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Abstract. In this paper we count the number of cusps of minimal non-compact finite volume

arithmetic hyperbolic 3-orbifolds. We show that for each N , the orbifolds of this kind which have

exactly N cusps lie in a finite set of commensurability classes, but either an empty or an infinite
number of isometry classes.

1. Introduction.

In this paper we count the number of cusps of minimal non-compact finite volume arithmetic
hyperbolic 3-orbifolds. An orbifold of this kind is isometric to H3/Γ, where H3 is hyperbolic upper
half space and Γ is a maximal discrete arithmetic subgroup in PGL2(k) for some imaginary quadratic
field k.

It is well known (cf. §3 below) that the cusps of the orbifold H3/Γ correspond to Γ-equivalence
classes of points of P1

k under the action of PGL2(k) on P1
k. It is also well-known that if Ok is

the ring of integers of the quadratic imaginary quadratic field k, then when Γ = PSL(2, Ok), the
number of cusps of H3/Γ is the class number hk of k. In particular, since there are only finitely
many imaginary quadratic number fields of a fixed class number, for any given N there are only
finitely orbifolds H3/Γ as above which have N cusps. However, there are examples of groups Γ
commensurable with some PSL(2, Ok) for which H3/Γ has one cusp, but hk 6= 1 (see for example
[3]). The main objective of this paper is to study this phenomena and, more precisely, to generalize
the result mentioned above in the case of PSL(2, Ok).

To state the main theorem, recall that in [1], Borel described for each pair (S, S′) of finite
disjoint sets of finite places of k a discrete finite covolume subgroup ΓS,S′ of PGL2(k). We recall
the definition of ΓS,S′ in §2. Borel showed that each maximal finite covolume discrete subgroup of
PGL2(k) is conjugate to ΓS,S′ for some (S, S′).

The main result of this paper is:

Theorem 1.1. Let Cl(k) be the ideal class group of k. The number of cusps of H/ΓS,S′ is

2n hk

hk,2

where hk is the class number of k, hk,2 is the order of Cl(k)/(2 ·Cl(k)), 0 ≤ n ≤ #S and 2n is the
order of the subgroup of Cl(k)/(2 ·Cl(k)) generated by the classes of prime ideals determined by the
places in S.

This Theorem and work of Siegel in [5] leads to a proof of the following Corollary.

Corollary 1.2. Let N be a positive integer, and let C(N) be the set of isometry classes of minimal
finite volume arithmetic hyperbolic three-orbifolds which have exactly N cusps.

a. Only finitely many commensurability classes are represented by the elements of C(N).
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b. If C(N) is not empty, there are infinitely many elements of C(N) which are commensurable
to each element of C(N).

The proof of part (a) of this Corollary is not effective, though it can be made effective up to at
most one exceptional commensurability class using work of Tatuzawa in [6]. Finding an effective
proof is equivalent to the problem of showing that there are only finitely many imaginary quadratic
fields k such that h/hk,2 is bounded above by a given constant. Such a proof appears to be beyond
present methods.

This paper is organized in the following way. In §2 we recall Borel’s definition of ΓS,S′ . In §3 we
recall some well-known facts concerning cusps of non-compact arithmetic three-orbifolds. In §4 and
§5 we analyze the cusps of certain orbifolds defined by congruence subgroups of ΓS,S′ . This leads
to the proof of Theorem 1.1 in §6 - §8. The main techniques used in §4 - §8 are Borel’s work, the
Strong Approximation Theorem for SL2, and an argument of Swan [7] for constructing matrices
satisfying various congruence conditions which send a prescribed point of P1

k to another prescribed
point. Corollary 1.2 is proved in §9.

2. Borel’s subgroups.

Let k be an imaginary quadratic field, with ring of integers O = Ok. Let S and S′ be finite
disjoint subsets of the set of all finite places v of k. For each such v, let kv be the completion of k
at v. Let πv be a uniformizer in the ring of integers Ov of kv. Define Dv = Mat2(Ov), and let D′

v

be the maximal Ov-order of all matrices of the form

(2.1) M =
(

a πvb
π−1

v c d

)
in which a, b, c, d ∈ Ov. Define K1,v = PGL2(Ov), so that K1,v is the image of D∗

v in PGL2(kv). Let
K ′

1,v to be the image of D′
v
∗ in PGL(2, kv). Finally, let K2,v be the group generated by K1,v ∩K ′

1,v

together with image in PGL2(kv) of the element

(2.2) wv =
(

0 πv

1 0

)
Then K1,v and K ′

1,v are the stabilizers in PGL2(kv) of adjacent vertices of the Bruhat-Tits building
of SL2(kv), and K2,v is the stabilizer the edge joining these vertices. In [1] Borel defines

(2.3) ΓS,S′ = {g ∈ PGL2(k) : g ∈ K2,v (resp. K ′
1,v, resp. K1,v) if v ∈ S (resp. v ∈ S′, v /∈ S ∪ S′)}

It is shown in [1, Prop. 4.4] the every maximal arithmetic discrete subgroup of PGL2(k) is conjugate
to ΓS,S′ for some S and S′. Not all of the ΓS,S′ need be maximal (cf. [1, §4.4]). By [1, Prop. 4.10,
Thm. 4.6], the groups ΓS,S′ for a fixed S lie in finitely many conjugacy classes inside PGL2(k),
while as S varies these groups lie in infinitely many distinct conjugacy classes.

3. Cusps.

Suppose Γ is any discrete arithmetic subgroup of PGL2(k) having finite covolume. An element
σ ∈ Γ is parabolic if it fixes a unique point of P1

C, and such a fixed point is called a cusp of Γ
(compare [4, p. 7-8]). The cusps of the orbifold H3/Γ are the Γ-equivalence classes of cusps of Γ.

Lemma 3.1. The cusps of Γ are the points in P 1
k = k ∪ {∞}, so that the cusps of H3/Γ are the

orbits of Γ acting on P 1
k .

Proof: We first show that Γ has the same cusps as any group Γ′ commensurable to Γ. For this, it
will suffice to consider the case in which Γ′ has finite index in Γ. Clearly the cusps of Γ′ are cusps
for Γ. Conversely, suppose z is a cusp of Γ, so z is the only point of P1

C fixed by a parabolic element
σ ∈ Γ. Then σn is a parabolic element of Γ′ fixing z when n = [Γ : Γ′], so z is also a cusp of Γ′. We
can thus reduce to the case in which Γ = ΓS,S′ for some S and S′.
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Suppose z is a cusp of ΓS,S′ ⊂ PGL2(k). Since z is the only fixed point of some M ∈ GL2(k)
acting on P1

C, the quadratic formula implies that z must lie in P1
k. Thus we now must show each

z ∈ P1
k is a cusp.

If b is a sufficiently divisible non-zero element of O, the matrix

(3.1) M =
(

1 b
0 1

)
defines a parabolic element of ΓS,S′ which fixes ∞, so ∞ is a cusp of ΓS,S′ . Suppose now that
z ∈ k ⊂ P1

k. There is then a matrix T in GL2(k) such that T · ∞ = z. This implies z is a cusp
of the discrete group TΓS,S′T−1, since TMT−1 defines a parabolic element of this group fixing z.
However, TΓS,S′T−1 and ΓS,S′ are commensurable, so they have the same cusps, which proves the
Lemma.

In the following sections we analyze equivalence classes of cusps under the action of various
subgroups Γ of ΓS,S′ .

4. The principal congruence subgroup of ΓS,S′ .

We consider in this section the following subgroup of ΓS,S′ .

Definition 4.1. Let I be the two-by-two identity matrix. Define Γ(S, S′) to be the subgroup of
elements of ΓS,S′ ⊂ PGL2(k) which are the images of matrices M ∈ GL2(k) such that M − I ∈
πvMat2(Ov) for v ∈ S, M ∈ D′

v
∗ for v ∈ S′ and M ∈ GL2(Ov) for v /∈ S ∪ S′.

We will first describe the Γ(S, S′)-equivalent cusps of Γ(S, S′). By Lemma 3.1, this is the same
as describing the cusps of H3/Γ(S, S′), and the orbits of Γ(S, S′) acting on P1

k.
Define I(k) to be the multiplicative group of fractional ideals of k. For v a finite place of k,

let P(v) be the prime ideal of O determined by v. If T is a finite set of finite places of k, define
P(T ) =

∏
v∈T P(v). Define L′(S) to be the set of triples (J, α0, α1) in which J ∈ I(k) and α0 and

α1 are generators of J/(P(S) ·J) as a finite O-module. An element λ ∈ k∗ acts on L′(S) by sending
(J, α0, α1) to (λ · J, λ · α0, λ · α1). Define L(S) = L′(S)/k∗ to be the set of orbits in L′(S) under
this action of k∗.

Definition 4.2. Define a map Ψ : P 1(k) → L(S) in the following way. Fix an element t(S, S′) ∈
P(S′) such that the ideal t(S, S′)O equals P(S′) · A for some ideal A prime to P(S ∪ S′). Suppose
(x0 : x1) are homogeneous coordinates for a point of P 1(k). Define J to be the fractional O-ideal
O · x0 + P(S′) · x1 of k. Let β0 = x0 and β1 = t(S, S′)x1, so that β0 and β1 are elements of J .
Define αi to be the image of βi in J/(P(S) · J) for i = 0, 1. Define

(4.1) Ψ((x0 : x1)) = [(J, α0, α1)]

to be the class of (J, α0, α1) in L(S). The other homogeneous coordinates for (x0 : x1) have the
form (λ · x0 : λ · x1) for some λ ∈ k∗, so Ψ is well-defined.

Proposition 4.3. The map Ψ is surjective, and its fibers are exactly the Γ(S, S′)-equivalent cusps
of Γ(S, S′).

Proof: Let us first check surjectivity. Suppose (J, α0, α1) ∈ L′(S). We first claim that there is
an x1 ∈ k∗ such that P(S′) · x1 ⊂ J and t(S, S′)x1 ∈ J has class α1 in J/(P(S) · J). Such an x1

exists because we can find an x1 ∈ P(S′)−1J satisfying the appropriate congruence conditions at
the places in S because S and S′ are disjoint. Choose x0 ∈ J to have class α0 in J/(P(S) ·J), and so
that Ov ·x0 = Ov ·J for the finitely many finite places v of k which are not in S where Ov ·P(S′)x1 is
not equal to Ov ·J . We can find such an x0 since these conditions amount to congruence conditions
at a finite set of finite places of k. We show Ψ((x0 : x1)) is the class of (J, α0, α1) in L(S). By
construction, x0 has class α0 in J/P(S)J , while t(S, S′)x1 has class α1 in J/(P(S) · J). Hence we
only have to check that J ′ = O · x0 + P(S′)x1 is equal to J . Clearly J ′ ⊂ J . Since α0 ≡ x0 and
α1 ≡ t(S, S′)x1 together generate J/(P(S) · J) as an O-module, we have Ov · J ′ = Ov · J if v ∈ S.
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However, for v /∈ S, we chose x0 so that Ov ·x0 = Ov · J if Ov · P(S′)x1 is not equal to Ov · J . Thus
Ov · J ′ = Ov · J for all such v, and we conclude J ′ = J .

We now consider the fibers of Ψ. Suppose (x0 : x1) and (x′0 : x′1) are two points having the same
image under Ψ. After multiplying x′0 and x′1 by a suitable λ ∈ k∗, we can assume the following is
true:

(4.2) J = Ox0 + P(S′)x1 = Ox′0 + P(S′)x′1

(4.3) x0 ≡ x′0 ≡ α0 mod P(S)J

and

(4.4) t(S, S′)x1 ≡ t(S, S′)x′1 ≡ α1 mod P(S)J.

We wish to show that there is a matrix M ∈ GL2(k) such that

(4.5) M ·
(

x0

x1

)
=

(
x′0
x′1

)
and

(4.6) M − I ∈ πvMat2(Ov) for v ∈ S,

(4.7) M ∈ D′
v
∗ for v ∈ S′,

(4.8) M ∈ GL2(Ov) for v /∈ S ∪ S′.

We adapt an argument of Swan in [7, Prop. 3.10] to construct M . There are two exact sequences
of O-modules

(4.9) 0−→A−→O ⊕ P(S′) l′−→J → 0

(4.10) 0−→B−→O ⊕ P(S′) l−→J → 0

in which l and l′ are defined for (a, b) ∈ O ⊕ P(S′) by

(4.11) l(a, b) = ax0 + bx1 and l′(a, b) = ax′0 + bx′1.

Since J is a projective O-module, these sequences split, giving isomorphisms

(4.12) O ⊕ P(S′) = J ⊕A and O ⊕ P(S′) = J ⊕ B.

Again using the fact that O is a Dedekind ring, these isomorphisms imply that there is an isomor-
phism φ : A → B of projective rank one O-modules.

Let s be a unit of O, and suppose W ∈ HomO(J,B). We define an O-linear map

(4.13) θs,W : O ⊕ P(S′) = J ⊕A → J ⊕ B = O ⊕ P(S′)

by

(4.14) θs,W (j ⊕ a) = j ⊕ (sφ(a) + W (j))

for j ∈ J and a ∈ A. Then θs,W fits into a commutative diagram

(4.15)

0 −→ A −→ O ⊕ P(S′) l′−→ J −→ 0

sφ
y yθs,W

y1

0 −→ B −→ O ⊕ P(S′) l−→ J −→ 0

Since sφ is an isomorphism, and 1 : J → J is the identity map, we conclude that θs,W in an
automorphism. Furthermore, detO(θs,W ) = s · detO(θ1,W ) = s · detO(θ1,0) is independent of the
choice of W , so we can choose s (depending on φ) so that det(θs,W ) = 1 for all W .

Define

(4.16) Ms,W =
(

α β
γ δ

)
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to be the matrix of θs,W when we view elements of O ⊕ P(S′) ⊂ K ⊕K as column vectors. Here

α ∈ HomO(O,O) = O,

β ∈ HomO(P(S′), O) = P(S′)−1,(4.17)
γ ∈ HomO(O,P(S′)) = P(S′)

δ ∈ HomO(P(S′),P(S′)) = O.

Thus the transpose M tr
s,W of Ms,W is an element of SL2(k) satisfying conditions (4.7) and (4.8),

while M tr
s,W ∈ SL2(Ov) for v ∈ S. The commutativity of (4.15) shows

(4.18) x′0 = l′
(

1
0

)
= l

(
Ms,W ·

(
1
0

))
= l

(
α
γ

)
= αx0 + γx1

and

(4.19) t(S, S′)x′1 = l

(
Ms,W ·

(
0

t(S, S′)

))
= l

(
β · t(S, S′)
δ · t(S, S′)

)
= β · t(S, S′) · x0 + δ · t(S, S′) · x1

This gives the matrix equation

(4.20) M tr
s,W ·

(
x0

x1

)
=

(
α γ
β δ

)
·
(

x0

x1

)
=

(
x′0
x′1

)
We now show that we can choose W ∈ HomO(J,B) so that M tr

s,W = M will satisfy (4.6), i.e. so
that M − I ∈ πvMat2(Ov) for v ∈ S. This will complete the proof that cusps having the same
image under Ψ are Γ(S, S′)-equivalent.

For v ∈ S, let k(v) = O/P(v) and let Jv be the localization of J at v, Since t(S, S′) ∈ O∗
v

and t(S, S′)x1 ∈ J , we have x1 ∈ Jv for v ∈ S. Define βi,v be the image of xi in the one-
dimensional k(v)-vector space J(v) = Jv/P(v)Jv. From (4.20), (4.3) and (4.4) we know that for
v ∈ S, M tr

s,W ∈ SL2(Ov) fixes the vector β(v) = (β0,v, β1,v) in J(v)⊕J(v). This β(v) is not the zero
vector, since α0 and α1 together generate J/P(S)J and α0 = x0 mod P(S)J and α1 = t(S, S′)x1

mod P(S)J . Thus the image M tr
s,W,v of M tr

s,W in SL2(k(v)) lies in the stabilizer of β(v), and this
stabilizer has order #k(v) since β(v) is non-zero. Letting v range over S, we see that the image
of M tr

s,W in T =
∏

v∈S SL2(k(v)) lies in a subgroup of matrices which has order N =
∏

v∈S #k(v).
However, as W ranges over Hom(J,B), the image of M tr

s,W in T also ranges over a set of N matrices,
since each of J and B are rank one projective O-modules. It follows that we can choose W so that
M tr

s,W has image the identity element of T , as required.
The last statement we have to prove is that Γ(S, S′)-equivalent cusps have the same image under

Ψ. Suppose M = M tr
s,W satisfies (4.20) and has the properties described in Definition (4.1). It will

suffice to show (4.2), (4.3) and (4.4) hold. For (4.2), observe that the containments in (4.17) show

(4.21) Ox′0 + P(S′)x′1 = O(α · x0 + γ · x1) + P(S′)(β · x0 + δ · x1) ⊂ Ox0 + P(S′)x1

Since M−1 also satisfies the conditions in (4.1) and takes the cusp (x′0 : x′1) back to (x0 : x1), we
can interchange (x′0 : x′1) and (x0 : x1) to conclude that (4.2) holds. The proof of (4.3) and (4.4) is
similar using the properties of M in Definition (4.1).

5. The Borel congruence subgroup of ΓS,S′ .

We consider in this section the following subgroup of ΓS,S′ .

Definition 5.1. For v a finite place of k, let Bv ⊂ GL2(Ov) be the subgroup of invertible matrices
of the form

(5.1)
(

a πvb
c d

)
in which a, b, c, d ∈ Ov. Define Γ0(S, S′) to be the subgroup of elements of ΓS,S′ ⊂ PGL2(k) which
are the images of matrices M ∈ GL2(k) such that that M ∈ Bv for v ∈ S, M ∈ D′

v
∗ for v ∈ S′ and

M ∈ GL2(Ov) for v /∈ S ∪ S′.
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Note that the image of Bv in PGL2(kv) is the group K1,v ∩K ′
1,v defined in §2. Thus Γ0(S, S′) ⊂

ΓS,S′ , while Γ(S, S′) ⊂ Γ0(S, S′).

Definition 5.2. Define L0(S) to be the set of pairs ([J ], {βv}v∈S) in which [J ] is an element of
the ideal class group of k, and for each v ∈ S, βv is either 0 or 1. Define r : L(S) → L0(S) to be
the map which sends a triple (J, α0, α1) ∈ L′(S) representing an element of L(S) to ([J ], {βv}v∈S),
where [J ] is the ideal class of J ∈ I(k), and βv = 0 (resp. 1) if α0 ≡ 0 mod πvJ (resp. if α0 6≡ 0
mod πvJ).

Proposition 5.3. Let Ψ : P1
k → L(S) be the map of Proposition 4.3. The composition r ◦Ψ : P1

k →
L0(S) is surjective, and the fibers of this map are the Γ0(S, S′)-equivalent cusps of Γ0(S, S′).

Proof: Recall that L′(S) consists of the triples (J, α0, α1) in which J ∈ I(k) and α0 and α1 are
generators of J/P(S)J . Since P(S) =

∏
v∈S P(v), we see that we can choose α0 and α1 to have

prescribed classes α0(v), α1(v) ∈ J/P(v) as v ranges over S provided that for no such v are both
α0(v) and α1(v) trivial. This implies r is surjective, so r ◦Ψ is surjective by Proposition 4.3.

Consider now the action of a matrix M ∈ GL2(k) satisfying the hypotheses of Definition 5.1 on
Ψ(x0 : x1) = [(J, α0, α1)] ∈ L(S), where (J, α0, α1) ∈ L′(S) is as in Definition 4.2 and [(J, α0, α1)]
is the class of (J, α0, α1) in L(S). From J = O · x0 + P(S′) · x1 and the hypotheses on M we see
that J = O · x′0 + P(S′) · x′1 when

(5.2)
(

x′0
x′1

)
= M ·

(
x0

x1

)
Recall that α0 (resp. α1 ) is the image in J/P(S) of x0 (resp. t(S, S′)x1). Suppose

(5.3) M =
(

a b
c d

)
Define

(5.4) M ′ =
(

a b · t(S, S′)−1

t(S, S′)c d

)
We find from (5.2) that Ψ(x′0 : x′1) = (J, α′

0, α
′
1), where α′

0 and α′
1 are elements of J/P(S) given by

the following residue classes α′
0(v), α′

1(v) ∈ Jv/P(v)Jv = J/P(v)J for v ∈ S:

(5.5)
(

α′
0(v)

α′
1(v)

)
= M ′ ·

(
α0(v)
α1(v)

)
.

The number t(S, S′) ∈ k is a unit at each v ∈ S, so M ′ ∈ Bv for such v because M ∈ Bv. Thus

(5.6) a, d ∈ O∗
v , bt(S, S′)−1 ∈ πvOv and t(S, S′)c ∈ Ov

This implies α′
0(v) = 0 if and only if α0(v) = 0. It follows that r ◦ Ψ(x0 : x1) = r ◦ Ψ(x′0 : x′1), so

Γ0(S, S′)-equivalent cusps have the same image under r ◦Ψ.
To complete the proof of Proposition 5.3, we have to show that two points (x0 : x1) and (x′0 : x′1)

with the same image under r ◦Ψ are Γ0(S, S′)-equivalent. After multiplying x′0 and x′1 by a suitable
scalar, we can assume

(5.7) J = O · x0 + P(S′) · x1 = O · x′0 + P(S′) · x′1
Furthermore, on defining α0(v), α1(v), α′

0(v) and α′
1(v) to be the images of x0, t(S, S′)x1, x′0

and t(S, S′)x′1 in J/P(v)J , we see that α0(v) = 0 if and only if α′
0(v) = 0 for v ∈ S, since

r ◦ Ψ(x0 : x1) = r ◦ Ψ(x′0 : x′1). Furthermore, α1(v) 6= 0 if α0(v) = 0, and similarly α′
1(v) 6= 0 if

α′
0(v) = 0. This implies there is a lower triangular matrix mv ∈ SL2(Ov/πvOv) such that

(5.8)
(

α′
0(v)

α′
1(v)

)
= mv ·

(
α0(v)
α1(v)

)
We now use the Strong Approximation Theorem for SL2 to conclude that there is M ∈ SL2(K)
which satisfies the hypotheses of Definition 5.1 such that when we write M in the form (5.3) and let
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M ′ be as in (5.4), then M ′ ∈ SL2(Ov) for v ∈ S satisfies the congruence M ′ ≡ mv mod πvMat2(Ov).
We conclude from this that

Ψ(M · (x0 : x1)) = Ψ(x′0 : x′1)

so that M · (x0 : x1) and (x′0 : x′1) are Γ(S, S′)-equivalent cusps by Proposition 4.3. Since Γ(S, S′) ⊂
Γ0(S, S′) and M · (x0 : x1) is Γ0(S, S′) equivalent to (x0 : x1) by our construction of M , this proves
(x0 : x1) and (x′0 : x′1) are Γ0(S, S′)-equivalent cusps.

Corollary 5.4. The number of Γ0(S, S′)-equivalence classes of cusps of Γ0(S, S′) is 2#Shk, where
hk is the class number of k.

6. ΓS,S′-inequivalent cusps.

In this section we will prove Theorem 1.1. The proof is based on the following two results, which
will be proved in §7 and §8, respectively.

Proposition 6.1. Let C0(S, S′) be the set of Γ0(S, S′)-equivalence classes of points of P 1
k . Since

Γ0(S, S′) ⊂ ΓS,S′ , the group ΓS,S′ acts on C0(S, S′). Each ΓS,S′-orbit in C0(S, S′) has [ΓS,S′ : Γ0(S, S′)]
elements.

Proposition 6.2. Define hk,2 to be the order of Cl(k)/(2Cl(k)) where Cl(k) is the class group of
k. Define 2n to be the order of the subgroup of Cl(k)/(2 ·Cl(k)) generated by the classes of primes
ideals determined by the places in S. Then 0 ≤ n ≤ #S and

(6.1) [ΓS,S′ : Γ0(S, S′)] = 2#S−nhk,2.

Theorem 1.1 is a consequence of these results in the following way. By Lemma 3.1 the set
of ΓS,S′ -orbits in C0(S, S′) is the set of ΓS,S′ -equivalence classes of cusps of ΓS,S′ . Corollary 5.4
together with Propostions 6.1 and 6.2 show this number is

(6.2)
2#Shk

2#S−nhk,2
= 2n hk

hk,2

as stated in Theorem 1.1.

7. Proof of Proposition 6.1.

We will need several Lemmas.

Lemma 7.1. To prove Proposition 6.1, it will suffice to show the following. Suppose

(7.1) σ ∈ ΓS,S′ , (x0 : x1) ∈ P1
k, (x′0 : x′1) = σ · (x0 : x1) and r ◦Ψ(x0 : x1) = r ◦Ψ(x′0 : x′1).

Then σ lies in Γ0(S, S′).

Proof: This is clear from Proposition 5.3, which showed that the map r ◦ Ψ : P1
k → L0(S) has

fibers equal to the elements of C0(S, S′).
We will assume from now on that hypothesis (7.1) holds.

Definition 7.2. Let (J, α0, α1) be the triple associated in Definition 4.2 to the ordered pair (x0, x1)
of elements of k which are not both 0. Thus J = Ox0 + P(S′)x1, and α0 and α1 are the classes of
x0 and t(S, S′)x1 in J/P(S)J . The class [(J, α0, α1)] of (J, α0, α1) in L(S) is equal to Ψ(x0 : x1).
Write (

x′0
x′1

)
= M ·

(
x0

x1

)
for some matrix M ∈ GL2(k) with image σ ∈ ΓS,S′ in PGL2(k). Let (J ′, α′

0, α
′
1) be the triple

associated to (x′0, x
′
1).

Lemma 7.3. The element σ must be even at each v ∈ S, in the sense that det(M) has even
valuation at each v ∈ S.
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Proof: Suppose to the contrary that σ is odd at some place v ∈ S. From the definition of ΓS,S′ in
§2, this implies that

(7.2) M = λv · wv ·Mv

where λv ∈ k∗v , wv is the matrix

(7.3) wv =
(

0 πv

1 0

)
and

(7.4) Mv =
(

a πvb
c d

)
∈ GL2(Ov)

for some a, b, c, d ∈ Ov. Consider the localization Jv of J at v. Since P(S′) is prime to P(v), we
have

(7.5) Jv = Ovx0 + Ovx1 ⊂ kv and J ′
v = Ovx′0 + Ovx′1.

Since

(7.6)
(

x′0
x′1

)
= M ·

(
x0

x1

)
= λv · wv ·Mv ·

(
x0

x1

)
we see from (7.3) and (7.4) that

(7.7) x′0 = λv · πv · (cx0 + dx1) and x′1 = λv · (ax0 + πvbx1).

Here a, d ∈ O∗
v , since Mv in (7.4) is in GL2(Ov). We claim

(7.8) J ′
v = λv · (πvOvx1 + Ovx0).

To show this, let ordv : kv → Z∪{∞} be the discrete valuation at v, normalized so that ordv(πv) = 1.
From (7.7) and (7.5) we have

J ′
v = Ovx′0 + Ovx′1 ⊂ λv · (πvOvx1 + Ovx0)

since a, b, c, d ∈ Ov. This containment must be an equality since (7.2) shows ordv(det(M)) =
ordv(λ2

v) + 1, and this integer is the power of #Ov/πvOv appearing in the generalized index

[Ovx0 + Ovx1 : λv · (πvOvx1 + Ovx0)].

The first case we now must consider is when ordv(x0) ≤ ordv(x1). In this case, (7.5) and (7.8)
show

(7.9) Jv = Ovx0 and J ′
v = λv ·Ovx0

Thus x0 6≡ 0 mod πvJv, while (7.7) shows x′0 ≡ 0 in J ′
v/πvJ ′

v. This proves α0(v) 6= 0 but α′
0(v) = 0.

In view of the description of the map r : L(S) → L0(S) in Definition 5.2, this forces r([(J, α0, α1)]) =
r ◦Ψ(x0 : x1) to be different from r[(J ′, α′

0, α
′
1)] = r ◦Ψ(x′0 : x′1). This contradicts hypothesis (7.1),

so we conclude that this hypothesis forces ordv(x0) > ordv(x1). In this case (7.5) and (7.8) imply

(7.10) Jv = Ovx1 and J ′
v = λv · πv ·Ovx1.

Since ordv(x0) > ordv(x1), we find that x0 ≡ 0 mod πvJv, while (7.7) implies x′0 6≡ 0 mod πvJ ′
v.

Thus we get α0(v) = 0 but α′
0(v) 6= 0, again contradicting hypothesis (7.1). This contradiction

proves Lemma 7.3.

Corollary 7.4. The element σ ∈ ΓS,S′ is represented by a matrix M ∈ GL2(k) having the following
properties. For each finite place v of k, there is an element xv ∈ k∗v together elements a = av, b = bv,
c = cv and d = dv of Ov such that

(7.11) M = xv ·Mv and det(Mv) ∈ O∗
v ,

(7.12) xv ∈ O∗
v for all but finitely many places v
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(7.13) Mv =
(

a πvb
c d

)
if v ∈ S

(7.14) Mv =
(

a πvb
π−1

v c d

)
if v ∈ S′

(7.15) Mv =
(

a b
c d

)
if v 6∈ S ∪ S′

Proof: By [1, Prop. 4.4(iii)], if v is a finite place of k such that ΓS,S′ contains an element which
is odd at v, then v ∈ S. We proved in Lemma 7.3 that σ must be even at each v ∈ S. Hence for
each finite place v, there is an element xv ∈ k∗v such that 2 · ordv(xv) = ordv(det(M)). On defining
Mv = x−1

v ·M , it now follows from the definition of ΓS,S′ in (2.3) that Mv has properties (7.11) -
(7.15).

Corollary 7.5. With the notation of Corollary 7.4, let A =
∏

v P(v)ordv(xv). Then with the
notation of (7.1), we have

(7.16) J ′ = Ox′0 + P(S′)x′1 = A · J = A · (Ox0 + P(S′)x1)

as fractional k-ideals.

Proof: Define

(7.17)
(

xv,0

xv,1

)
= Mv ·

(
x0

x1

)
for all v. Since M = xv ·Mv, the localization J ′

v at v satisfies

(7.18) J ′
v = (Ovx′0 + P(S′)vx′1) = xv · (Ovxv,0 + OvP(S′)vxv,1)

However, the fact that det(Mv) ∈ O∗
v together with the form of Mv in (7.13) - (7.13) insures that

(7.19) Ovxv,0 + OvP(S′)vxv,1 = Ovx′0 + P(S′)vx′1 = Jv

Combining (7.18) and (7.19) shows (7.16).

Completion of the proof of Proposition 6.1.

In hypothesis (7.1) we supposed r ◦ Ψ(x0 : x1) = r ◦ Ψ(x′0 : x′1). This forces J and J ′ = A · J
to have the same ideal class as fractional k-ideals. Hence A = O · λ is a principal ideal for some
λ ∈ k∗. With the notation of Corollaries 7.4 and 7.5, we now see that if we choose xv = λ for all
places v, then the matrix M ′ = λ−1 ·M ∈ GL2(k) has image Mv in GL2(kv) for all v. This implies
M ′ ∈ Γ0(S, S′). Since M and M ′ have the same image σ in PGL2(k), we have σ ∈ Γ0(S, S′), which
completes the proof of Proposition 6.1 by Lemma 7.1.

8. Proof of Proposition 6.2.

Let D′ be the maximal O-order ∩v 6∈S′Dv ∩v∈S′ D′
v in Mat2(k), where Dv and D′

v are defined in
§2. The set Rf of finite places of k which ramify in Mat2(k) is empty. Therefore the group ΓRf

which Borel defines in [1, §8.4] is the image in PGL2(k) of the group B∗
Rf

of elements τ ∈ GL2(k)
such that det(τ) ∈ O∗. Define ΓD′∗ (resp. to ΓD′1) to be the image in PGL2(k) of D′∗ (resp.
the image of the group of τ ∈ D′∗ such that det(τ) = 1.) Borel shows in [1, Lemma 8.5] that
[Γ∗Rf

: ΓD′1 ] = 2, since in our case the unit group O∗ is finite, cyclic and of even order and k has no
real places. However, we also have [ΓD′∗ : ΓD′1 ] = 2, since D′∗ contains a diagonal matrix whose
diagonal entries are 1 and a generator of O∗. Since

ΓD′1 ⊂ ΓD′∗ ⊂ Γ∗Rf

we conclude that ΓD′∗ = Γ∗Rf
. Hence Borel’s result in the Lemma of [1, §8.6] shows

(8.1) [ΓD′ : ΓD′∗ ] = h2,k
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where ΓD′ is the image in PGL2(k) of the normalizer Norm(D′) of D′ in GL2(k). For v ∈ S, let
k(v) = Ov/πvOv, and let b(v) be the subgroup of lower triangular matrices in GL2(k(v)). Definition
5.1 implies that Γ0(S, S′) is the image in PGL2(k) of the subgroup D′(S)∗ of elements M ∈ D′∗

such that the image of M in

D′
v/πvD′

v = Dv/πvDv = Mat2(Ov/πvOv)

lies in b(v) for each v ∈ S. Since each of the 1 + #k(v) cosets of b(v) in GL2(k(v)) is represented
by an element of SL2(k(v)), the Strong Approximation Theorem for SL2 implies

(8.2) [D′∗ : D′(S)∗] =
∏
v∈S

(1 + #k(v)).

Clearly D′∗ ∩k∗ = D′(S)∗ ∩k∗ when we identify these groups with the diagonal matrices inside D′∗

and D′(S)∗. Thus (8.2) gives

(8.3) [Γ∗D′ : Γ0(S, S′)] =
∏
v∈S

(1 + #k(v)).

The group ΓD′ is equal to Γ∅,S′ by [1, §4.9, eq. (4)]. Hence on letting

Γ2 = ΓD′ ∩ ΓS,S′ = Γ∅,S′ ∩ ΓS,S′

we have from [1, §5.3, eq. (7) and (8)] that

(8.4) [ΓD′ : Γ2] =
∏
v∈S

(1 + #k(v))

(Note that there is a misprint in [1, §5.3, eq. (4)], since the product in that equation should be over
places in S.) Putting together (8.1), (8.3) and (8.4) gives the generalized index relation

(8.5) [Γ2 : Γ0(S, S′)] = [ΓD′ : ΓD′∗ ] · [Γ∗D′ : Γ0(S, S′)]/[ΓD′ : Γ2] = h2,k.

We now define a homomorphism

(8.6) F : ΓS,S′ →
∏
v∈S

(Z/2)

by sending σ ∈ ΓS,S′ to the vector having component 0 at v ∈ S if σ is even at v and component 1
if v is odd at v. The kernel of F is

Γ2 = Γ∅,S′ ∩ ΓS,S′

so

(8.7) [ΓS,S′ : Γ2] = #Image(F )

Consider the homomorphism

(8.8) T :
∏
v∈S

(Z/2) → Cl(k)/(2Cl(k))

which sends the vector having component 1 at v and component 0 at the other places in S to the
class of the prime ideal P(v). We will show that

(8.9) Image(F ) = Kernel(T ).

Before proving (8.9) note that in the statement of Proposition 6.2, Image(T ) has order 2n. Thus
(8.7) and (8.9) will show

(8.10) [ΓS,S′ : Γ2] = #Image(F ) = #Kernel(T ) = 2#S/#Image(T ) = 2#S−n

Hence (8.5) and (8.10) prove (6.1), which will prove Proposition 6.2.
It remains to show (8.9). If M ∈ GL2(k) represents σ ∈ ΓS,S′ , then det(M) ∈ k∗ is even at

all v /∈ S, and ordv(det(M)) is even (resp. odd) exactly if the component of F (σ) at v is 0 (resp.
1). Since det(M) generates a principal ideal, it follows that the composition T ◦ F is trivial, so
Image(F ) ⊂ Kernel(T ).
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To show equality in (8.9), it will now suffice to show the following. Suppose λ ∈ k∗ has ordv(λ) ≡ 0
mod 2Z for v 6∈ S. Then we need to show there is an element σ ∈ ΓS,S′ which for v ∈ S is odd at v
if and only if ordv(λ) is odd. Without loss of generality, we can assume λ ∈ O. Fix a uniformizing
element πv ∈ Ov for each place v. We can choose an element c ∈ O satifying the following finite
system of congruences:

(8.11) If ordv(λ) = 2av + 1 is odd, then c ≡ 0 mod πav+1
v Ov;

(8.12) If ordv(λ) = 2av is even, and av > 0 or v ∈ S ∪ S′, then c ≡ λ · π−av
v − πav

v mod πav+1
v Ov.

We let σ′ be the matrix

(8.13) σ′ =
(

0 λ
1 c

)
.

Clearly det(σ′) = −λ is odd at exactly the places v of k where ordv(λ) is odd. We will show below
that

(8.14) σ′ fixes an edge of Tv if v ∈ S ∪ S′ or ordv(λ) 6= 0.

Let us first prove that (8.14) implies equality in (8.9), which we have already proved will complete
the proof of Proposition 6.2. If v ∈ S, then (8.14) states that σ′ fixes an edge of Tv. If v ∈ S′ or
ordv(λ) 6= 0, then σ′ must fix an edge of Tv pointwise, since (8.14) says σ′ fixes an edge, and σ′ is
even at v. Finally, if v 6∈ S ∪ S′ and ordv(λ) 6= 0, then σ′ lies in GL2(Ov), so σ′ fixes the vertex of
Tv that is fixed by every element of ΓS,S′ . The group SL2(kv) acts transitively on the edges of Tv.
Hence we can conclude from the Strong Approximation Theorem that a conjugate σ of σ′ by an
element of SL2(k) defines an element of ΓS,S′ . Since det(σ) = det(σ′) has odd valuation at exactly
those v where ordv(λ) is odd, this implies equality holds in (8.9).

We now prove (8.14). Suppose first that v is a place for which ordv(λ) = 2av + 1 is odd, so that
v lies in S. Condition (8.11) implies that σ′ acts in the following way on the lattices πav

v Ov ⊕ Ov

and πav+1
v Ov ⊕Ov in kv ⊕ kv.

(8.15) σ′
(

πav
v Ov

Ov

)
=

(
0 λ
1 c

)
·
(

πav
v Ov

Ov

)
=

(
λOv

πav
v Ov

)
= πav

v

(
πav+1

v Ov

Ov

)
.

(8.16) σ′
(

πav+1
v Ov

Ov

)
=

(
0 λ
1 c

)
·
(

πav+1
v Ov

Ov

)
=

(
λOv

πav+1
v Ov

)
= πav+1

v

(
πav

v Ov

Ov

)
.

These equalities show that σ′ interchanges the homothety classes of πav
v Ov⊕Ov and πav+1

v Ov⊕Ov.
Hence σ′ fixes the edge of Tv between these homothety classes (though it clearly does not fix this
edge pointwise).

Now suppose that ordv(λ) = 2av is even and av > 0 or v ∈ S ∪ S′. In all cases we have av ≥ 0,
since λ ∈ O. Condition 8.12 implies c ≡ 0 mod πav

v Ov. Hence

(8.17) σ′
(

πav
v Ov

Ov

)
=

(
0 λ
1 c

)
·
(

πav
v Ov

Ov

)
=

(
λOv

πav
v Ov

)
= πav

v

(
πav

v Ov

Ov

)
.

Thus σ′ fixes the homothety class of πav
v Ov⊕Ov, so it will now suffice to show σ′ fixes the homothety

class of an Ov lattice L containing πav
v Ov ⊕ Ov for which L/(πav

v Ov ⊕ Ov) is Ov-isomorphic to
k(v) = Ov/πvOv. We now compute

σ′
(

πav−1
v

π−1
v

)
=

(
0 λ
1 c

)
·
(

πav−1
v

π−1
v

)
=

(
λπ−1

v

πav−1
v + cπ−1

v

)
= = πav

v ·
(

λπ−2av
v πav−1

v

(1 + cπ−av
v )π−1

v

)
(8.18)

≡ πav
v · λπ−2av

v ·
(

πav−1
v

π−1
v

)
mod πav

v

(
πav

v Ov

Ov

)
.
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where the last congruence results from the condition on c in (8.12). Here λ · π−2av
v is a unit of Ov,

so we can take the lattice L to be the one generated as an Ov-module by πav
v Ov⊕Ov and the vector

(πav−1
v , π−1

v ). This completes the proof of Proposition 6.2.

9. Cusps and class numbers.

We begin by giving an ineffective proof of part (1) of Corollary 1.2. Recall that C(N) is the set of
isometry classes of minimal finite covolume discrete arithmetic hyperbolic 3-orbifolds having exactly
N cusps. The finite covolume discrete arithmetic subgroups of PGL2(k) are commensurable. Hence
to show the elements of C(N) represent only finitely many distinct commensurability classes, it will
suffice by Theorem 1.1 to show that there are only finitely many imaginary quadratic fields k such
that hk/hk,2 ≤ N . Siegel proved in [5] that for each ε > 0, there is an ineffective constant c(ε) > 0
such that

(9.1) hk > c(ε)|dk|
1
2−ε

where dk is the discriminant of k. By a result of Tatuzawa, the constant c(ε) can be made effective
except for at most one exceptional field k; see [6] and [2]. Let nk be the number of distinct prime
factors of dk. By genus theory, the two-rank of the ideal class group of k is equal to 2nk−1. Thus
h2,k = 2nk−1 and we get

(9.2)
hk

hk,2
> c(ε)

|dk|
1
2−ε

2nk−1
> c(ε)

∏
p|dk

p
1
2−ε

2
.

The fact that there are only finitely many k for which hk/hk,2 < N is clear from (9.2), since −dk is
either a square-free positive integer or 4 times such an integer, and if ε < 1/2 then there are only

finitely many primes p for which
p

1
2−ε

2
< 2.

Suppose now that X is an element of C(N). To show part (2) of Corollary 1.2, we must show
that there are infinitely many elements of the commensurability class of X which also lie in C(N).
By Borel’s work, X = H3/ΓS,S′ for some imaginary quadratic field k and some maximal discrete
subgroup ΓS,S′ ⊂ PGL2(k). Theorem 1.1 shows

(9.3) 2n hk

hk,2
= N

where 2n is the order of the subgroup of Cl(k)/2Cl(k) generated by the places in S. We now let
S0 be a set of n places whose images in Cl(k)/2Cl(k) generate a subgroup of order 2n; such an S0

exists by the Cebotarev density theorem. Let W be the set of finite places v of k such that

(9.4) P(v) · P(S0) = P(S0 ∪ {v})

is principal. The Cebotarev density theorem also implies W is infinite. We claim that for v ∈ W(k),
the group ΓS0∪{v},∅ contains an element σv which is odd at S0 ∪ {v}. To construct σv, let λv be a
generator for the ideal in (9.4). We can then take σv to be

(9.5) σv =
(

0 λv

1 0

)
.

We now see from [1, Prop. 4.4(iii)] that if ΓS0∪{v},∅ is not maximal, then it is conjugate to subgroup
of a maximal discrete subgroup of the form ΓS0∪{v},S′(v) for some finite set of places S′(v) which
is disjoint from S0 ∪ {v}. We conclude that for each v ∈ W, there is a maximal discrete group
ΓS0∪{v},S′(v) which contains an element which is odd at v. Furthermore, the fact that (9.4) is
principal implies that {P(v′) : v′ ∈ S0} and {P(v′) : v′ ∈ S0} ∪ {P(v)} generate the same subgroup
of Cl(k)/2Cl(k), which by hypothesis has order 2n. Thus Theorem 1.1 shows H3/ΓS0∪{v},S′(v) has
exactly N cusps, were N is as in (9.3). The orbifolds H3/ΓS0∪{v},S′(v) and H3/ΓS0∪{v′},S′(v′) are
not isometric for distinct v and v′ in W − S0, since the group ΓS0∪{v},S′(v) contains no elements
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which are odd at v′ and similarly with the roles of v and v′ reversed (cf. [1, Prop. 4.4(ii)]). This
completes the proof that C(N) contains infinitely many elements which are commensurable to X.
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[5] C. L. Siegel, Über die Classenzahl quadratischer Zahlk”orper, Acta Arith. 1 (1935), p. 83 - 86.

[6] T. Tatuzawa, On a theorem of Siegel, Japan J. Math. 21 (1951), p. 163 - 178.

[7] R. Swan, Generators and Relations for certain Special Linear Groups, Advances in Math. 6 (1971), p. 1 - 77.

T.C.: Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395
E-mail address: ted@math.upenn.edu

D.L.: Department of Mathematics, University of California, Santa Barbara, California 93106
E-mail address: long@math.ucsb.edu

A.R.: Department of Mathematics, University of Texas, Austin, Texas 78712
E-mail address: areid@math.utexas.edu


