure-eight knot. [

In particular Theorem 10.5 shows that the figure-eight knot complement is not
commensurable with any other knot complement. There are examples of hyperbolic knot
complements that admit a finite covering which again is a knot complement, for example the
( —2,3.7)-pretzel knot has 18 and 19 fold cyclic covers which are knot complements in S° (for
more on this topic see [19]). There are also a pair of examples due to Aitchison and
Rubinstein [11}, called the dodecahedral knots pictured in Fig. 16, which have
commensurable hyperbolic complements, but are of the same volume and so cannot be
covers of each other.
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In Section 8 we discussed symmetries of hyperbolic knot complements, an interesting
extension of this is the notion of hidden symmetry of a knot complement. By a hidden
symmetry of a hyperbolic knot K, we mean a symmetry of some finite covering of S\K that
does not lift from S>\K. As discussed in Section 8, symmetries of the knot complement are
related to the structure of the group Norm(K) (recall Section 8). Hidden symmetries are
related to the structure of the commensurability subgroup of T'x. This defined as follows. Let
I' be a Kleinian group, define:

Comm(T') ={g e Isom(H?) |gl'g "' is commensurable with I'}.

In the case where I'=T"x, we simply shorten the above to Comm(K). Note that if I" is a
Kleinian group then Norm(I') is a subgroup of Comm(I'). It is a deep theorem of Margulis
[29] that M =H>T is arithmetic if and only if Comm(I) is dense in Isom(H’), and otherwise
Comm(T') is discrete and is the unique maximal group in the commensurability class of I'. By
Theorem 10.5, it is not hard to see that this means the figure-eight knot has infinitely many
hidden symmetries. If K is any other hyperbolic knot, the natural question of whether there
exists hidden symmetries is equivalent to asking whether Comm(K) contains Norm(K) as a
proper subgroup. We reproduce some of the discussion in [42]. To do this requires some
additional terminology.

A Euclidean torus 7 is isomorphic to C/A for some lattice A. The conformal parameter of T
is the ratio of the two generators of A. This depends on a choice of generators but different
choices only change this number by an element of PGL(2,Z). As we have seen in Sections 3
and 5, the hyperbolic structure on the complement of a hyperbolic knot K induces a
Euclidean structure on JX. If 74 denotes the conformal parameter of 7Xx then the
discussion above shows that the cusp field of K, which is defined to be ((7x), is well-defined
and is an invariant of K. It is not hard to check using the holonomy representation that
Q(rg) is a subfield of Q(trl'k).

The question about hidden symmetries can be re-formulated as follows (see [42] for
details). If Norm(K) is a proper subgroup of Comm(K) then it follows that $*\K must be an
irregular cover of H*/Comm(K), which must be an orbifold with an end of a special type. We
will not pursue this further, but using this forces some constraint on the cusp field. In
particular, the following theorem can be proved,

Theorem 10.6. If K has hidden symmetries, then the cusp field of K is Q(V —3) or
Q(VvV-1).0
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The only knots known which have cusp field @(V —3) or Q(V — 1) are the figure-eight
knot (from Example 2 of Section 5) and the two dodecahedral knots in Fig. 16 which also
have cusp field Q(V ~— 3). In these latter two examples, the cusp field is a proper subfield of
the trace-field (which is @Q(V —3,V5)) and give examples where the Comm(K) is strictly
bigger than Norm(K). Based on this a natural conjecture is:

Conjectures. Let K be a hyperbolic knot distinct from the figure-eight knot or either of the two
dodecahedral knots, then

1. Comm(K) = Norm(K),
2. The cusp field of K coincides with trace-field of K, and is different from Q(V — 3) or

Qv - 1).

As we discussed above, the 5, knot and the ( —2,3,7)-pretzel knot have complements of the
same volume and trace-field (which is cubic). However these knots are not commensurable.
To see this, from Section 8, the group of symmetries of these knots are Z,@ Z, and Z,
respectively, with all symmetries being orientation-preserving. By Theorem 10.5, these knots
are not arithmetic and so as the trace-field has degree 3, Theorem 10.6 implies these knots
cannot have hidden symmetries. Thus the groups Norm(K) (for K either the 5, knot or the
(—2,3,7)-pretzel knot) must be the maximal groups. This together with the fact that their
volumes are the same means that the knot complements cannot be commensurable.

It can be checked using the list of trace-fields of knots through 8 crossings listed in
Appendix B that the cusp field of K coincides with the trace-field of K, and is different from
Q(V —-3) or Q(V —1) if K is not the figure-eight knot. In particular, by Theorem 10.6
Comm(K) = Norm(K) for all the knots in the table of Appendix B, so they do not admit any
hidden symmetries.

Theorem 10.5 implies that the only knot with trace-field Q(V — d) and whose traces are
elements of O, is the figure-eight knot. However it is conceivable, albeit unlikely, that there
is a hyperbolic knot in S with trace-field Q(V — d), but its traces need not be algebraic
integers in that field. We remark that there are examples of links in S* with this property (see
[42)).

In fact until recently, all the evidence suggested that a hyperbolic knot has ‘integral trace’,
that is the group I'y had algebraic integer traces. An interesting consequence of a positive
solution to ‘every knot has integral trace’ would have been a solution to the Smith
Conjecture for hyperbolic knots using only hyperbolic geometry (see Shalen’s article in [38]),
recall the discussion in Section 6. However, Craig Hodgson, using an exact version of
SnapPea, called Snap (written by Oliver Goodman) has observed that the knot 10y in the
table of [S7] does not seem to have ‘integral trace’.

Acknowledgements—The second author is partially supported by NSE. We wish to thank Mario Fudave-Munoz for
some useful conversations, and Margaret Combs and Cynthia Verjovsky for help with figures.

REFERENCES

1. Adams, C., Hyperbolic structures on link complements. Ph.D. thesis, University of Wisconsin, 1983.

2. Adams, C., The noncompact hyperbolic 3 —manifold of minimal volume. Proc. Am. Math. Soc., 1987, 100,
601--606.

. Adams, C., Volumes of n-cusped hyperbolic 3-manifolds. J. London Math. Soc., 1988, 38, 2 555-565.

. Adams, C., Limit volumes of hyperbolic three-orbifolds. J. Diff Geom., 1991, 34, 115-141.

5. Adams, C., Toroidally alternating knots and links. Topology, 1994, 33, 353-369.

W



~J

10.

11.

12.
13.

14.
15.
16.
17.

18.
19.

20.
21.
22.
23.
24.
25.
26.
27.

28.
29.

30.
31.
32.
33.
34.
3s.
36.
37.
38.
39.
40.

41.
42,

43.

44.

45.

Hyperbolic structures on knot complements 733

. Adams, C., Unknotting tunnels in hyperbolic 3-manifolds. Math. Ann., 1995, 302, 177-195.
. Adams, C., The Knot Book. W. H. Freeman, 1994.
. Adams, C., Brock, J, Bugbee, J, Comar, T., Faigin, K., Huston, A., Joseph, A. and Pesikoff, D., Almost

alternating links. Topology Applic., 1992, 46, 151-165.

. Adams, C., Hildebrand, M. and Weeks, J., Hyperbolic invariants of knots and links. Trans. Am. Math. Soc., 1991,

326, 1-56.

Adams, C. and Reid, A. W., Unknotting tunnels in 2-bridge knot and link complements. Comment. Math. Helv.,
1996, 71, 617-627.

Aitchison, I. R. and Rubinstein, J. H., Combinatorial cubings, cusps and the dodecahedral knots. In Topology
'90, Proc. of Low-dimensional Topology Conference, Ohio State Univ., De Gruyter, 1991, pp. 17-26.

Benedetti, R. and Petronio, C.. Lectures on Hyperbolic Geometry. Springer, Heidelberg, 1991.

Boroczky, K., Packing of spheres in spaces of constant curvature. Acta Math. Acad. Sci. Hung., 1978, 32,
243-326.

Burde, G. and Zieschang, H., Knots, De Gruyter Studies in Mathematica, Vol. 5. De Gruyter, 1985.

Callahan, P, Hildebrand, M. and Weeks, J., A census of cusped hyperbolic 3-manifolds. Preprint.

Cooper, D. and Long, D. D., Representation theory and the A-polynomial of a knot. Chaos, Solitons & Fractals,
1998, 9, 749-763.

Epstein, D. B. A. and Penner, R. C., Euclidean decompositions of noncompact hyperbolic manifolds. J. Diff.
Geom., 1988, 27, 67-80.

Gabai, D., Genera of arborescent links. Mer. Am. Math. Soc., 1986, 339, 1-98.

Gonzalez-Acuna, F. and Whitten, W., Imbeddings of three-manifold groups. Mem. Am. Math. Soc., 1992, 474,
000

McA. Gordon, C., Dehn filling: a survey. To appear in the Proceedings of the Mini Semester in Knot Theory,
Stefan Banach International Mathematical Center, Warsaw, Poland, 1995.

McA. Gordon, C. and Luecke, J.. Knots are determined by their complements. J. Am. Math. Soc., 1989, 2,
371-415.

Gromov, M., Hyperbolic manifolds according to Thurston and Jorgenson. In Seminar, Bourbaki, Lecture Notes in
Mathematics, Vol. 842, Springer, Heidelberg, 1981, pp. 40-53.

Henry, S. and Weeks, J., Symmetry groups of hyperbolic knots and links. J. Knot Theory Ramif, 1992, 1,
185-201.

Hoste, J. and Thistlethwaite, M., Knots through 15 crossings. In preparation.

Kanenobu, T, Infinitely many knots with the same polynomial. Proc. Am. Math. Soc., 1986, 97, 158-161.

Kirby, R., Problems in low-dimensional topology. In (reometric Topology Part 2, AMS/IP Studies in Advanced
Mathematics. ed. W. Kazez, 1996.

Kodama, K. and Sakuma, M., Symmetry groups of prime knots up to 10 crossings. In Knors. Vol. 90, ed. A.
Kawauchi. De Gruyter, 1992, pp. 323-340.

Lickorish, W. B. R. and Millet, K., A polynomial invariant for oriented links. Topology, 1987, 26, 107-141.
Margulis, G., Discrete subgroups of semi-simple Lie groups. In Ergebnisse der Mathematik und ihr Grenzgebeite.
Springer, Heidelberg, 1991.

Menasco, W., Closed incompressible surfaces in alternating knot and link complements. Topology, 1984, 23,
37-44.

Menasco, W., Polyhedra representation of link complements. Contemp. Math., 1983, 20, 305-325.

Meyerhoff, G. R.. Sphere packing and volume in hyperbolic 3-space. Comment. Helv. Math., 1986, 61, 271-278.
Meyerhoff, G. R., The cusped hyperbolic 3-orbifold of minimal volume. Bull. Am. Math. Soc., 1985, 13,
154-156.

Meyerhoff, G. R., Geometric invariants for 3-manifolds. Math. Intell, 1992, 14, 37-53.

Milnor, J. W., Hyperbolic geometry: the first 150 years. Bull. Am. Math. Soc., 1982, 6, 9-24.

Montgomery, D. and Zippen, L., Examples of transformation groups. Proc. Am. Math. Soc., 1954, 5, 460-465.
Morgan, J. W., On Thurston’s uniformization theorem for 3-dimensional manifolds. In The Smith Conjecture, eds
J. W. Morgan and H. Bass. Academic Press, New York, 1984, pp. 37-125.

Morgan, J. W. and Bass, H., The Smith Conjecture. Academic Press, New York, 1984.

Morton, H., Infinitely many fibered knots having the same Alexander polynomial. Topology, 1978, 17, 101-104.
Mostow, G. D., Strong rigidity of locally symmetric spaces. In Annals of Mathematical Studies, Vol. 78. Princeton
University Press, 1973.

Neumann, W. D. and Zagier, D., Volumes of hyperbolic 3-manifolds. Topology, 1985, 24, 307-332.

Neumann, W. D. and Reid, A. W., Arithmetic of hyperbolic 3-Manifolds. In Topology 90, Proc. of Low-
dimensional Topology Conference, Ohio State Univ. De Gruyter, 1991, pp. 273-310.

Neumann, W. D. and Reid. A. W., Amalgamation and the invariant trace-field. Math. Proc. Camb. Phil. Soc.,
1991, 109, 509-515.

Otal. J.-P, Theoreme d’hyperbolisation de Thurston pour les varietes fibrees de dimension 3. Asterisque, 1996,
235,

Otal, J.-P,, Thurston’s hyperbolization theorem. Preprint.



734

46.

P. J. CALLAHAN and A. W. REID

Petronio, C., An algorithm producing hyperbolicity equations for a link complement in S°. Geom. Dedicata,
1992, 44, 67-104.

. Prasad, G., Strong rigidity of Q-rank 1 lattices. [nvent Math., 1973, 21, 255-286.
. Ratcliffe, J., Foundations of hyperbolic 3-manifolds. In Graduate Texts in Mathematics, Vol. 149. Springer, Berlin,

1994.

. Reid, A. W,, A note on trace-fields of Kleinian groups. Bull. Lond. Math. Soc., 1990, 22, 349-352.

. Reid, A. W,, Arithmeticity of knot complements. J. Lond. Math. Soc., 1991, 43, 2 171-184.

. Riley, R., Homomorphisms of knot groups on finite groups. Math. Comp., 1971, 2§, 603-619.

. Riley, R., Parabolic representations, Part 1. Proc. Lond. Math. Soc. 24(3), 217-242 (1972); Part 11, 31, 495-512

(1975).

. Riley, R., A quadratic parabolic group. Math. Proc. Camb. Phil. Soc, 1975, 77, 281-288.
. Riley, R, Seven excellent knots. In Low-Dimensional Topology, eds. R. Brown and T. Thickstun. London Math.

Soc. Lecture Note Series, Vol. 48, Cambridge Univ. Press, Cambridge, 1982, pp. 81-151.

. Riley, R., An elliptical path from parabolic representations to hyperbolic structures. In Lecture Notes in

Mathematics, Vol. 722. Springer, Heidelberg, 1979, pp. 99-133.

. Riley, R., A personal account of the discovery of hyperbolic structures on some knot complements. Preprint.

. Rolfsen, D., Knots and Links. Publish or Perish, Berkeley, 1976.

. Ruberman, D., Mutation and volumes of knots in S°. Jnvenr. Math., 1987, 90, 189-216.

. Sakuma, M. and Weeks, J., Examples of canonical decompositions of hyperbolic link complements. Japan. J.

Math., 1995, 21, 393-439.

. Smith, P A., Transformations of finite period. Ann. Math., 1938, 39, 127-164.
. Thistlethwaite, M., Knot tabulations and related topics. In Aspects of Topology, eds 1. M. James and E. H.

Kronheimer. London Math. Soc. Lecture Note Series 93, Cambridge Univ. Press, 1985, pp. 1-76.

. Thurston, W. P, The geometry and topology of 3-manifolds, Mimeographed notes, Princeton University, 1979.
. Thurston, W. P, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Am. Math. Soc.,

1982, 6, 357-381.

. Trotter, H., Non-invertible knots exist. Topology, 1963, 2, 275-280.

. Waldhausen, F.,, On irreducible 3-manifolds which are sufficiently large. Ann. Math., 1968, 87, 56-88.

. Weeks, J., Convex hulls and isometries of cusped hyperbolic 3-manifolds. Topology Applic., 1993, 52, 127-149.

. Weeks, J, SnapPea: A computer program for creating and studying hyperbolic 3-manifolds, available by

anonymous ftp from geom.umn.edu/pub/software/snappea/.

APPENDIX A

Fig. Al



Hyperbolic structures on knot complements 735

Kinoshita-Teresaka

APPENDIX B

Here we gather some information on hyperbolic knots through 8 crossings. In Table B1 below we collate some data
for the knots through 8 crossings from [57]. The nomenclature for the knot is that of {57}, and we give the volume if
hyperbolic together with the symmetry group and details of the number of ideal tetrahedra in a decomposition into
ideal tetrahedra. We give the minimal such number and the number in the canonical decomposition (recall Section
7). There is some overlap here with [9]. D, denotes the dihedral group of order 2n.

Here we give details on trace-fields of hyperbolic knot complements. We thank Craig Hodgson for providing this
data. The nomenclature is as above. We list the trace-fields as Q(x) by stating the irreducible polynomial of x, and list
an approximation to the particular root that is a primitive element. We also include the discriminant of the field.

4

minimum polynomial: x> — x + 1

numerical value of root: 0.5000000000000000 + 0.8660254037844386*i
discriminant: - 3.

5,

minimum polynomial: x* — x*+ 1

numerical value of root: 0.8774388331233463 — ().7448617666197442*;
discriminant: — 23

6

minimum polynomial: x*+x? — x+1

numerical value of root: 0.5474237945860586 — 0.5856519796895726*i
discriminant: 257

6,

minimum polynomial: x* — x*+x* = 2x"+x — 1

numerical value of root: 0.2765110734872844 - 0.7282366088878579*
discriminant: 1777

6;

minimum polynomial: x® — x* — x*+2x* — x+1
numerical value of root: 1.073949517852393 +(1.5587518814119368*i
discriminant: — 10571
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Table B1

Knot Volume Symmetry Number of tetrahedra:
group minimal/canonical

3, non-hyperbolic - -
4, 2.020883212819307 D, 212
5 non-hyperbolic - -
5, 2.828122088330783 D, 3/4
6, 3.163963228883144 D, 4/6
6, 4.400832516123046 D, 5/6
6, 5.693021091281301 D, 6/6
7 non-hyperbolic - -
7, 3.331744231641115 D, 4/8
I 4.592125697027063 D, 5/8
74 5.137941201873418 D, 6/8
75 6.443537380850573 D, 718
Ts 7.084925953510830 D, 8/8
7, 7.643375172359955 D, 8/8
8, 3.427205246274016 D, 5/10
8, 4.935242678280654 D, 6/10
8, 5.238684100798440 D, 6/10
8, 5.500486416347235 D, 6/10
85 6.997189147792215 D, 8/12
86 7.475237429505243 D, 8/10
8, 7.022196589095253 D, 8/10
8s 7.801341224440063 D, 9/10
8y 7.588180223641627 D, 8/10
80 8.651148558017082 z, 9/11
8 8.286316817806593 D, 9/10
812 8.935856927486689 D, 10/10
813 8.531232201460416 D, 9/10
814 9.217800316021929 D, 10/10
815 9.930648293796183 D, 11/12
816 10.579021916899270 Z, 11/14
817 10.985907606284820 Z, 12/16
81z 12.350906209158200 Dy 13/14
810 non-hyperbolic - -
80 4.124903251807676 Z, 5/5

8 6.783713519835127 D, 7/9

72

minimum polynomial: x* — x*+ x*+x — 1

numerical value of root: .9355375391547716 + 0.9039076887509032*;
discriminant: 4409

7

minimum polynomial: x® — x% +3x* — 2x* + 2x* — x — 1
numerical value of root: 0.4088024801541706 + 1.276376960703353*i
discriminant: 78301

74

minimum polynomial: x* +2x — 1

numerical value of root: — (.2266988257582018 + 1.467711508710224*i
discriminant: — 59

s

minimum polynomial: x® — x” — x°+ 2%+ x* — 2x*+2x — 1
numerical value of root: 1.031807435034724 + 0.6554697415289981 *
discriminant: — 4690927

7s

minimum polynomial: x® — x®+2x” — x®+3x° —x*+ 2x% +x +1
numerical value of root: 0.7289655571286424 + 0.9862947000577544%i
discriminant: 90320393



Hyperbolic structures on knot complements

7

minimum polynomial: x*+ x> — x + 1

numerical value of root: — 0.5474237945860586 — 1.120873489937059*i
discriminant: 257

8,

minimum polynomial: x® — x* +x*+2x> — x +1

numerical value of root: 0.9327887872637926 + 0.9516106941544145%;
discriminant: — 92051

8

minimum polynomial: x® — x7 + 3x® — 2x + 3x* — 2x° — 1

numerical value of root: 0.4735144841426650 — 1.273022302875877*i
discriminant: — 21309911

83

minimum polynomial: x® — x7 +5x° — 4x* + 7x* — 4x% + 2x2 + 1
numerical value of root: 0.1997987161331217 + 1.513664037530055%i
discriminant: 60020897

8,

minimum polynomial: x* — x* —4x” +3x®+5x° —x* - 2 — 2% +x— 1
numerical value of root: 1.491282033723026 — 0.2342960256675659%i
discriminant: 1160970913

85

minimum polynomial: x* — x*+2x* + x*+2

numerical value of root: 0.1955670593924672 + 1.002696950053226*i
discriminant: 8968

8

minimum polynomial: x'' —x™ +2x" ~ x¥+ d4x” — x®+4x* — x4 3P 4 2%+ 1
numerical value of root: 0.7832729376220480 — 0.9737056666570652*i
discriminant: — 303291012439

8

minimum polynomial: x"" — x' — 2x%+ 3x® + 2x” — 4x®+ 3x* — x* — x4+ 1
numerical value of root: 1.081079628832155 — 0.6317086402157812*i
discriminant: — 121118604943

8g

minimum polynomial: x'2 — x'' = x""+ 2x° + 3x® — dx” — 2x® +4x> + 2x% — 3x* — X%+ 1

numerical value of root: 0.9628867449383822 —~ (.8288503082039515%i
discriminant: 2885199252305

8y

minimum polynomial: x'? — x'" — 4x' + x¥ + 10x® + 2x7 — 12x® - 6x° + 7x* +4x° — 2x% + 1

numerical value of root: — 0.8475379649643470 + 0.8120675343521135%;
discriminant: 421901335721

81()

minimum polynomial: x'' — 2x" +4x® — 2x7 — 4x®+ 5x° + 2x* = Sx®+ x243x — 1

numerical value of root: 1.126054788892813 +0.7113551926043732*;
discriminant: — 170828814392

811

minimum polynomial: x'* — 2x” + 3x® — 4x7 +4x® — 5x" +5x* = 3x*+3x% — x+1
numerical value of root: 0.3219944529118927 + 0.7144205683007117%(
discriminant: — 2334727687

8,

minimum polynomial: x'* — 2x" +3x"? —dx" +4x" — Sx® + ¥ — TxT 4+ Ta® — Sx¥ +4xt — 47 + 302~ 2x 4+ 1

numerical value of root: 0.3846305385170291 + 0.9230706088052528*i
discriminant: — 15441795725579

737
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83

minimum polynomial: x'* — x" — 3x" 2+ dx' +4x' — 7u” — x84+ 6x7 — 2 - 2P+ 2t — x ¢ 1
numerical value of root: 1.142594143553751 + 0.5467624949107860*i

discriminant: -~ 759929100364387

Bia

minimum polynomial: x'* — x"+dx'? = 3x2+8x" — 6x" + 10x” — 7x® + 8x7 — 6x°+ 6x° — dx* +4x° ~ 2P+ 2x — 1
numerical value of root: 0.5940318154659677 + 1.095616780826736*i

discriminant: — 26196407237223439

815

minimum polynomial: x” — x® — x* + 2x* + x* = 2x* + x +1

numerical value of root: 1.139457724988333 + 0.6301696873026072*i
discriminant: — 1172888

8]6

minimum polynomial: x® — 2x*+2x? — x +1

numerical value of root: 1.417548120931355 — 0.4933740092574883*/
discriminant: 5501

8,

minimum polynomial:

X AT T A - M x P ex ' - Sy 4 570 - 21x% +36x® - 30x7 + 226 — 2307 + 18x* - TP+ 207 — 2x 4 1
numerical value of root: 0.98923482976437496 + 1.00826028978435916*;
discriminant: — 25277271113745568723

8ix

minimum polynomial: x* — 2x* + x> — 2x + 1

numerical value of root: — 0.2071067811865475 + 0.9783183434785159*;
discriminant; — 448

&

minimum polynomial: x° — x*+x? +2x? = 2x +1

numerical value of root: 0.4425377456177971 — 0.4544788918731118*i
discriminant: 5864

8

minimum polynomial: x* — x*+x+1
numerical value of root: 1.066120941155950 + 0.8640541908597383*i
discriminant: 392

We remark that the fields for the knots 6, and 7; are conjugates of each other, however the roots given generate
different subfields of the complex numbers.



