CUSPS OF MINIMAL NON-COMPACT ARITHMETIC HYPERBOLIC 3-ORBIFOLDS

TED CHINBURG, DARREN LONG, AND ALAN W. REID

Abstract

In this paper we count the number of cusps of minimal non-compact finite volume arithmetic hyperbolic 3-orbifolds. We show that for each N, the orbifolds of this kind which have exactly N cusps lie in a finite set of commensurability classes, but either an empty or an infinite number of isometry classes.

1. Introduction.

In this paper we count the number of cusps of minimal non-compact finite volume arithmetic hyperbolic 3-orbifolds. An orbifold of this kind is isometric to \mathbf{H}^{3} / Γ, where \mathbf{H}^{3} is hyperbolic upper half space and Γ is a maximal discrete arithmetic subgroup in $\mathrm{PGL}_{2}(k)$ for some imaginary quadratic field k.

It is well known (cf. $\S 3$ below) that the cusps of the orbifold \mathbf{H}^{3} / Γ correspond to Γ-equivalence classes of points of P_{k}^{1} under the action of $\mathrm{PGL}_{2}(k)$ on P_{k}^{1}. It is also well-known that if O_{k} is the ring of integers of the quadratic imaginary quadratic field k, then when $\Gamma=\operatorname{PSL}\left(2, O_{k}\right)$, the number of cusps of \mathbf{H}^{3} / Γ is the class number h_{k} of k. In particular, since there are only finitely many imaginary quadratic number fields of a fixed class number, for any given N there are only finitely orbifolds \mathbf{H}^{3} / Γ as above which have N cusps. However, there are examples of groups Γ commensurable with some $\operatorname{PSL}\left(2, O_{k}\right)$ for which \mathbf{H}^{3} / Γ has one cusp, but $h_{k} \neq 1$ (see for example [3]). The main objective of this paper is to study this phenomena and, more precisely, to generalize the result mentioned above in the case of $\operatorname{PSL}\left(2, O_{k}\right)$.

To state the main theorem, recall that in [1], Borel described for each pair $\left(S, S^{\prime}\right)$ of finite disjoint sets of finite places of k a discrete finite covolume subgroup $\Gamma_{S, S^{\prime}}$ of $\mathrm{PGL}_{2}(k)$. We recall the definition of $\Gamma_{S, S^{\prime}}$ in $\S 2$. Borel showed that each maximal finite covolume discrete subgroup of $\mathrm{PGL}_{2}(k)$ is conjugate to $\Gamma_{S, S^{\prime}}$ for some $\left(S, S^{\prime}\right)$.

The main result of this paper is:
Theorem 1.1. Let $C l(k)$ be the ideal class group of k. The number of cusps of $\mathbf{H} / \Gamma_{S, S^{\prime}}$ is

$$
2^{n} \frac{h_{k}}{h_{k, 2}}
$$

where h_{k} is the class number of $k, h_{k, 2}$ is the order of $C l(k) /(2 \cdot C l(k)), 0 \leq n \leq \# S$ and 2^{n} is the order of the subgroup of $C l(k) /(2 \cdot C l(k))$ generated by the classes of prime ideals determined by the places in S.

This Theorem and work of Siegel in [5] leads to a proof of the following Corollary.
Corollary 1.2. Let N be a positive integer, and let $C(N)$ be the set of isometry classes of minimal finite volume arithmetic hyperbolic three-orbifolds which have exactly N cusps.
a. Only finitely many commensurability classes are represented by the elements of $C(N)$.

[^0]b. If $C(N)$ is not empty, there are infinitely many elements of $C(N)$ which are commensurable to each element of $C(N)$.

The proof of part (a) of this Corollary is not effective, though it can be made effective up to at most one exceptional commensurability class using work of Tatuzawa in [6]. Finding an effective proof is equivalent to the problem of showing that there are only finitely many imaginary quadratic fields k such that $h / h_{k, 2}$ is bounded above by a given constant. Such a proof appears to be beyond present methods.

This paper is organized in the following way. In $\S 2$ we recall Borel's definition of $\Gamma_{S, S^{\prime}}$. In $\S 3$ we recall some well-known facts concerning cusps of non-compact arithmetic three-orbifolds. In $\S 4$ and $\S 5$ we analyze the cusps of certain orbifolds defined by congruence subgroups of $\Gamma_{S, S^{\prime}}$. This leads to the proof of Theorem 1.1 in $\S 6-\S 8$. The main techniques used in $\S 4-\S 8$ are Borel's work, the Strong Approximation Theorem for SL_{2}, and an argument of Swan [7] for constructing matrices satisfying various congruence conditions which send a prescribed point of P_{k}^{1} to another prescribed point. Corollary 1.2 is proved in $\S 9$.

2. Borel's subgroups.

Let k be an imaginary quadratic field, with ring of integers $O=O_{k}$. Let S and S^{\prime} be finite disjoint subsets of the set of all finite places v of k. For each such v, let k_{v} be the completion of k at v. Let π_{v} be a uniformizer in the ring of integers O_{v} of k_{v}. Define $\mathcal{D}_{v}=\operatorname{Mat}_{2}\left(O_{v}\right)$, and let \mathcal{D}_{v}^{\prime} be the maximal O_{v}-order of all matrices of the form

$$
M=\left(\begin{array}{cc}
a & \pi_{v} b \tag{2.1}\\
\pi_{v}^{-1} c & d
\end{array}\right)
$$

in which $a, b, c, d \in O_{v}$. Define $K_{1, v}=\mathrm{PGL}_{2}\left(O_{v}\right)$, so that $K_{1, v}$ is the image of \mathcal{D}_{v}^{*} in $\mathrm{PGL}_{2}\left(k_{v}\right)$. Let $K_{1, v}^{\prime}$ to be the image of $\mathcal{D}_{v}^{\prime *}$ in $P G L\left(2, k_{v}\right)$. Finally, let $K_{2, v}$ be the group generated by $K_{1, v} \cap K_{1, v}^{\prime}$ together with image in $\mathrm{PGL}_{2}\left(k_{v}\right)$ of the element

$$
w_{v}=\left(\begin{array}{cc}
0 & \pi_{v} \tag{2.2}\\
1 & 0
\end{array}\right)
$$

Then $K_{1, v}$ and $K_{1, v}^{\prime}$ are the stabilizers in $\mathrm{PGL}_{2}\left(k_{v}\right)$ of adjacent vertices of the Bruhat-Tits building of $\mathrm{SL}_{2}\left(k_{v}\right)$, and $K_{2, v}$ is the stabilizer the edge joining these vertices. In [1] Borel defines
(2.3) $\Gamma_{S, S^{\prime}}=\left\{g \in \mathrm{PGL}_{2}(k): g \in K_{2, v}\right.$ (resp. $K_{1, v}^{\prime}$, resp. $K_{1, v}$) if $v \in S$ (resp. $\left.\left.v \in S^{\prime}, v \notin S \cup S^{\prime}\right)\right\}$

It is shown in [1, Prop. 4.4] the every maximal arithmetic discrete subgroup of $\mathrm{PGL}_{2}(k)$ is conjugate to $\Gamma_{S, S^{\prime}}$ for some S and S^{\prime}. Not all of the $\Gamma_{S, S^{\prime}}$ need be maximal (cf. [1, §4.4]). By [1, Prop. 4.10, Thm. 4.6], the groups $\Gamma_{S, S^{\prime}}$ for a fixed S lie in finitely many conjugacy classes inside $\mathrm{PGL}_{2}(k)$, while as S varies these groups lie in infinitely many distinct conjugacy classes.

3. Cusps.

Suppose Γ is any discrete arithmetic subgroup of $\mathrm{PGL}_{2}(k)$ having finite covolume. An element $\sigma \in \Gamma$ is parabolic if it fixes a unique point of P_{C}^{1}, and such a fixed point is called a cusp of Γ (compare [4, p. 7-8]). The cusps of the orbifold \mathbf{H}^{3} / Γ are the Γ-equivalence classes of cusps of Γ.

Lemma 3.1. The cusps of Γ are the points in $P_{k}^{1}=k \cup\{\infty\}$, so that the cusps of \mathbf{H}^{3} / Γ are the orbits of Γ acting on P_{k}^{1}.
Proof: We first show that Γ has the same cusps as any group Γ^{\prime} commensurable to Γ. For this, it will suffice to consider the case in which Γ^{\prime} has finite index in Γ. Clearly the cusps of Γ^{\prime} are cusps for Γ. Conversely, suppose z is a cusp of Γ, so z is the only point of $\mathrm{P}_{\mathrm{C}}^{1}$ fixed by a parabolic element $\sigma \in \Gamma$. Then σ^{n} is a parabolic element of Γ^{\prime} fixing z when $n=\left[\Gamma: \Gamma^{\prime}\right]$, so z is also a cusp of Γ^{\prime}. We can thus reduce to the case in which $\Gamma=\Gamma_{S, S^{\prime}}$ for some S and S^{\prime}.

Suppose z is a cusp of $\Gamma_{S, S^{\prime}} \subset \mathrm{PGL}_{2}(k)$. Since z is the only fixed point of some $M \in G L_{2}(k)$ acting on $\mathrm{P}_{\mathbf{C}}^{1}$, the quadratic formula implies that z must lie in P_{k}^{1}. Thus we now must show each $z \in \mathrm{P}_{k}^{1}$ is a cusp.

If b is a sufficiently divisible non-zero element of O, the matrix

$$
M=\left(\begin{array}{ll}
1 & b \tag{3.1}\\
0 & 1
\end{array}\right)
$$

defines a parabolic element of $\Gamma_{S, S^{\prime}}$ which fixes ∞, so ∞ is a cusp of $\Gamma_{S, S^{\prime}}$. Suppose now that $z \in k \subset \mathrm{P}_{k}^{1}$. There is then a matrix T in $\mathrm{GL}_{2}(k)$ such that $T \cdot \infty=z$. This implies z is a cusp of the discrete group $T \Gamma_{S, S^{\prime}} T^{-1}$, since $T M T^{-1}$ defines a parabolic element of this group fixing z. However, $T \Gamma_{S, S^{\prime}} T^{-1}$ and $\Gamma_{S, S^{\prime}}$ are commensurable, so they have the same cusps, which proves the Lemma.

In the following sections we analyze equivalence classes of cusps under the action of various subgroups Γ of $\Gamma_{S, S^{\prime}}$.

4. The principal congruence subgroup of $\Gamma_{S, S^{\prime}}$.

We consider in this section the following subgroup of $\Gamma_{S, S^{\prime}}$.
Definition 4.1. Let I be the two-by-two identity matrix. Define $\Gamma\left(S, S^{\prime}\right)$ to be the subgroup of elements of $\Gamma_{S, S^{\prime}} \subset \mathrm{PGL}_{2}(k)$ which are the images of matrices $M \in \mathrm{GL}_{2}(k)$ such that $M-I \in$ $\pi_{v} \operatorname{Mat}_{2}\left(O_{v}\right)$ for $v \in S, M \in \mathcal{D}_{v}^{\prime *}$ for $v \in S^{\prime}$ and $M \in \mathrm{GL}_{2}\left(O_{v}\right)$ for $v \notin S \cup S^{\prime}$.

We will first describe the $\Gamma\left(S, S^{\prime}\right)$-equivalent cusps of $\Gamma\left(S, S^{\prime}\right)$. By Lemma 3.1, this is the same as describing the cusps of $\mathbf{H}^{3} / \Gamma\left(S, S^{\prime}\right)$, and the orbits of $\Gamma\left(S, S^{\prime}\right)$ acting on P_{k}^{1}.

Define $\mathcal{I}(k)$ to be the multiplicative group of fractional ideals of k. For v a finite place of k, let $\mathcal{P}(v)$ be the prime ideal of O determined by v. If T is a finite set of finite places of k, define $\mathcal{P}(T)=\prod_{v \in T} \mathcal{P}(v)$. Define $L^{\prime}(S)$ to be the set of triples $\left(J, \alpha_{0}, \alpha_{1}\right)$ in which $J \in \mathcal{I}(k)$ and α_{0} and α_{1} are generators of $J /(\mathcal{P}(S) \cdot J)$ as a finite O-module. An element $\lambda \in k^{*}$ acts on $L^{\prime}(S)$ by sending $\left(J, \alpha_{0}, \alpha_{1}\right)$ to $\left(\lambda \cdot J, \lambda \cdot \alpha_{0}, \lambda \cdot \alpha_{1}\right)$. Define $L(S)=L^{\prime}(S) / k^{*}$ to be the set of orbits in $L^{\prime}(S)$ under this action of k^{*}.

Definition 4.2. Define a map $\Psi: P^{1}(k) \rightarrow L(S)$ in the following way. Fix an element $t\left(S, S^{\prime}\right) \in$ $\mathcal{P}\left(S^{\prime}\right)$ such that the ideal $t\left(S, S^{\prime}\right) O$ equals $\mathcal{P}\left(S^{\prime}\right) \cdot \mathcal{A}$ for some ideal \mathcal{A} prime to $\mathcal{P}\left(S \cup S^{\prime}\right)$. Suppose $\left(x_{0}: x_{1}\right)$ are homogeneous coordinates for a point of $P^{1}(k)$. Define J to be the fractional O-ideal $O \cdot x_{0}+\mathcal{P}\left(S^{\prime}\right) \cdot x_{1}$ of k. Let $\beta_{0}=x_{0}$ and $\beta_{1}=t\left(S, S^{\prime}\right) x_{1}$, so that β_{0} and β_{1} are elements of J. Define α_{i} to be the image of β_{i} in $J /(\mathcal{P}(S) \cdot J)$ for $i=0,1$. Define

$$
\begin{equation*}
\Psi\left(\left(x_{0}: x_{1}\right)\right)=\left[\left(J, \alpha_{0}, \alpha_{1}\right)\right] \tag{4.1}
\end{equation*}
$$

to be the class of $\left(J, \alpha_{0}, \alpha_{1}\right)$ in $L(S)$. The other homogeneous coordinates for $\left(x_{0}: x_{1}\right)$ have the form $\left(\lambda \cdot x_{0}: \lambda \cdot x_{1}\right)$ for some $\lambda \in k^{*}$, so Ψ is well-defined.

Proposition 4.3. The map Ψ is surjective, and its fibers are exactly the $\Gamma\left(S, S^{\prime}\right)$-equivalent cusps of $\Gamma\left(S, S^{\prime}\right)$.

Proof: Let us first check surjectivity. Suppose $\left(J, \alpha_{0}, \alpha_{1}\right) \in L^{\prime}(S)$. We first claim that there is an $x_{1} \in k^{*}$ such that $\mathcal{P}\left(S^{\prime}\right) \cdot x_{1} \subset J$ and $t\left(S, S^{\prime}\right) x_{1} \in J$ has class α_{1} in $J /(\mathcal{P}(S) \cdot J)$. Such an x_{1} exists because we can find an $x_{1} \in \mathcal{P}\left(S^{\prime}\right)^{-1} J$ satisfying the appropriate congruence conditions at the places in S because S and S^{\prime} are disjoint. Choose $x_{0} \in J$ to have class α_{0} in $J /(\mathcal{P}(S) \cdot J)$, and so that $O_{v} \cdot x_{0}=O_{v} \cdot J$ for the finitely many finite places v of k which are not in S where $O_{v} \cdot \mathcal{P}\left(S^{\prime}\right) x_{1}$ is not equal to $O_{v} \cdot J$. We can find such an x_{0} since these conditions amount to congruence conditions at a finite set of finite places of k. We show $\Psi\left(\left(x_{0}: x_{1}\right)\right)$ is the class of $\left(J, \alpha_{0}, \alpha_{1}\right)$ in $L(S)$. By construction, x_{0} has class α_{0} in $J / \mathcal{P}(S) J$, while $t\left(S, S^{\prime}\right) x_{1}$ has class α_{1} in $J /(\mathcal{P}(S) \cdot J)$. Hence we only have to check that $J^{\prime}=O \cdot x_{0}+\mathcal{P}\left(S^{\prime}\right) x_{1}$ is equal to J. Clearly $J^{\prime} \subset J$. Since $\alpha_{0} \equiv x_{0}$ and $\alpha_{1} \equiv t\left(S, S^{\prime}\right) x_{1}$ together generate $J /(\mathcal{P}(S) \cdot J)$ as an O-module, we have $O_{v} \cdot J^{\prime}=O_{v} \cdot J$ if $v \in S$.

However, for $v \notin S$, we chose x_{0} so that $O_{v} \cdot x_{0}=O_{v} \cdot J$ if $O_{v} \cdot \mathcal{P}\left(S^{\prime}\right) x_{1}$ is not equal to $O_{v} \cdot J$. Thus $O_{v} \cdot J^{\prime}=O_{v} \cdot J$ for all such v, and we conclude $J^{\prime}=J$.

We now consider the fibers of Ψ. Suppose $\left(x_{0}: x_{1}\right)$ and $\left(x_{0}^{\prime}: x_{1}^{\prime}\right)$ are two points having the same image under Ψ. After multiplying x_{0}^{\prime} and x_{1}^{\prime} by a suitable $\lambda \in k^{*}$, we can assume the following is true:

$$
\begin{gather*}
J=O x_{0}+\mathcal{P}\left(S^{\prime}\right) x_{1}=O x_{0}^{\prime}+\mathcal{P}\left(S^{\prime}\right) x_{1}^{\prime} \tag{4.2}\\
x_{0} \equiv x_{0}^{\prime} \equiv \alpha_{0} \bmod \mathcal{P}(S) J \tag{4.3}
\end{gather*}
$$

and

$$
\begin{equation*}
t\left(S, S^{\prime}\right) x_{1} \equiv t\left(S, S^{\prime}\right) x_{1}^{\prime} \equiv \alpha_{1} \bmod \mathcal{P}(S) J \tag{4.4}
\end{equation*}
$$

We wish to show that there is a matrix $M \in \mathrm{GL}_{2}(k)$ such that

$$
\begin{equation*}
M \cdot\binom{x_{0}}{x_{1}}=\binom{x_{0}^{\prime}}{x_{1}^{\prime}} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{gather*}
M-I \in \pi_{v} \operatorname{Mat}_{2}\left(O_{v}\right) \text { for } \quad v \in S \tag{4.6}\\
M \in \mathcal{D}_{v}^{\prime *} \text { for } \quad v \in S^{\prime} \tag{4.7}\\
M \in \mathrm{GL}_{2}\left(O_{v}\right) \text { for } \quad v \notin S \cup S^{\prime} \tag{4.8}
\end{gather*}
$$

We adapt an argument of Swan in [7, Prop. 3.10] to construct M. There are two exact sequences of O-modules

$$
\begin{align*}
& 0 \longrightarrow \mathcal{A} \longrightarrow O \oplus \mathcal{P}\left(S^{\prime}\right) \xrightarrow{l^{\prime}} J \rightarrow 0 \tag{4.9}\\
& 0 \longrightarrow \mathcal{B} \longrightarrow O \oplus \mathcal{P}\left(S^{\prime}\right) \xrightarrow{l} J \rightarrow 0 \tag{4.10}
\end{align*}
$$

in which l and l^{\prime} are defined for $(a, b) \in O \oplus \mathcal{P}\left(S^{\prime}\right)$ by

$$
\begin{equation*}
l(a, b)=a x_{0}+b x_{1} \quad \text { and } \quad l^{\prime}(a, b)=a x_{0}^{\prime}+b x_{1}^{\prime} \tag{4.11}
\end{equation*}
$$

Since J is a projective O-module, these sequences split, giving isomorphisms

$$
\begin{equation*}
O \oplus \mathcal{P}\left(S^{\prime}\right)=J \oplus \mathcal{A} \quad \text { and } \quad O \oplus \mathcal{P}\left(S^{\prime}\right)=J \oplus \mathcal{B} \tag{4.12}
\end{equation*}
$$

Again using the fact that O is a Dedekind ring, these isomorphisms imply that there is an isomorphism $\phi: \mathcal{A} \rightarrow \mathcal{B}$ of projective rank one O-modules.

Let s be a unit of O, and suppose $W \in \operatorname{Hom}_{O}(J, \mathcal{B})$. We define an O-linear map

$$
\begin{equation*}
\theta_{s, W}: O \oplus \mathcal{P}\left(S^{\prime}\right)=J \oplus \mathcal{A} \rightarrow J \oplus \mathcal{B}=O \oplus \mathcal{P}\left(S^{\prime}\right) \tag{4.13}
\end{equation*}
$$

by

$$
\begin{equation*}
\theta_{s, W}(j \oplus a)=j \oplus(s \phi(a)+W(j)) \tag{4.14}
\end{equation*}
$$

for $j \in J$ and $a \in \mathcal{A}$. Then $\theta_{s, W}$ fits into a commutative diagram

Since $s \phi$ is an isomorphism, and $1: J \rightarrow J$ is the identity map, we conclude that $\theta_{s, W}$ in an automorphism. Furthermore, $\operatorname{det}_{O}\left(\theta_{s, W}\right)=s \cdot \operatorname{det}_{O}\left(\theta_{1, W}\right)=s \cdot \operatorname{det}_{O}\left(\theta_{1,0}\right)$ is independent of the choice of W, so we can choose s (depending on ϕ) so that $\operatorname{det}\left(\theta_{s, W}\right)=1$ for all W.

Define

$$
M_{s, W}=\left(\begin{array}{ll}
\alpha & \beta \tag{4.16}\\
\gamma & \delta
\end{array}\right)
$$

to be the matrix of $\theta_{s, W}$ when we view elements of $O \oplus \mathcal{P}\left(S^{\prime}\right) \subset K \oplus K$ as column vectors. Here

$$
\begin{align*}
\alpha \in \operatorname{Hom}_{O}(O, O) & =O \\
\beta \in \operatorname{Hom}_{O}\left(\mathcal{P}\left(S^{\prime}\right), O\right) & =\mathcal{P}\left(S^{\prime}\right)^{-1}, \tag{4.17}\\
\gamma \in \operatorname{Hom}_{O}\left(O, \mathcal{P}\left(S^{\prime}\right)\right) & =\mathcal{P}\left(S^{\prime}\right) \\
\delta \in \operatorname{Hom}_{O}\left(\mathcal{P}\left(S^{\prime}\right), \mathcal{P}\left(S^{\prime}\right)\right) & =O .
\end{align*}
$$

Thus the transpose $M_{s, W}^{t r}$ of $M_{s, W}$ is an element of $\mathrm{SL}_{2}(k)$ satisfying conditions (4.7) and (4.8), while $M_{s, W}^{t r} \in \mathrm{SL}_{2}\left(O_{v}\right)$ for $v \in S$. The commutativity of (4.15) shows

$$
\begin{equation*}
x_{0}^{\prime}=l^{\prime}\binom{1}{0}=l\left(M_{s, W} \cdot\binom{1}{0}\right)=l\binom{\alpha}{\gamma}=\alpha x_{0}+\gamma x_{1} \tag{4.18}
\end{equation*}
$$

and

$$
\begin{equation*}
t\left(S, S^{\prime}\right) x_{1}^{\prime}=l\left(M_{s, W} \cdot\binom{0}{t\left(S, S^{\prime}\right)}\right)=l\binom{\beta \cdot t\left(S, S^{\prime}\right)}{\delta \cdot t\left(S, S^{\prime}\right)}=\beta \cdot t\left(S, S^{\prime}\right) \cdot x_{0}+\delta \cdot t\left(S, S^{\prime}\right) \cdot x_{1} \tag{4.19}
\end{equation*}
$$

This gives the matrix equation

$$
M_{s, W}^{t r} \cdot\binom{x_{0}}{x_{1}}=\left(\begin{array}{cc}
\alpha & \gamma \tag{4.20}\\
\beta & \delta
\end{array}\right) \cdot\binom{x_{0}}{x_{1}}=\binom{x_{0}^{\prime}}{x_{1}^{\prime}}
$$

We now show that we can choose $W \in \operatorname{Hom}_{O}(J, \mathcal{B})$ so that $M_{s, W}^{t r}=M$ will satisfy (4.6), i.e. so that $M-I \in \pi_{v} \operatorname{Mat}_{2}\left(O_{v}\right)$ for $v \in S$. This will complete the proof that cusps having the same image under Ψ are $\Gamma\left(S, S^{\prime}\right)$-equivalent.

For $v \in S$, let $k(v)=O / \mathcal{P}(v)$ and let J_{v} be the localization of J at v, Since $t\left(S, S^{\prime}\right) \in O_{v}^{*}$ and $t\left(S, S^{\prime}\right) x_{1} \in J$, we have $x_{1} \in J_{v}$ for $v \in S$. Define $\beta_{i, v}$ be the image of x_{i} in the onedimensional $k(v)$-vector space $J(v)=J_{v} / \mathcal{P}(v) J_{v}$. From (4.20), (4.3) and (4.4) we know that for $v \in S, M_{s, W}^{t r} \in \mathrm{SL}_{2}\left(O_{v}\right)$ fixes the vector $\beta(v)=\left(\beta_{0, v}, \beta_{1, v}\right)$ in $J(v) \oplus J(v)$. This $\beta(v)$ is not the zero vector, since α_{0} and α_{1} together generate $J / \mathcal{P}(S) J$ and $\alpha_{0}=x_{0} \bmod \mathcal{P}(S) J$ and $\alpha_{1}=t\left(S, S^{\prime}\right) x_{1}$ $\bmod \mathcal{P}(S) J$. Thus the image $M_{s, W, v}^{t r}$ of $M_{s, W}^{t r}$ in $\mathrm{SL}_{2}(k(v))$ lies in the stabilizer of $\beta(v)$, and this stabilizer has order $\# k(v)$ since $\beta(v)$ is non-zero. Letting v range over S, we see that the image of $M_{s, W}^{t r}$ in $T=\prod_{v \in S} \mathrm{SL}_{2}(k(v))$ lies in a subgroup of matrices which has order $N=\prod_{v \in S} \# k(v)$. However, as W ranges over $\operatorname{Hom}(J, \mathcal{B})$, the image of $M_{s, W}^{t r}$ in T also ranges over a set of N matrices, since each of J and \mathcal{B} are rank one projective O-modules. It follows that we can choose W so that $M_{s, W}^{t r}$ has image the identity element of T, as required.

The last statement we have to prove is that $\Gamma\left(S, S^{\prime}\right)$-equivalent cusps have the same image under Ψ. Suppose $M=M_{s, W}^{t r}$ satisfies (4.20) and has the properties described in Definition (4.1). It will suffice to show (4.2), (4.3) and (4.4) hold. For (4.2), observe that the containments in (4.17) show

$$
\begin{equation*}
O x_{0}^{\prime}+\mathcal{P}\left(S^{\prime}\right) x_{1}^{\prime}=O\left(\alpha \cdot x_{0}+\gamma \cdot x_{1}\right)+\mathcal{P}\left(S^{\prime}\right)\left(\beta \cdot x_{0}+\delta \cdot x_{1}\right) \subset O x_{0}+\mathcal{P}\left(S^{\prime}\right) x_{1} \tag{4.21}
\end{equation*}
$$

Since M^{-1} also satisfies the conditions in (4.1) and takes the cusp $\left(x_{0}^{\prime}: x_{1}^{\prime}\right)$ back to $\left(x_{0}: x_{1}\right)$, we can interchange $\left(x_{0}^{\prime}: x_{1}^{\prime}\right)$ and $\left(x_{0}: x_{1}\right)$ to conclude that (4.2) holds. The proof of (4.3) and (4.4) is similar using the properties of M in Definition (4.1).

5. The Borel congruence subgroup of $\Gamma_{S, S^{\prime}}$.

We consider in this section the following subgroup of $\Gamma_{S, S^{\prime}}$.
Definition 5.1. For v a finite place of k, let $B_{v} \subset \mathrm{GL}_{2}\left(O_{v}\right)$ be the subgroup of invertible matrices of the form

$$
\left(\begin{array}{cc}
a & \pi_{v} b \tag{5.1}\\
c & d
\end{array}\right)
$$

in which $a, b, c, d \in O_{v}$. Define $\Gamma_{0}\left(S, S^{\prime}\right)$ to be the subgroup of elements of $\Gamma_{S, S^{\prime}} \subset \mathrm{PGL}_{2}(k)$ which are the images of matrices $M \in \mathrm{GL}_{2}(k)$ such that that $M \in B_{v}$ for $v \in S, M \in \mathcal{D}_{v}^{\prime *}$ for $v \in S^{\prime}$ and $M \in \mathrm{GL}_{2}\left(O_{v}\right)$ for $v \notin S \cup S^{\prime}$.

Note that the image of B_{v} in $\mathrm{PGL}_{2}\left(k_{v}\right)$ is the group $K_{1, v} \cap K_{1, v}^{\prime}$ defined in $\S 2$. Thus $\Gamma_{0}\left(S, S^{\prime}\right) \subset$ $\Gamma_{S, S^{\prime}}$, while $\Gamma\left(S, S^{\prime}\right) \subset \Gamma_{0}\left(S, S^{\prime}\right)$.
Definition 5.2. Define $L_{0}(S)$ to be the set of pairs $\left([J],\left\{\beta_{v}\right\}_{v \in S}\right)$ in which $[J]$ is an element of the ideal class group of k, and for each $v \in S, \beta_{v}$ is either 0 or 1. Define $r: L(S) \rightarrow L_{0}(S)$ to be the map which sends a triple $\left(J, \alpha_{0}, \alpha_{1}\right) \in L^{\prime}(S)$ representing an element of $L(S)$ to $\left([J],\left\{\beta_{v}\right\}_{v \in S}\right)$, where $[J]$ is the ideal class of $J \in I(k)$, and $\beta_{v}=0\left(\right.$ resp. 1) if $\alpha_{0} \equiv 0 \bmod \pi_{v} J\left(\right.$ resp. if $\alpha_{0} \not \equiv 0$ $\left.\bmod \pi_{v} J\right)$.
Proposition 5.3. Let $\Psi: \mathrm{P}_{k}^{1} \rightarrow L(S)$ be the map of Proposition 4.3. The composition $r \circ \Psi: \mathrm{P}_{k}^{1} \rightarrow$ $L_{0}(S)$ is surjective, and the fibers of this map are the $\Gamma_{0}\left(S, S^{\prime}\right)$-equivalent cusps of $\Gamma_{0}\left(S, S^{\prime}\right)$.

Proof: Recall that $L^{\prime}(S)$ consists of the triples $\left(J, \alpha_{0}, \alpha_{1}\right)$ in which $J \in I(k)$ and α_{0} and α_{1} are generators of $J / \mathcal{P}(S) J$. Since $\mathcal{P}(S)=\prod_{v \in S} \mathcal{P}(v)$, we see that we can choose α_{0} and α_{1} to have prescribed classes $\alpha_{0}(v), \alpha_{1}(v) \in J / \mathcal{P}(v)$ as v ranges over S provided that for no such v are both $\alpha_{0}(v)$ and $\alpha_{1}(v)$ trivial. This implies r is surjective, so $r \circ \Psi$ is surjective by Proposition 4.3.

Consider now the action of a matrix $M \in \mathrm{GL}_{2}(k)$ satisfying the hypotheses of Definition 5.1 on $\Psi\left(x_{0}: x_{1}\right)=\left[\left(J, \alpha_{0}, \alpha_{1}\right)\right] \in L(S)$, where $\left(J, \alpha_{0}, \alpha_{1}\right) \in L^{\prime}(S)$ is as in Definition 4.2 and $\left[\left(J, \alpha_{0}, \alpha_{1}\right)\right]$ is the class of $\left(J, \alpha_{0}, \alpha_{1}\right)$ in $L(S)$. From $J=O \cdot x_{0}+\mathcal{P}\left(S^{\prime}\right) \cdot x_{1}$ and the hypotheses on M we see that $J=O \cdot x_{0}^{\prime}+\mathcal{P}\left(S^{\prime}\right) \cdot x_{1}^{\prime}$ when

$$
\begin{equation*}
\binom{x_{0}^{\prime}}{x_{1}^{\prime}}=M \cdot\binom{x_{0}}{x_{1}} \tag{5.2}
\end{equation*}
$$

Recall that α_{0} (resp. α_{1}) is the image in $J / \mathcal{P}(S)$ of x_{0} (resp. $\left.t\left(S, S^{\prime}\right) x_{1}\right)$. Suppose

$$
M=\left(\begin{array}{ll}
a & b \tag{5.3}\\
c & d
\end{array}\right)
$$

Define

$$
M^{\prime}=\left(\begin{array}{cc}
a & b \cdot t\left(S, S^{\prime}\right)^{-1} \tag{5.4}\\
t\left(S, S^{\prime}\right) c & d
\end{array}\right)
$$

We find from (5.2) that $\Psi\left(x_{0}^{\prime}: x_{1}^{\prime}\right)=\left(J, \alpha_{0}^{\prime}, \alpha_{1}^{\prime}\right)$, where α_{0}^{\prime} and α_{1}^{\prime} are elements of $J / \mathcal{P}(S)$ given by the following residue classes $\alpha_{0}^{\prime}(v), \alpha_{1}^{\prime}(v) \in J_{v} / \mathcal{P}(v) J_{v}=J / \mathcal{P}(v) J$ for $v \in S$:

$$
\begin{equation*}
\binom{\alpha_{0}^{\prime}(v)}{\alpha_{1}^{\prime}(v)}=M^{\prime} \cdot\binom{\alpha_{0}(v)}{\alpha_{1}(v)} \tag{5.5}
\end{equation*}
$$

The number $t\left(S, S^{\prime}\right) \in k$ is a unit at each $v \in S$, so $M^{\prime} \in B_{v}$ for such v because $M \in B_{v}$. Thus

$$
\begin{equation*}
a, d \in O_{v}^{*}, \quad b t\left(S, S^{\prime}\right)^{-1} \in \pi_{v} O_{v} \quad \text { and } \quad t\left(S, S^{\prime}\right) c \in O_{v} \tag{5.6}
\end{equation*}
$$

This implies $\alpha_{0}^{\prime}(v)=0$ if and only if $\alpha_{0}(v)=0$. It follows that $r \circ \Psi\left(x_{0}: x_{1}\right)=r \circ \Psi\left(x_{0}^{\prime}: x_{1}^{\prime}\right)$, so $\Gamma_{0}\left(S, S^{\prime}\right)$-equivalent cusps have the same image under $r \circ \Psi$.

To complete the proof of Proposition 5.3, we have to show that two points $\left(x_{0}: x_{1}\right)$ and $\left(x_{0}^{\prime}: x_{1}^{\prime}\right)$ with the same image under $r \circ \Psi$ are $\Gamma_{0}\left(S, S^{\prime}\right)$-equivalent. After multiplying x_{0}^{\prime} and x_{1}^{\prime} by a suitable scalar, we can assume

$$
\begin{equation*}
J=O \cdot x_{0}+\mathcal{P}\left(S^{\prime}\right) \cdot x_{1}=O \cdot x_{0}^{\prime}+\mathcal{P}\left(S^{\prime}\right) \cdot x_{1}^{\prime} \tag{5.7}
\end{equation*}
$$

Furthermore, on defining $\alpha_{0}(v), \alpha_{1}(v), \alpha_{0}^{\prime}(v)$ and $\alpha_{1}^{\prime}(v)$ to be the images of $x_{0}, t\left(S, S^{\prime}\right) x_{1}, x_{0}^{\prime}$ and $t\left(S, S^{\prime}\right) x_{1}^{\prime}$ in $J / \mathcal{P}(v) J$, we see that $\alpha_{0}(v)=0$ if and only if $\alpha_{0}^{\prime}(v)=0$ for $v \in S$, since $r \circ \Psi\left(x_{0}: x_{1}\right)=r \circ \Psi\left(x_{0}^{\prime}: x_{1}^{\prime}\right)$. Furthermore, $\alpha_{1}(v) \neq 0$ if $\alpha_{0}(v)=0$, and similarly $\alpha_{1}^{\prime}(v) \neq 0$ if $\alpha_{0}^{\prime}(v)=0$. This implies there is a lower triangular matrix $m_{v} \in \mathrm{SL}_{2}\left(O_{v} / \pi_{v} O_{v}\right)$ such that

$$
\begin{equation*}
\binom{\alpha_{0}^{\prime}(v)}{\alpha_{1}^{\prime}(v)}=m_{v} \cdot\binom{\alpha_{0}(v)}{\alpha_{1}(v)} \tag{5.8}
\end{equation*}
$$

We now use the Strong Approximation Theorem for SL_{2} to conclude that there is $M \in \mathrm{SL}_{2}(K)$ which satisfies the hypotheses of Definition 5.1 such that when we write M in the form (5.3) and let
M^{\prime} be as in (5.4), then $M^{\prime} \in \mathrm{SL}_{2}\left(O_{v}\right)$ for $v \in S$ satisfies the congruence $M^{\prime} \equiv m_{v} \bmod \pi_{v} \operatorname{Mat}_{2}\left(O_{v}\right)$. We conclude from this that

$$
\Psi\left(M \cdot\left(x_{0}: x_{1}\right)\right)=\Psi\left(x_{0}^{\prime}: x_{1}^{\prime}\right)
$$

so that $M \cdot\left(x_{0}: x_{1}\right)$ and $\left(x_{0}^{\prime}: x_{1}^{\prime}\right)$ are $\Gamma\left(S, S^{\prime}\right)$-equivalent cusps by Proposition 4.3. Since $\Gamma\left(S, S^{\prime}\right) \subset$ $\Gamma_{0}\left(S, S^{\prime}\right)$ and $M \cdot\left(x_{0}: x_{1}\right)$ is $\Gamma_{0}\left(S, S^{\prime}\right)$ equivalent to $\left(x_{0}: x_{1}\right)$ by our construction of M, this proves $\left(x_{0}: x_{1}\right)$ and $\left(x_{0}^{\prime}: x_{1}^{\prime}\right)$ are $\Gamma_{0}\left(S, S^{\prime}\right)$-equivalent cusps.

Corollary 5.4. The number of $\Gamma_{0}\left(S, S^{\prime}\right)$-equivalence classes of cusps of $\Gamma_{0}\left(S, S^{\prime}\right)$ is $2^{\# S} h_{k}$, where h_{k} is the class number of k.

6. $\Gamma_{S, S^{\prime}}$-INEQUIVALENT CUSPS.

In this section we will prove Theorem 1.1. The proof is based on the following two results, which will be proved in $\S 7$ and $\S 8$, respectively.
Proposition 6.1. Let $C_{0}\left(S, S^{\prime}\right)$ be the set of $\Gamma_{0}\left(S, S^{\prime}\right)$-equivalence classes of points of P_{k}^{1}. Since $\Gamma_{0}\left(S, S^{\prime}\right) \subset \Gamma_{S, S^{\prime}}$, the group $\Gamma_{S, S^{\prime}}$ acts on $C_{0}\left(S, S^{\prime}\right)$. Each $\Gamma_{S, S^{\prime}-\text { orbit in } C_{0}}\left(S, S^{\prime}\right)$ has $\left[\Gamma_{S, S^{\prime}}: \Gamma_{0}\left(S, S^{\prime}\right)\right]$ elements.

Proposition 6.2. Define $h_{k, 2}$ to be the order of $C l(k) /(2 C l(k))$ where $C l(k)$ is the class group of k. Define 2^{n} to be the order of the subgroup of $C l(k) /(2 \cdot C l(k))$ generated by the classes of primes ideals determined by the places in S. Then $0 \leq n \leq \# S$ and

$$
\begin{equation*}
\left[\Gamma_{S, S^{\prime}}: \Gamma_{0}\left(S, S^{\prime}\right)\right]=2^{\# S-n} h_{k, 2} \tag{6.1}
\end{equation*}
$$

Theorem 1.1 is a consequence of these results in the following way. By Lemma 3.1 the set of $\Gamma_{S, S^{\prime} \text {-orbits in }} C_{0}\left(S, S^{\prime}\right)$ is the set of $\Gamma_{S, S^{\prime}}$-equivalence classes of cusps of $\Gamma_{S, S^{\prime}}$. Corollary 5.4 together with Propostions 6.1 and 6.2 show this number is

$$
\begin{equation*}
\frac{2^{\# S} h_{k}}{2^{\# S-n} h_{k, 2}}=2^{n} \frac{h_{k}}{h_{k, 2}} \tag{6.2}
\end{equation*}
$$

as stated in Theorem 1.1.

7. Proof of Proposition 6.1.

We will need several Lemmas.
Lemma 7.1. To prove Proposition 6.1, it will suffice to show the following. Suppose
(7.1) $\sigma \in \Gamma_{S, S^{\prime}}, \quad\left(x_{0}: x_{1}\right) \in \mathrm{P}_{k}^{1}, \quad\left(x_{0}^{\prime}: x_{1}^{\prime}\right)=\sigma \cdot\left(x_{0}: x_{1}\right) \quad$ and $\quad r \circ \Psi\left(x_{0}: x_{1}\right)=r \circ \Psi\left(x_{0}^{\prime}: x_{1}^{\prime}\right)$.

Then σ lies in $\Gamma_{0}\left(S, S^{\prime}\right)$.
Proof: This is clear from Proposition 5.3, which showed that the map $r \circ \Psi: \mathrm{P}_{k}^{1} \rightarrow L_{0}(S)$ has fibers equal to the elements of $C_{0}\left(S, S^{\prime}\right)$.

We will assume from now on that hypothesis (7.1) holds.
Definition 7.2. Let $\left(J, \alpha_{0}, \alpha_{1}\right)$ be the triple associated in Definition 4.2 to the ordered pair $\left(x_{0}, x_{1}\right)$ of elements of k which are not both 0 . Thus $J=O x_{0}+\mathcal{P}\left(S^{\prime}\right) x_{1}$, and α_{0} and α_{1} are the classes of x_{0} and $t\left(S, S^{\prime}\right) x_{1}$ in $J / \mathcal{P}(S) J$. The class $\left[\left(J, \alpha_{0}, \alpha_{1}\right)\right]$ of $\left(J, \alpha_{0}, \alpha_{1}\right)$ in $L(S)$ is equal to $\Psi\left(x_{0}: x_{1}\right)$. Write

$$
\binom{x_{0}^{\prime}}{x_{1}^{\prime}}=M \cdot\binom{x_{0}}{x_{1}}
$$

for some matrix $M \in \mathrm{GL}_{2}(k)$ with image $\sigma \in \Gamma_{S, S^{\prime}}$ in $\mathrm{PGL}_{2}(k)$. Let $\left(J^{\prime}, \alpha_{0}^{\prime}, \alpha_{1}^{\prime}\right)$ be the triple associated to $\left(x_{0}^{\prime}, x_{1}^{\prime}\right)$.

Lemma 7.3. The element σ must be even at each $v \in S$, in the sense that $\operatorname{det}(M)$ has even valuation at each $v \in S$.

Proof: Suppose to the contrary that σ is odd at some place $v \in S$. From the definition of $\Gamma_{S, S^{\prime}}$ in §2, this implies that

$$
\begin{equation*}
M=\lambda_{v} \cdot w_{v} \cdot M_{v} \tag{7.2}
\end{equation*}
$$

where $\lambda_{v} \in k_{v}^{*}, w_{v}$ is the matrix

$$
w_{v}=\left(\begin{array}{cc}
0 & \pi_{v} \tag{7.3}\\
1 & 0
\end{array}\right)
$$

and

$$
M_{v}=\left(\begin{array}{cc}
a & \pi_{v} b \tag{7.4}\\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(O_{v}\right)
$$

for some $a, b, c, d \in O_{v}$. Consider the localization J_{v} of J at v. Since $\mathcal{P}\left(S^{\prime}\right)$ is prime to $\mathcal{P}(v)$, we have

$$
\begin{equation*}
J_{v}=O_{v} x_{0}+O_{v} x_{1} \subset k_{v} \quad \text { and } \quad J_{v}^{\prime}=O_{v} x_{0}^{\prime}+O_{v} x_{1}^{\prime} \tag{7.5}
\end{equation*}
$$

Since

$$
\begin{equation*}
\binom{x_{0}^{\prime}}{x_{1}^{\prime}}=M \cdot\binom{x_{0}}{x_{1}}=\lambda_{v} \cdot w_{v} \cdot M_{v} \cdot\binom{x_{0}}{x_{1}} \tag{7.6}
\end{equation*}
$$

we see from (7.3) and (7.4) that

$$
\begin{equation*}
x_{0}^{\prime}=\lambda_{v} \cdot \pi_{v} \cdot\left(c x_{0}+d x_{1}\right) \quad \text { and } \quad x_{1}^{\prime}=\lambda_{v} \cdot\left(a x_{0}+\pi_{v} b x_{1}\right) \tag{7.7}
\end{equation*}
$$

Here $a, d \in O_{v}^{*}$, since M_{v} in (7.4) is in $\mathrm{GL}_{2}\left(O_{v}\right)$. We claim

$$
\begin{equation*}
J_{v}^{\prime}=\lambda_{v} \cdot\left(\pi_{v} O_{v} x_{1}+O_{v} x_{0}\right) \tag{7.8}
\end{equation*}
$$

To show this, let $\operatorname{ord}_{v}: k_{v} \rightarrow \mathbf{Z} \cup\{\infty\}$ be the discrete valuation at v, normalized so that $\operatorname{ord}_{v}\left(\pi_{v}\right)=1$. From (7.7) and (7.5) we have

$$
J_{v}^{\prime}=O_{v} x_{0}^{\prime}+O_{v} x_{1}^{\prime} \subset \lambda_{v} \cdot\left(\pi_{v} O_{v} x_{1}+O_{v} x_{0}\right)
$$

since $a, b, c, d \in O_{v}$. This containment must be an equality since (7.2) shows $\operatorname{ord}_{v}(\operatorname{det}(M))=$ $\operatorname{ord}_{v}\left(\lambda_{v}^{2}\right)+1$, and this integer is the power of $\# O_{v} / \pi_{v} O_{v}$ appearing in the generalized index

$$
\left[O_{v} x_{0}+O_{v} x_{1}: \lambda_{v} \cdot\left(\pi_{v} O_{v} x_{1}+O_{v} x_{0}\right)\right]
$$

The first case we now must consider is when $\operatorname{ord}_{v}\left(x_{0}\right) \leq \operatorname{ord}_{v}\left(x_{1}\right)$. In this case, (7.5) and (7.8) show

$$
\begin{equation*}
J_{v}=O_{v} x_{0} \quad \text { and } \quad J_{v}^{\prime}=\lambda_{v} \cdot O_{v} x_{0} \tag{7.9}
\end{equation*}
$$

Thus $x_{0} \not \equiv 0 \bmod \pi_{v} J_{v}$, while (7.7) shows $x_{0}^{\prime} \equiv 0$ in $J_{v}^{\prime} / \pi_{v} J_{v}^{\prime}$. This proves $\alpha_{0}(v) \neq 0$ but $\alpha_{0}^{\prime}(v)=0$. In view of the description of the map $r: L(S) \rightarrow L_{0}(S)$ in Definition 5.2, this forces $r\left(\left[\left(J, \alpha_{0}, \alpha_{1}\right)\right]\right)=$ $r \circ \Psi\left(x_{0}: x_{1}\right)$ to be different from $r\left[\left(J^{\prime}, \alpha_{0}^{\prime}, \alpha_{1}^{\prime}\right)\right]=r \circ \Psi\left(x_{0}^{\prime}: x_{1}^{\prime}\right)$. This contradicts hypothesis (7.1), so we conclude that this hypothesis forces $\operatorname{ord}_{v}\left(x_{0}\right)>\operatorname{ord}_{v}\left(x_{1}\right)$. In this case (7.5) and (7.8) imply

$$
\begin{equation*}
J_{v}=O_{v} x_{1} \quad \text { and } \quad J_{v}^{\prime}=\lambda_{v} \cdot \pi_{v} \cdot O_{v} x_{1} \tag{7.10}
\end{equation*}
$$

Since $\operatorname{ord}_{v}\left(x_{0}\right)>\operatorname{ord}_{v}\left(x_{1}\right)$, we find that $x_{0} \equiv 0 \bmod \pi_{v} J_{v}$, while (7.7) implies $x_{0}^{\prime} \not \equiv 0 \bmod \pi_{v} J_{v}^{\prime}$. Thus we get $\alpha_{0}(v)=0$ but $\alpha_{0}^{\prime}(v) \neq 0$, again contradicting hypothesis (7.1). This contradiction proves Lemma 7.3.
Corollary 7.4. The element $\sigma \in \Gamma_{S, S^{\prime}}$ is represented by a matrix $M \in \mathrm{GL}_{2}(k)$ having the following properties. For each finite place v of k, there is an element $x_{v} \in k_{v}^{*}$ together elements $a=a_{v}, b=b_{v}$, $c=c_{v}$ and $d=d_{v}$ of O_{v} such that

$$
\begin{equation*}
M=x_{v} \cdot M_{v} \quad \text { and } \quad \operatorname{det}\left(M_{v}\right) \in O_{v}^{*} \tag{7.11}
\end{equation*}
$$

$$
\begin{equation*}
x_{v} \in O_{v}^{*} \quad \text { for all but finitely many places } \quad v \tag{7.12}
\end{equation*}
$$

$$
\begin{gather*}
M_{v}=\left(\begin{array}{cc}
a & \pi_{v} b \\
c & d
\end{array}\right) \quad \text { if } \quad v \in S \tag{7.13}\\
M_{v}=\left(\begin{array}{cc}
a & \pi_{v} b \\
\pi_{v}^{-1} c & d
\end{array}\right) \quad \text { if } \quad v \in S^{\prime} \tag{7.14}\\
M_{v}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \text { if } \quad v \notin S \cup S^{\prime} \tag{7.15}
\end{gather*}
$$

Proof: By [1, Prop. 4.4(iii)], if v is a finite place of k such that $\Gamma_{S, S^{\prime}}$ contains an element which is odd at v, then $v \in S$. We proved in Lemma 7.3 that σ must be even at each $v \in S$. Hence for each finite place v, there is an element $x_{v} \in k_{v}^{*}$ such that $2 \cdot \operatorname{ord}_{v}\left(x_{v}\right)=\operatorname{ord}_{v}(\operatorname{det}(M))$. On defining $M_{v}=x_{v}^{-1} \cdot M$, it now follows from the definition of $\Gamma_{S, S^{\prime}}$ in (2.3) that M_{v} has properties (7.11) (7.15).

Corollary 7.5. With the notation of Corollary 7.4, let $\mathcal{A}=\prod_{v} \mathcal{P}(v)^{\operatorname{ord}_{v}\left(x_{v}\right)}$. Then with the notation of (7.1), we have

$$
\begin{equation*}
J^{\prime}=O x_{0}^{\prime}+\mathcal{P}\left(S^{\prime}\right) x_{1}^{\prime}=\mathcal{A} \cdot J=\mathcal{A} \cdot\left(O x_{0}+\mathcal{P}\left(S^{\prime}\right) x_{1}\right) \tag{7.16}
\end{equation*}
$$

as fractional k-ideals.
Proof: Define

$$
\begin{equation*}
\binom{x_{v, 0}}{x_{v, 1}}=M_{v} \cdot\binom{x_{0}}{x_{1}} \tag{7.17}
\end{equation*}
$$

for all v. Since $M=x_{v} \cdot M_{v}$, the localization J_{v}^{\prime} at v satisfies

$$
\begin{equation*}
J_{v}^{\prime}=\left(O_{v} x_{0}^{\prime}+\mathcal{P}\left(S^{\prime}\right)_{v} x_{1}^{\prime}\right)=x_{v} \cdot\left(O_{v} x_{v, 0}+O_{v} \mathcal{P}\left(S^{\prime}\right)_{v} x_{v, 1}\right) \tag{7.18}
\end{equation*}
$$

However, the fact that $\operatorname{det}\left(M_{v}\right) \in O_{v}^{*}$ together with the form of M_{v} in (7.13) - (7.13) insures that

$$
\begin{equation*}
O_{v} x_{v, 0}+O_{v} \mathcal{P}\left(S^{\prime}\right)_{v} x_{v, 1}=O_{v} x_{0}^{\prime}+\mathcal{P}\left(S^{\prime}\right)_{v} x_{1}^{\prime}=J_{v} \tag{7.19}
\end{equation*}
$$

Combining (7.18) and (7.19) shows (7.16).

Completion of the proof of Proposition 6.1.

In hypothesis (7.1) we supposed $r \circ \Psi\left(x_{0}: x_{1}\right)=r \circ \Psi\left(x_{0}^{\prime}: x_{1}^{\prime}\right)$. This forces J and $J^{\prime}=\mathcal{A} \cdot J$ to have the same ideal class as fractional k-ideals. Hence $\mathcal{A}=O \cdot \lambda$ is a principal ideal for some $\lambda \in k^{*}$. With the notation of Corollaries 7.4 and 7.5 , we now see that if we choose $x_{v}=\lambda$ for all places v, then the matrix $M^{\prime}=\lambda^{-1} \cdot M \in \mathrm{GL}_{2}(k)$ has image M_{v} in $\mathrm{GL}_{2}\left(k_{v}\right)$ for all v. This implies $M^{\prime} \in \Gamma_{0}\left(S, S^{\prime}\right)$. Since M and M^{\prime} have the same image σ in $\mathrm{PGL}_{2}(k)$, we have $\sigma \in \Gamma_{0}\left(S, S^{\prime}\right)$, which completes the proof of Proposition 6.1 by Lemma 7.1.

8. Proof of Proposition 6.2.

Let \mathcal{D}^{\prime} be the maximal O-order $\cap_{v \notin S^{\prime}} \mathcal{D}_{v} \cap_{v \in S^{\prime}} \mathcal{D}_{v}^{\prime}$ in $\operatorname{Mat}_{2}(k)$, where \mathcal{D}_{v} and $\mathcal{D}^{\prime}{ }_{v}$ are defined in $\S 2$. The set R_{f} of finite places of k which ramify in $\operatorname{Mat}_{2}(k)$ is empty. Therefore the group $\Gamma_{R_{f}}$ which Borel defines in $[1, \S 8.4]$ is the image in $\mathrm{PGL}_{2}(k)$ of the group $B_{R_{f}}^{*}$ of elements $\tau \in \mathrm{GL}_{2}(k)$ such that $\operatorname{det}(\tau) \in O^{*}$. Define $\Gamma_{\mathcal{D}^{\prime *}}$ (resp. to $\Gamma_{\mathcal{D}^{\prime 1}}$) to be the image in $\mathrm{PGL}_{2}(k)$ of $\mathcal{D}^{\prime *}$ (resp. the image of the group of $\tau \in \mathcal{D}^{\prime *}$ such that $\operatorname{det}(\tau)=1$.) Borel shows in [1, Lemma 8.5] that $\left[\Gamma_{R_{f}}^{*}: \Gamma_{\mathcal{D}^{\prime 1}}\right]=2$, since in our case the unit group O^{*} is finite, cyclic and of even order and k has no real places. However, we also have $\left[\Gamma_{\mathcal{D}^{\prime *}}: \Gamma_{\mathcal{D}^{\prime 1}}\right]=2$, since $\mathcal{D}^{\prime *}$ contains a diagonal matrix whose diagonal entries are 1 and a generator of O^{*}. Since

$$
\Gamma_{\mathcal{D}^{\prime 1}} \subset \Gamma_{\mathcal{D}^{\prime} *} \subset \Gamma_{R_{f}}^{*}
$$

we conclude that $\Gamma_{\mathcal{D}^{\prime *}}=\Gamma_{R_{f}}^{*}$. Hence Borel's result in the Lemma of $[1, \S 8.6]$ shows

$$
\begin{equation*}
\left[\Gamma_{\mathcal{D}^{\prime}}: \Gamma_{\mathcal{D}^{\prime *}}\right]=h_{2, k} \tag{8.1}
\end{equation*}
$$

where $\Gamma_{\mathcal{D}^{\prime}}$ is the image in $\mathrm{PGL}_{2}(k)$ of the normalizer $\operatorname{Norm}\left(\mathcal{D}^{\prime}\right)$ of \mathcal{D}^{\prime} in $\mathrm{GL}_{2}(k)$. For $v \in S$, let $k(v)=O_{v} / \pi_{v} O_{v}$, and let $b(v)$ be the subgroup of lower triangular matrices in $\mathrm{GL}_{2}(k(v))$. Definition 5.1 implies that $\Gamma_{0}\left(S, S^{\prime}\right)$ is the image in $\mathrm{PGL}_{2}(k)$ of the subgroup $\mathcal{D}^{\prime}(S)^{*}$ of elements $M \in \mathcal{D}^{\prime *}$ such that the image of M in

$$
\mathcal{D}^{\prime}{ }_{v} / \pi_{v} \mathcal{D}^{\prime}{ }_{v}=\mathcal{D}_{v} / \pi_{v} \mathcal{D}_{v}=\operatorname{Mat}_{2}\left(O_{v} / \pi_{v} O_{v}\right)
$$

lies in $b(v)$ for each $v \in S$. Since each of the $1+\# k(v)$ cosets of $b(v)$ in $\mathrm{GL}_{2}(k(v))$ is represented by an element of $\mathrm{SL}_{2}(k(v))$, the Strong Approximation Theorem for SL_{2} implies

$$
\begin{equation*}
\left[\mathcal{D}^{\prime *}: \mathcal{D}^{\prime}(S)^{*}\right]=\prod_{v \in S}(1+\# k(v)) \tag{8.2}
\end{equation*}
$$

Clearly $\mathcal{D}^{\prime *} \cap k^{*}=\mathcal{D}^{\prime}(S)^{*} \cap k^{*}$ when we identify these groups with the diagonal matrices inside $\mathcal{D}^{\prime *}$ and $\mathcal{D}^{\prime}(S)^{*}$. Thus (8.2) gives

$$
\begin{equation*}
\left[\Gamma_{\mathcal{D}^{\prime}}^{*}: \Gamma_{0}\left(S, S^{\prime}\right)\right]=\prod_{v \in S}(1+\# k(v)) \tag{8.3}
\end{equation*}
$$

The group $\Gamma_{\mathcal{D}^{\prime}}$ is equal to $\Gamma_{\emptyset, S^{\prime}}$ by $[1, \S 4.9$, eq. (4)]. Hence on letting

$$
\Gamma_{2}=\Gamma_{\mathcal{D}^{\prime}} \cap \Gamma_{S, S^{\prime}}=\Gamma_{\emptyset, S^{\prime}} \cap \Gamma_{S, S^{\prime}}
$$

we have from $[1, \S 5.3$, eq. (7) and (8)] that

$$
\begin{equation*}
\left[\Gamma_{\mathcal{D}^{\prime}}: \Gamma_{2}\right]=\prod_{v \in S}(1+\# k(v)) \tag{8.4}
\end{equation*}
$$

(Note that there is a misprint in $[1, \S 5.3$, eq. (4)], since the product in that equation should be over places in S.) Putting together (8.1), (8.3) and (8.4) gives the generalized index relation

$$
\begin{equation*}
\left[\Gamma_{2}: \Gamma_{0}\left(S, S^{\prime}\right)\right]=\left[\Gamma_{\mathcal{D}^{\prime}}: \Gamma_{\mathcal{D}^{\prime} *}\right] \cdot\left[\Gamma_{\mathcal{D}^{\prime}}^{*}: \Gamma_{0}\left(S, S^{\prime}\right)\right] /\left[\Gamma_{\mathcal{D}^{\prime}}: \Gamma_{2}\right]=h_{2, k} \tag{8.5}
\end{equation*}
$$

We now define a homomorphism

$$
\begin{equation*}
F: \Gamma_{S, S^{\prime}} \rightarrow \prod_{v \in S}(\mathbf{Z} / 2) \tag{8.6}
\end{equation*}
$$

by sending $\sigma \in \Gamma_{S, S^{\prime}}$ to the vector having component 0 at $v \in S$ if σ is even at v and component 1 if v is odd at v. The kernel of F is

$$
\Gamma_{2}=\Gamma_{\emptyset, S^{\prime}} \cap \Gamma_{S, S^{\prime}}
$$

SO

$$
\begin{equation*}
\left[\Gamma_{S, S^{\prime}}: \Gamma_{2}\right]=\# \operatorname{Image}(F) \tag{8.7}
\end{equation*}
$$

Consider the homomorphism

$$
\begin{equation*}
T: \prod_{v \in S}(\mathbf{Z} / 2) \rightarrow C l(k) /(2 C l(k)) \tag{8.8}
\end{equation*}
$$

which sends the vector having component 1 at v and component 0 at the other places in S to the class of the prime ideal $\mathcal{P}(v)$. We will show that

$$
\begin{equation*}
\operatorname{Image}(F)=\operatorname{Kernel}(T) \tag{8.9}
\end{equation*}
$$

Before proving (8.9) note that in the statement of Proposition 6.2, Image (T) has order 2^{n}. Thus (8.7) and (8.9) will show

$$
\begin{equation*}
\left[\Gamma_{S, S^{\prime}}: \Gamma_{2}\right]=\# \operatorname{Image}(F)=\# \operatorname{Kernel}(T)=2^{\# S} / \# \operatorname{Image}(T)=2^{\# S-n} \tag{8.10}
\end{equation*}
$$

Hence (8.5) and (8.10) prove (6.1), which will prove Proposition 6.2.
It remains to show (8.9). If $M \in \mathrm{GL}_{2}(k)$ represents $\sigma \in \Gamma_{S, S^{\prime}}$, then $\operatorname{det}(M) \in k^{*}$ is even at all $v \notin S$, and $\operatorname{ord}_{v}(\operatorname{det}(M))$ is even (resp. odd) exactly if the component of $F(\sigma)$ at v is 0 (resp. 1). Since $\operatorname{det}(M)$ generates a principal ideal, it follows that the composition $T \circ F$ is trivial, so Image $(F) \subset \operatorname{Kernel}(T)$.

To show equality in (8.9), it will now suffice to show the following. Suppose $\lambda \in k^{*}$ has $\operatorname{ord}_{v}(\lambda) \equiv 0$ $\bmod 2 \mathbf{Z}$ for $v \notin S$. Then we need to show there is an element $\sigma \in \Gamma_{S, S^{\prime}}$ which for $v \in S$ is odd at v if and only if $\operatorname{ord}_{v}(\lambda)$ is odd. Without loss of generality, we can assume $\lambda \in O$. Fix a uniformizing element $\pi_{v} \in O_{v}$ for each place v. We can choose an element $c \in O$ satifying the following finite system of congruences:

$$
\begin{equation*}
\text { If } \operatorname{ord}_{v}(\lambda)=2 a_{v}+1 \quad \text { is odd, then } c \equiv 0 \quad \bmod \quad \pi_{v}^{a_{v}+1} O_{v} \tag{8.11}
\end{equation*}
$$

(8.12) If $\operatorname{ord}_{v}(\lambda)=2 a_{v}$ is even, and $a_{v}>0$ or $v \in S \cup S^{\prime}$, then $c \equiv \lambda \cdot \pi_{v}^{-a_{v}}-\pi_{v}^{a_{v}} \bmod \pi_{v}^{a_{v}+1} O_{v}$.

We let σ^{\prime} be the matrix

$$
\sigma^{\prime}=\left(\begin{array}{cc}
0 & \lambda \tag{8.13}\\
1 & c
\end{array}\right)
$$

Clearly $\operatorname{det}\left(\sigma^{\prime}\right)=-\lambda$ is odd at exactly the places v of k where $\operatorname{ord}_{v}(\lambda)$ is odd. We will show below that

$$
\begin{equation*}
\sigma^{\prime} \quad \text { fixes an edge of } \quad T_{v} \quad \text { if } \quad v \in S \cup S^{\prime} \quad \text { or } \quad \operatorname{ord}_{v}(\lambda) \neq 0 . \tag{8.14}
\end{equation*}
$$

Let us first prove that (8.14) implies equality in (8.9), which we have already proved will complete the proof of Proposition 6.2. If $v \in S$, then (8.14) states that σ^{\prime} fixes an edge of T_{v}. If $v \in S^{\prime}$ or $\operatorname{ord}_{v}(\lambda) \neq 0$, then σ^{\prime} must fix an edge of T_{v} pointwise, since (8.14) says σ^{\prime} fixes an edge, and σ^{\prime} is even at v. Finally, if $v \notin S \cup S^{\prime}$ and $\operatorname{ord}_{v}(\lambda) \neq 0$, then σ^{\prime} lies in $\mathrm{GL}_{2}\left(O_{v}\right)$, so σ^{\prime} fixes the vertex of T_{v} that is fixed by every element of $\Gamma_{S, S^{\prime}}$. The group $\mathrm{SL}_{2}\left(k_{v}\right)$ acts transitively on the edges of T_{v}. Hence we can conclude from the Strong Approximation Theorem that a conjugate σ of σ^{\prime} by an element of $\mathrm{SL}_{2}(k)$ defines an element of $\Gamma_{S, S^{\prime}}$. Since $\operatorname{det}(\sigma)=\operatorname{det}\left(\sigma^{\prime}\right)$ has odd valuation at exactly those v where $\operatorname{ord}_{v}(\lambda)$ is odd, this implies equality holds in (8.9).

We now prove (8.14). Suppose first that v is a place for which $\operatorname{ord}_{v}(\lambda)=2 a_{v}+1$ is odd, so that v lies in S. Condition (8.11) implies that σ^{\prime} acts in the following way on the lattices $\pi_{v}^{a_{v}} O_{v} \oplus O_{v}$ and $\pi_{v}^{a_{v}+1} O_{v} \oplus O_{v}$ in $k_{v} \oplus k_{v}$.

$$
\begin{gather*}
\sigma^{\prime}\binom{\pi_{v}^{a_{v}} O_{v}}{O_{v}}=\left(\begin{array}{cc}
0 & \lambda \\
1 & c
\end{array}\right) \cdot\binom{\pi_{v}^{a_{v}} O_{v}}{O_{v}}=\binom{\lambda O_{v}}{\pi_{v}^{a_{v}} O_{v}}=\pi_{v}^{a_{v}}\binom{\pi_{v}^{a_{v}+1} O_{v}}{O_{v}} . \tag{8.15}\\
\sigma^{\prime}\binom{\pi_{v}^{a_{v}+1} O_{v}}{O_{v}}=\left(\begin{array}{cc}
0 & \lambda \\
1 & c
\end{array}\right) \cdot\binom{\pi_{v}^{a_{v}+1} O_{v}}{O_{v}}=\binom{\lambda O_{v}}{\pi_{v}^{a_{v}+1} O_{v}}=\pi_{v}^{a_{v}+1}\binom{\pi_{v}^{a_{v}} O_{v}}{O_{v}} . \tag{8.16}
\end{gather*}
$$

These equalities show that σ^{\prime} interchanges the homothety classes of $\pi_{v}^{a_{v}} O_{v} \oplus O_{v}$ and $\pi_{v}^{a_{v}+1} O_{v} \oplus O_{v}$. Hence σ^{\prime} fixes the edge of T_{v} between these homothety classes (though it clearly does not fix this edge pointwise).

Now suppose that $\operatorname{ord}_{v}(\lambda)=2 a_{v}$ is even and $a_{v}>0$ or $v \in S \cup S^{\prime}$. In all cases we have $a_{v} \geq 0$, since $\lambda \in O$. Condition 8.12 implies $c \equiv 0 \bmod \pi_{v}^{a_{v}} O_{v}$. Hence

$$
\sigma^{\prime}\binom{\pi_{v}^{a_{v}} O_{v}}{O_{v}}=\left(\begin{array}{cc}
0 & \lambda \tag{8.17}\\
1 & c
\end{array}\right) \cdot\binom{\pi_{v}^{a_{v}} O_{v}}{O_{v}}=\binom{\lambda O_{v}}{\pi_{v}^{a_{v}} O_{v}}=\pi_{v}^{a_{v}}\binom{\pi_{v}^{a_{v}} O_{v}}{O_{v}}
$$

Thus σ^{\prime} fixes the homothety class of $\pi_{v}^{a_{v}} O_{v} \oplus O_{v}$, so it will now suffice to show σ^{\prime} fixes the homothety class of an O_{v} lattice L containing $\pi_{v}^{a_{v}} O_{v} \oplus O_{v}$ for which $L /\left(\pi_{v}^{a_{v}} O_{v} \oplus O_{v}\right)$ is O_{v}-isomorphic to $k(v)=O_{v} / \pi_{v} O_{v}$. We now compute

$$
\begin{align*}
\sigma^{\prime}\binom{\pi_{v}^{a_{v}-1}}{\pi_{v}^{-1}} & =\left(\begin{array}{cc}
0 & \lambda \\
1 & c
\end{array}\right) \cdot\binom{\pi_{v}^{a_{v}-1}}{\pi_{v}^{-1}}=\binom{\lambda \pi_{v}^{-1}}{\pi_{v}^{a_{v}-1}+c \pi_{v}^{-1}} \\
& ==\pi_{v}^{a_{v}} \cdot\binom{\lambda \pi_{v}^{-2 a_{v}} \pi_{v}^{a_{v}-1}}{\left(1+c \pi_{v}^{-a_{v}}\right) \pi_{v}^{-1}} \tag{8.18}\\
& \equiv \pi_{v}^{a_{v}} \cdot \lambda \pi_{v}^{-2 a_{v}} \cdot\binom{\pi_{v}^{a_{v}-1}}{\pi_{v}^{-1}} \bmod \quad \pi_{v}^{a_{v}}\binom{\pi_{v}^{a_{v}} O_{v}}{O_{v}}
\end{align*}
$$

where the last congruence results from the condition on c in (8.12). Here $\lambda \cdot \pi_{v}^{-2 a_{v}}$ is a unit of O_{v}, so we can take the lattice L to be the one generated as an O_{v}-module by $\pi_{v}^{a_{v}} O_{v} \oplus O_{v}$ and the vector $\left(\pi_{v}^{a_{v}-1}, \pi_{v}^{-1}\right)$. This completes the proof of Proposition 6.2.

9. Cusps and class numbers.

We begin by giving an ineffective proof of part (1) of Corollary 1.2. Recall that $C(N)$ is the set of isometry classes of minimal finite covolume discrete arithmetic hyperbolic 3-orbifolds having exactly N cusps. The finite covolume discrete arithmetic subgroups of $\mathrm{PGL}_{2}(k)$ are commensurable. Hence to show the elements of $C(N)$ represent only finitely many distinct commensurability classes, it will suffice by Theorem 1.1 to show that there are only finitely many imaginary quadratic fields k such that $h_{k} / h_{k, 2} \leq N$. Siegel proved in [5] that for each $\epsilon>0$, there is an ineffective constant $c(\epsilon)>0$ such that

$$
\begin{equation*}
h_{k}>c(\epsilon)\left|d_{k}\right|^{\frac{1}{2}-\epsilon} \tag{9.1}
\end{equation*}
$$

where d_{k} is the discriminant of k. By a result of Tatuzawa, the constant $c(\epsilon)$ can be made effective except for at most one exceptional field k; see [6] and [2]. Let n_{k} be the number of distinct prime factors of d_{k}. By genus theory, the two-rank of the ideal class group of k is equal to $2^{n_{k}-1}$. Thus $h_{2, k}=2^{n_{k}-1}$ and we get

$$
\begin{equation*}
\frac{h_{k}}{h_{k, 2}}>c(\epsilon) \frac{\left|d_{k}\right|^{\frac{1}{2}-\epsilon}}{2^{n_{k}-1}}>c(\epsilon) \prod_{p \mid d_{k}} \frac{p^{\frac{1}{2}-\epsilon}}{2} \tag{9.2}
\end{equation*}
$$

The fact that there are only finitely many k for which $h_{k} / h_{k, 2}<N$ is clear from (9.2), since $-d_{k}$ is either a square-free positive integer or 4 times such an integer, and if $\epsilon<1 / 2$ then there are only finitely many primes p for which $\frac{p^{\frac{1}{2}-\epsilon}}{2}<2$.

Suppose now that X is an element of $C(N)$. To show part (2) of Corollary 1.2, we must show that there are infinitely many elements of the commensurability class of X which also lie in $C(N)$. By Borel's work, $X=\mathbf{H}^{3} / \Gamma_{S, S^{\prime}}$ for some imaginary quadratic field k and some maximal discrete subgroup $\Gamma_{S, S^{\prime}} \subset \mathrm{PGL}_{2}(k)$. Theorem 1.1 shows

$$
\begin{equation*}
2^{n} \frac{h_{k}}{h_{k, 2}}=N \tag{9.3}
\end{equation*}
$$

where 2^{n} is the order of the subgroup of $C l(k) / 2 C l(k)$ generated by the places in S. We now let S_{0} be a set of n places whose images in $C l(k) / 2 C l(k)$ generate a subgroup of order 2^{n}; such an S_{0} exists by the Cebotarev density theorem. Let W be the set of finite places v of k such that

$$
\begin{equation*}
\mathcal{P}(v) \cdot \mathcal{P}\left(S_{0}\right)=\mathcal{P}\left(S_{0} \cup\{v\}\right) \tag{9.4}
\end{equation*}
$$

is principal. The Cebotarev density theorem also implies W is infinite. We claim that for $v \in \mathrm{~W}(k)$, the group $\Gamma_{S_{0} \cup\{v\}, \emptyset}$ contains an element σ_{v} which is odd at $S_{0} \cup\{v\}$. To construct σ_{v}, let λ_{v} be a generator for the ideal in (9.4). We can then take σ_{v} to be

$$
\sigma_{v}=\left(\begin{array}{cc}
0 & \lambda_{v} \tag{9.5}\\
1 & 0
\end{array}\right)
$$

We now see from [1, Prop. 4.4(iii)] that if $\Gamma_{S_{0} \cup\{v\}, \emptyset}$ is not maximal, then it is conjugate to subgroup of a maximal discrete subgroup of the form $\Gamma_{S_{0} \cup\{v\}, S^{\prime}(v)}$ for some finite set of places $S^{\prime}(v)$ which is disjoint from $S_{0} \cup\{v\}$. We conclude that for each $v \in \mathrm{~W}$, there is a maximal discrete group $\Gamma_{S_{0} \cup\{v\}, S^{\prime}(v)}$ which contains an element which is odd at v. Furthermore, the fact that (9.4) is principal implies that $\left\{\mathcal{P}\left(v^{\prime}\right): v^{\prime} \in S_{0}\right\}$ and $\left\{\mathcal{P}\left(v^{\prime}\right): v^{\prime} \in S_{0}\right\} \cup\{\mathcal{P}(v)\}$ generate the same subgroup of $C l(k) / 2 C l(k)$, which by hypothesis has order 2^{n}. Thus Theorem 1.1 shows $\mathbf{H}^{3} / \Gamma_{S_{0} \cup\{v\}, S^{\prime}(v)}$ has exactly N cusps, were N is as in (9.3). The orbifolds $\mathbf{H}^{3} / \Gamma_{S_{0} \cup\{v\}, S^{\prime}(v)}$ and $\mathbf{H}^{3} / \Gamma_{S_{0} \cup\left\{v^{\prime}\right\}, S^{\prime}\left(v^{\prime}\right)}$ are not isometric for distinct v and v^{\prime} in $\mathrm{W}-S_{0}$, since the group $\Gamma_{S_{0} \cup\{v\}, S^{\prime}(v)}$ contains no elements
which are odd at v^{\prime} and similarly with the roles of v and v^{\prime} reversed (cf. [1, Prop. 4.4(ii)]). This completes the proof that $C(N)$ contains infinitely many elements which are commensurable to X.

References

[1] A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Normale Pisa, ser. 4 Vol. 8 (1981), p. 1-33.
[2] D. Goldfeld, Gauss's class number problem for imaginary quadratic fields, Bull. of the A.M.S., Vol. 13, no. 1 (1985), p. 23-37.
[3] W. D. Neumann and A. W. Reid, Arithmetic of hyperbolic manifolds, in Topology '90, De Gruyter, Berlin (1992), p. 273-310.
[4] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, 1971.
[5] C. L. Siegel, Über die Classenzahl quadratischer Zahlk" orper, Acta Arith. 1 (1935), p. 83-86.
[6] T. Tatuzawa, On a theorem of Siegel, Japan J. Math. 21 (1951), p. 163-178.
[7] R. Swan, Generators and Relations for certain Special Linear Groups, Advances in Math. 6 (1971), p. 1 - 77.
T.C.: Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395

E-mail address: ted@math.upenn.edu
D.L.: Department of Mathematics, University of California, Santa Barbara, California 93106

E-mail address: long@math.ucsb.edu
A.R.: Department of Mathematics, University of Texas, Austin, Texas 78712

E-mail address: areid@math.utexas.edu

[^0]: 1991 Mathematics Subject Classification. Primary 51M10; Secondary 20H15, 11R29.
 Key words and phrases. hyperbolic orbifolds, cusps, arithmetic groups.
 All three authors were supported by N.S.F. Focused Research Group grant DMS01-39816 in addition to individual N.S.F. grants.

