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Fields of definition of canonical curves

D. D. Long and A. W. Reid

Abstract. This note studies the question of which number fields can arise as
canonical components.

1. Introduction

Let k ⊂ C be a field. A complex algebraic set V ⊂ Cn is defined over k if the
ideal of polynomials I(V ) vanishing on V is generated by a subset of k[x1, . . . , xn].
We say that a field k is the field of definition of V if V is defined over k, and if for
any other field K ⊂ C with V defined over K, then k ⊂ K (for the existence of
the field of definition, see [14], Chapter III). Note that the field of definition of an
algebraic variety depends on the embedding in a particular Cn. By a curve we will
mean an irreducible algebraic curve unless otherwise stated.

Now letM be an orientable finite volume hyperbolic 3-manifold with cusps, and
let X(M) (resp. Y (M)) denote the SL(2,C)-character variety (resp. PSL(2,C)-
character variety) associated to π1(M) (see for example [7] and [2] for definitions).
In [7] and [2] it is shown that X(M) and Y (M) are defined over Q. However, the
fields of definition of irreducible components of X(M) and Y (M) may be defined
over other number fields; i.e. subfields of C which are finite extensions of Q.

If we restrict M to have a single cusp, then the work of Thurston [23] shows
that a component of X(M) and Y (M) containing the character of a faithful discrete
representation of π1(M) is a curve. There may be two such curves in Y (M),
related by complex conjugation (which corresponds to change of orientation of M)
and several in X(M), arising from the different lifts of π1(M) from PSL(2,C) to
SL(2,C) (see [2] and [9] §2.7 for more on this). Throughout this paper we will
usually simply fix one of these curve components, and denote it by X0(M) (resp.
Y0(M)) or X0 (resp. Y0) if no confusion will arise. These are called canonical
components. Notice that, if the field of definition of Y0 is a real field, then Y0 will
be fixed by complex conjugation and so there will be precisely one component in
Y (M) containing the character of a faithful discrete representation. If the field of
definition of Y0 is a non-real field, there is possibly a second component defined
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over the field obtained by applying complex conjugation (see §5 for more on this).
A similar discussion applies to X0.

It is known that there are examples of M with a single cusp for which the field
of definition is not Q. For example, in [10], there is an example of a once punctured
torus bundle M where Y0 is defined over Q(i). Little else seems known, and so a
natural question is the following.

Question: Which number fields can arise as fields of definition of the curves X0

and Y0?

In this paper we will restrict attention to Y0. As mentioned, little seems known
about what number fields can arise as fields of definition for canonical curve compo-
nents. In particular, to our knowledge, there is no known obstruction to a number
field being a field of definition.

In this note we provide some constructions of examples of one cusped hyperbolic
3-manifolds for which the fields of definition of Y0 are extensions of Q of degree ≥ 2.
To give an indication of the type of result we shall prove we introduce some notation.
Let p ≥ 2 be an integer, and "p be the totally real number field Q(cosπ/p).

Theorem 1.1. For every odd integer p ≥ 5, there is a one cusped finite volume
orientable hyperbolic 3-manifold Mp for which Y0(Mp) has, as field of definition, a
number field kp containing "p.

It is a standard fact that ["p : Q] goes to infinity with p and so the fields kp will
be distinct on passage to a subsequence. Moreover, the methods also allow us to
construct examples for which the field of definition has arbitrarily large degree over
any "p (p odd), and examples for which the field of definition is a non-real number
field. The methods of proof exploit certain “rigidity” phenomena, in particular the
work in [19].

The discussion and results described above are similar in spirit to those con-
cerning the question as to which number fields arise as (invariant) trace-fields for
finite co-volume Kleinian groups. We refer the reader to the recent survey article
[20] (in these proceedings), and [22] for more on this. Beyond the obvious fact that
the invariant trace-field of a finite volume hyperbolic 3-manifold cannot be a real
field, no other obstructions are known. Some obstructions are known for certain
classes of manifolds; for example once punctured torus bundles [4]. In §5 we prove
a theorem that gives obstructions for a number field to be the field of definition of
Y0 for a hyperbolic knot complement in S3. Modulo a conjecture about characters
of real representations, we prove that the field of definition in this case has to be
either real or contain a real subfield of index 2 (see Theorem 5.1).

We conclude the Introduction by remarking that, in §6 we construct examples
of hyperbolic knots in S3 that have invariant trace-fields with class numbers at least
2 (see §6 for more discussion of this topic).

Remark: Much of this paper was basically written in 1998 and remained stub-
bornly unfinished. In conversations at a recent workshop on character varieties at
Banff International Research Station, it became clear that there is some interest in
the fields of definition of character varieties. It was this, together with the invita-
tion of the organizers/editors of the conference/proceedings “Interactions Between
Hyperbolic Geometry, Quantum Topology and Number Theory” that took place in
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Columbia in 2009 to submit a paper that prompted us to finish off the paper.

Acknowledgement: The authors wish to thank Steve Boyer, Neil Hoffman, and
Walter Neumann (over many years) for conversations related to topics discussed in
this paper. We also thank Hoffman for help with SnapPy. We are also very grateful
to Walter Neumann and a referee for several helpful comments that helped clarify
this paper.

2. Fields of definition

It will be convenient to describe some additonal background material on fields
of definition. In this section, k ⊂ C will be a number field.

Suppose that V ⊂ Cm is a complex algebraic variety defined over k: recall that
this means that

I(V ) = {f ∈ C[X1, . . . , Xm] : f(z) = 0 ∀z ∈ V }

is generated by polynomials f1, . . . fr ∈ k[X1, . . . , Xm]. If k is the field of definition
then k is the smallest such field for which this can be achieved.

We now fix k to be the field of definition, and k ⊂ C the algebraic closure of
k. Then notice that V is also the vanishing set of the k[X1, . . . Xm]-ideal

{f ∈ k[X1, . . .Xm] : f(z) = 0 ∀z ∈ V }.

It will be convenient to work with this ideal in the following discussion and
for convenience we will just refer to this ideal as I(V ). Now, as is easy to see,
if G = Gal(k/k) denotes the Galois group of the extension k/k, then G acts
on k[X1, . . . , Xm] by application of σ ∈ G to the coefficients of a polynomial in
k[X1, . . . , Xm]. Since k is fixed by any σ ∈ G, it follows that I(V ) is preserved by
σ. Briefly, any polynomial in I(V ) is a sum of terms gi(X1, . . . , Xm)fi(X1, . . . , Xm)
with gi(X1, . . . , Xm) ∈ k[X1, . . . , Xm]. Applying σ to this product fixes the coeffi-
cients of fi, and thereby determines a term gσi (X1, . . . , Xm)fi(X1, . . . , Xm) ∈ I(V ).
With this observation we prove the following lemma.

Lemma 2.1. Let V be as above, and assume further that for some fixed j with
1 ≤ j ≤ m, there exists an algebraic number t such that every point of V has xj

co-ordinate equal to t. Then t ∈ k.

Proof: We will assume that j = 1 for convenience. By assumption the polynomial
X1− t vanishes on V , and hence X1− t ∈ I(V ). Assume to the contrary that t /∈ k.
Since t is algebraic we can find an element σ ∈ G such that σ(t) '= t.

As noted above, σ preserves I(V ), and so σ(X1 − t) ∈ I(V ), that is to say
X1−σ(t) ∈ I(V ). Then t−σ(t) ∈ I(V ), which is a non-zero constant. In particular,
this does not vanish on V , which contradicts that all elements of I(V ) must vanish
on V . ()

3. A lemma

Throughout this section, M will denote a cusped orientable hyperbolic 3-
manifold of finite volume.
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3.1. It will be convenient to recall some of the construction of X(M) and
Y (M) from [7] and [2]. We begin with X(M). Recall that given a representation
ρ : π1(M) → SL(2,C), this determines a character χρ : π1(M) → C by χρ(γ) =
tr(ρ(γ)).

It is shown in [7] there exists a finite collection of elements {γ1, . . . , γm} of
π1(M) such that for each γ ∈ π1(M), χρ(γ) is determined by the collection (χρ(γi))1≤i≤m.
The complex algebraic structure on X(M) is then determined by the embedding:

χρ → (χρ(γ1),χρ(γ2), . . . ,χρ(γm)).

The collection of elements {γi}1≤i≤m can be taken to be any generating set for
π1(M) and all double and triple products of these generators ([7], [12]).

We will say that γ ∈ π1(M) has constant trace on an irreducible component
X ⊂ X(M), if χρ(γ) = tr(ρ(γ)) is constant for all χρ ∈ X.

This can be extended to Y (M) in the following way. Recall from [2] §3,
that Y (M) is constructed from X(M) as follows. The group H1(π1(M);Z/2Z) =
Hom(π1(M); {±I}) acts on X(M) via:

ε(χρ)(γ) = χε(ρ)(γ) = ε(γ)χρ(γ),

where ε ∈ H1(π1(M);Z/2Z), χρ ∈ X(M) and γ ∈ π1(M). This action is algebraic
and Y (M) is the quotient of X(M) by this action.

Using this map, as shown in [2] §3, co-ordinates for Y (M) can be constructed
in a similar way to that described above for X(M). We can therefore talk about
an element γ ∈ π1(M) having constant trace on a component of Y ⊂ Y (M).

3.2. As remarked in the Introduction, the field of definition of an algebraic
variety is an invariant of an algebraic variety that depends on the embedding in
affine space. In particular, in the context of the character variety, X(M) (resp.
Y (M)) is computed with respect to a generating set, which determines (via the
finite collection of characters described in §3.1) an embedding in someCm. However
notice that if < S > and < S′ > are finite generating sets for π1(M), and g ∈ S,
then χρ(g) is a Z-polynomial in the finite collection of characters described in
§3.1 arising from S′ and similarly, if g′ ∈ S′ then χρ(g′) is a Z-polynomial in the
finite collection of characters described in §3.1 arising from S. These integral maps
determine an isomorphism of the different embeddings of X(M) (resp. Y (M)), and
also for components of the character variety. We summarize this in the following
proposition.

Proposition 3.1. Let M be a cusped hyperbolic 3-manifold, and X (resp. Y )
an irreducible component of X(M) (resp. Y (M)). Then the field of definition of
X (resp. Y ) does not depend on the generating set used to compute X(M) (resp.
Y (M)).

3.3. Our constructions depend on the following lemma which is a simple con-
sequence of Lemma 2.1 and Proposition 3.1.

Lemma 3.2. Let {γ1, . . . , γm} be as above, and assume for some j, γj has
constant trace on an irreducible component Y ⊂ Y (M), say with value t. Then the
field of definition of Y contains t.

In Lemma 3.2, we dealt with the case of a generator having constant trace.
However, there is no loss in generality in doing this, since if γ is any element of
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constant trace, then we can simply adjoin γ to a generating set and work with this.
The discussion in §3.2 and Proposition 3.1 shows that this does not effect the field
of definition.

3.4. It is easy to construct hyperbolic knots in S3 that have many curve com-
ponents in Y (M), all defined over an extension of Q, and for which none of these
components contains the character of a faithful discrete representation.

For example, [2] Example 3.2 shows that the free product of two non-trivial fi-
nite cyclic groups of orders p and q has a PSL(2,C)-character variety with [p/2][q/2]
curve components. By Lemma 3.2, it follows that these components are defined over
fields containing cosπ/p and cosπ/q. Considering these groups as the base orbifold
groups of appropriate torus knot exteriors (assuming p and q are relatively prime),
it is easy to construct examples of hyperbolic knots whose fundamental groups sur-
ject these torus knots groups. In some cases these hyperbolic knots can be made
2-bridge and so can only have curve components in their character varieties (by [5]
Theorem 4.1 for example).

4. Applications

Lemma 3.2 gives a method to construct canonical components which are defined
over extensions of Q. We now describe settings where this can be achieved.

4.1. The examples which prove Theorem 1.1, come from [19]. These examples
exploit a “rigid” totally geodesic surface. We briefly recall the one cusped hyperbolic
3-manifolds Mp constructed in §2 of [19]. These manifolds are p-fold cyclic covers
of the orbifolds obtained by (p, 0), (p, 0), (p, 0) Dehn filling on the components
L1, L2, L3 of the manifold shown in the figure (this is Figure 2 of [19]). The odd p
assumption was used in [19] to easily arrange a manifold cover with a single cusp.

By construction, Mp contains an embedded non-separating totally geodesic
surface Σp of genus (p− 1)/2. The arguments of [19] show that because Σp covers
a rigid orbifold (namely H2 modulo the (p, p, p)-triangle group), then Σp remains
rigid under all generalized hyperbolic Dehn surgeries. In particular, we deduce
from this that tr(ρ(γ)) is constant on the component Y0(Mp) for all γ ∈ π1(Σp).
Now since p is odd, the trace-field and the invariant trace-field of the rigid orbifold
coincide, and equals "p. Hence it follows that the trace-field of ρ(π1(Σp)) is "p, and
so Lemma 3.2 now implies Theorem 1.1. ()
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4.2. It is easy to modify the construction so that for any fixed odd p, the
field kp has arbitrarily large degree over "p. To see this, let Bp denote the 3-
manifold obtained by cutting Mp along Σp. So Bp has a single cusp and a pair of
totally geodesic boundary components, both isometric to Σp. This manifold covers
a hyperbolic 3-orbifold with a single cusp and a pair of totally geodesic orbifolds
isometric to H2 modulo the (p, p, p)-triangle group.

Performing a genuine hyperbolic r-Dehn filling on the cusp of Bp gives a hy-
perbolic 3-manifold Bp(r) with geodesic boundary, which by the aforementioned
rigidity is a pair of surfaces isometric to Σp. An adaptation of an argument of
Hodgson (see also [15]) shows that as we vary r the degree of the trace of the core
curve (denoted by tr) of the r-Dehn filling goes to infinity. Now form 1-cusped
hyperbolic 3-manifolds Np,r by gluing Bp to Bp(r). Since tr will remain constant
on Y0(Np,r), Lemma 3.2 and the construction in §4.1 implies the field of definition
of Y0(Np,r) contains both cosπ/p and tr. This proves the claim.

4.3. Examples where one does not have a rigid surface can also be constructed
using the methods of [19]. Theorem 2 of [19] provides an example of a 2 cusped
hyperbolic 3-manifold M whose cusps were geometrically isolated from each other.
This manifold was conjectured to have strongly geometrically isolated cusps, in
the sense that performing a genuine topological Dehn filling produced a 1-cusped
hyperbolic 3-manifold containing a closed geodesic γ (the core of the attached solid
torus) with tr(ρ(γ)) being constant on Y0. This was proved in [3]. Both [19] and
[3] exploit a certain 2-cusped hyperbolic orbifold Q that arises as a 2-fold quotient
of M (see [19] Fig 7 and [3]). Indeed the strong geometric isolation established in
[3] is proved via the orbifold Q.

As was pointed out in [10], the example of [10] mentioned in §1 is constructed
as a filling on the manifold M , which shows why this example has field of definition
Q(i). We describe below an example that is built in a similar way. This example
seems interesting as it appeared in [6] in connection with Bloch group computations.

Example: Let N denote the manifold v3066 of the SnapPea (or the recent updated
version SnapPy [8]) census. This is a 1-cusped hyperbolic 3-manifold of volume
6.2328329776455849 . . .. Using SnapPea (or SnapPy) the manifold N can be seen
to arise from Dehn filling on a double cover of Q. This double cover is distinct from
M .

The core of the Dehn filling has trace t /∈ R with Q(t) a non-real embedding
of the unique cubic field k of signature (1, 1) and discriminant −59 (t is a root of
the polynomial x3 + 2x2 + 1). This trace will be constant on Y0 and so the field of
definition contains k.

Remark: Note that k is also a subfield of the invariant trace-field since t2 generates
k. It is amusing to play with Snap to construct invariant trace fields of surgeries
on N (or the example of [10]) where one can check (using Pari [21]) inclusions of
number fields to “see” the field k as a subfield.

For example, the invariant trace-field of N is a field generated by a root of the
polynomial x6 − 4x4 +4x2 +1 (which has 3 complex places). We can test inclusion
of k using the Pari command nfisincl; this produces an output of 0 if there is no
embedding or returns an embedding of fields we find:
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nfisincl(x3 + 2x2 + 1, x6 − 4x4 + 4x2 + 1) = [x2 − 2].

This can be repeated for many small filling coefficients. For example, doing
(1, 2)-Dehn filling has k as invariant trace-field.

5. Obstructions on fields for knots in S3

We now focus on fields of definition of Y0 for the case when M is a hyperbolic
knot complement in S3. As far as the authors are aware no example of a non-real
field of definition for Y0 is known in this case. We make the following observations
in this regard.

By [13], every knot in S3 admits a curve of characters of infinite non-abelian
(non-faithful) representations into SU(2) and SO(3) ∼= PSU(2). For the case of
a hyperbolic knot it is as yet unknown as to whether the canonical component
contains such characters. However, this seems plausible. Indeed the following con-
jecture is a weak version of this.

Conjecture: Let K ⊂ S3 be a hyperbolic knot. Then Y0 contains infinitely many
characters which are the characters of irreducible real representations.

Given this we have the following obstruction to certain fields being fields of defini-
tion.

Theorem 5.1. Let K ⊂ S3 be a hyperbolic knot, and suppose that the above
conjecture holds. Then the field of definition of Y0 = Y0(S3 \ K) is either real or
contains a real subfield of index 2.

Proof: Let Y ′
0 denote the canonical component that is obtained by applying com-

plex conjugation to Y0. The conjecture asserts the existence of infinitely many
characters of irreducible real representations. Let C ⊂ Y0 denote this set. Now C
is fixed by complex conjugation and so Y0 and Y ′

0 meet along C. However, these
are curves and so it follows that Y0 = Y ′

0 ,
Let k denote the field of definition of Y0. In particular, generators for the ideal

I(Y0) are elements of k[x1, . . . , xm]. Applying complex conjugation, the coefficients
of these generators lie in k′ (the field obtained by applying complex conjugation to
k). Thus Y ′

0 is defined over k′. Since Y0 = Y ′
0 , it follows that Y0 is defined over k′.

Now k is the field of definition of Y0 so we must have k ⊂ k′, and therefore k = k′.
A field that is fixed by complex conjugation is either real, or contains a real subfield
of index 2. ()

Remark: By way of contrast with §4, we know of no example of a hyperbolic knot
in S3 (or even an integral homology 3-sphere) for which the canonical component
is defined over an imaginary field.

6. Class numbers and knot groups

In this section we make an observation regarding class numbers of invariant
trace-fields of hyperbolic knots. We begin with some motivation for this.

Let k be a number field with ring of integers Rk. An enormous amount of
research has been devoted to the study of the class group of Rk. This group mea-
sures the extent to which Rk fails to be a principal ideal domain. It is a classical
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theorem that the class group is finite (see [24] for example); its order is called the
class number of k (and denoted by hk). It is an open problem dating back to the
time of Gauss whether there are infinitely many number fields of class number one,
or even if given a constant C, there are infinitely many number fields with class
number at most C.

We now relate this to questions about subgroups of PSL(2,C). Thus, suppose
that Γ < PSL(2,C) (not necessarily discrete). The fixed points of parabolic ele-
ments of Γ are the cusps of Γ. By positioning three of these cusps at 0, 1 and ∞ in
C∪ {∞}, one computes easily that all the cusps now lie in the invariant trace-field
of Γ. In the special case that Γ = PSL(2, Rk) one sees that the cusps are precisely
the elements of k ∪ {∞} and the action of the group by fractional linear transfor-
mations gives an action on the field k. It is a theorem of Bianchi and Hurwitz (see
[11] Chapter 7.2) that the number of equivalence classes for this action is hk. Note
that the groups PSL(2, Rk) are discrete only when k is Q or imaginary quadratic.

If now Γ is a non-cocompact Kleinian group of of finite covolume with Γ <
PSL(2, RkΓ) (e.g any small hyperbolic knot in S3), if one can prove that every
element of k∪{∞} is a parabolic fixed point of Γ, then it follows from the Bianchi-
Hurwitz result that hkΓ = 1.

With this as background, following a good deal of experimental work by the
authors, it seems plausible that infinitely many hyperbolic knot complements in S3

have invariant trace-fields with class number 1 (for example every 2-bridge twist
knot).

The purpose of this section is to prove the following result in the opposite
direction.

Theorem 6.1. There are hyperbolic knots in S3 for which the invariant trace-
field has class number at least 2.

6.1. To prove Theorem 6.1 we make use of periodic knots. Recall that a knot
K ⊂ S3 is said to have period q > 1 if there is an orientation-preserving homeo-
morphism h : S3 → S3 of order q mapping K to itself and with fixed point set a
circle disjoint from K. The character variety technology for a 1-cusped orientable
hyperbolic 3-orbifold with a torus cusp is exactly as in the manifold setting (see for
example [16] §2.2).

Lemma 6.2. Let Q = H3/Γ be a 1-cusped orientable hyperbolic 3-orbifold with
a torus cusp, and γ ∈ Γ an element of order q > 1. Then the field of definition of
Y0(Q) contains "q.

Proof: As discussed §3.1, we can assume without loss of generality that γ is part
of a generating set for Γ. Since under infinitely many hyperbolic Dehn surgeries on
Q, γ remains an element of order q, it follows that γ has constant trace on Y0(Q),
namely ±2 cosπ/q. Applying Lemma 3.2 implies the result. ()

We now describe a particular family of periodic knots and identify the component
Y0(Q) (as in Lemma 6.2) for the orbifold quotient that we will make use of below.

Example: Let q be an odd positive integer > 1 and relatively prime to 3. The
(3, q) Turks heads knot Kq is the closure of the 3-braid (σ1σ

−1
2 )q, and is a knot

with period q. Let Qq denote the orbifold quotient obtained by quotienting out
by this symmetry. The PSL(2,C) character variety of Qq was basically computed
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in [18]; this paper deals only with representations, but these representations are
normalized by a choice of conjugacy. We find it more convenient to work with more
traditional trace co-ordinates. The orbifold groups of Qq can be presented as (see
[18] Theorem 5)

< x,λ|λq = 1, [λ, xλxλ−1x−1λ−1xλx] = 1 > .

In this presentation, x is the image of a meridian of Kq. Using the co-ordinates
P = tr(x), R = tr(xλ), a simple mathematica computation shows that the algebraic
set X1 which contains the characters of all irreducible SL(2,C)-representations is
defined by the vanishing locus of

F (P,R) = 1− (2 cosπ/q)PR−3R2+P 2R2+(2 cosπ/q)2R2− (2 cosπ/q)PR3+R4.

As is evident this is defined over "q. To determine Y0(Q) from this it will be
convenient to make the following observations.

Note that H1(Qq;Z) ∼= Z⊕Z/qZ (see the presentation given above). Now the
discussion in §3 regarding the construction of the PSL(2,C)-character variety still
applies to the orbifold group of Qq. Since q is odd, we deduce that H1(Qq;Z/2Z) ∼=
Z/2Z and moreover, that Z/2Z acts on X(Qq) via the image of x. Applying this
to the traces we find that in the (P,R)-co-ordinates this involution (which we will
denote by τ ) acts by

τ : (P,R) /→ (−P,−R).

Note that PR is invariant under τ , and so to describe the quotient under the
action of τ , we will switch co-ordinates to (X,R) where X = PR. This gives the
polynomial (still defined over "q):

G(X,R) = 1− (2 cosπ/q)X − 3R2 +X2 + (2 cosπ/q)2R2 − (2 cosπ/q)XR2 +R4.

Taking the quotient by τ describes the PSL(2,C)-image of X1 to be the vanishing
locus of

G(X,Y ) = 1− (2 cosπ/q)X − 3Y +X2 + (2 cosπ/q)2Y − (2 cosπ/q)XY + Y 2.

We now establish that the plane curve G(X,Y ) is irreducible and so its vanishing
locus will define Y0(Q) (which is therefore defined over "q).

To that end, notice that, G(X,Y ) is quadratic in both X and Y . Solv-
ing this quadratic for Y in terms of X gives the following roots (we let D =(
2X cos

(
π
q

)
− 2 cos

(
2π
q

)
+ 1

)
:

1

2

(
±

√

D2 − 4

(
−2X cos

(
π

q

)
+X2 + 1

)
+D

)
.

Thus if G(X,R) is reducible, it follows that the term

Pq(X) =

(
2X cos

(
π

q

)
− 2 cos

(
2π

q

)
+ 1

)2

− 4

(
−2X cos

(
π

q

)
+X2 + 1

)
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is a square of a polynomial in X. This can be readily checked by seeing whether
Pq(X) and its derivative have a common zero. However, a simple mathematica
calculation computes the appropriate resultant to be:

−64 sin2
(
π

q

)(
2 cos

(
2π

q

)
− 3

)

which is non-zero since q '= 1. This completes the identification of Y0(Q). ()

6.2. We now prove Theorem 6.1.
Consider the knots Kq from §6.1, and for convenience we again assume that q

is odd. As noted in §6.1, H1(Qq;Z) ∼= Z⊕Z/qZ, and so the invariant trace-field of
Qq (and therefore Kq) coincides with the trace field of Qq (see [17] Theorem 4.2.1).
This is only stated for manifolds but the same proof holds in the current situation).

Let Lq denote the invariant trace-field of Kq. This can be obtained by special-
izing P = 2 in F (P,R), and this gives

(−1−R+ (2 cosπ/q)R−R2)(−1 +R + (2 cosπ/q)R−R2) = 0.

It follows that Lq is generated over "q by a root of one of the factors above, and in
either case this determines an imaginary quadratic extension of "q.

As we discuss below, the proof is completed by applying Theorem 10.1 of [24]
(which is stated below for convenience) and the fact that there are values of q for
which the class number of "q is greater than 1. For example, [1] shows that the
smallest prime q for which the class number is greater than 1 is 257.

We now recall the theorem referred to above.

Theorem 6.3. Suppose that the extension of number fields L/K contains no
unramified abelian subextensions F/K with K '= F . Then hK |hL.

In our context, Lq is a quadratic extension of "q and so the condition on subex-
tensions is vacuous. Moreover, since Lq is necessarily imaginary it is a ramified
extension of "q; in the case of embeddings of the field, this simply means that the
identity embedding of "q lifts to a pair of complex conjugate embeddings. Thus we
can apply Theorem 6.3 to Lq/"q to deduce that hLq is greater than one for certain
values of q. ()
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