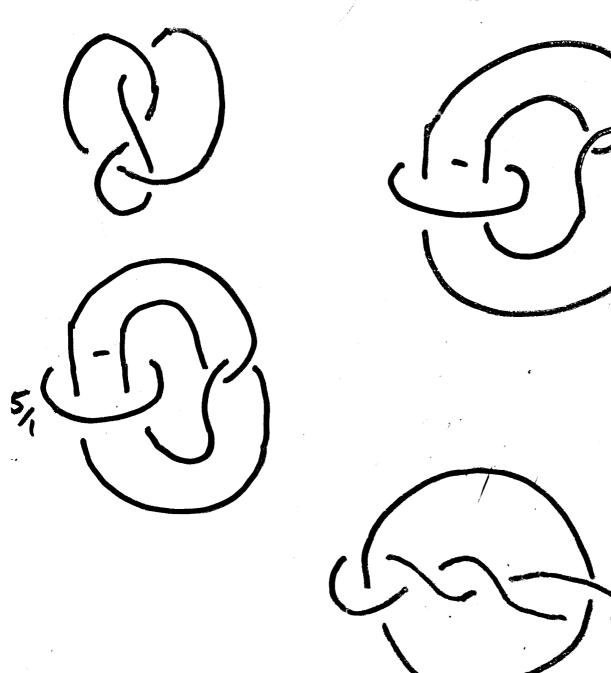
ARITHMETIC KNOTS AND LINKS

Alan W. Reid



The Bianchi groups

Let d be a square-free positive integer, and O_d the ring of algebraic integers in the field $\mathbf{Q}(\sqrt{-d})$. The collection of groups

discrete subgps of PSL2(C).

is called the Bianchi groups.

The quotients (Bianchi orbifolds):

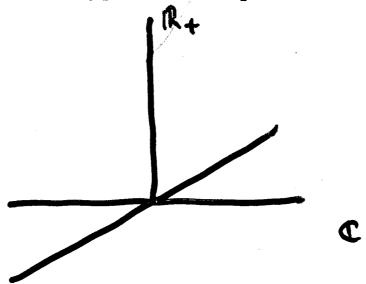
$$Q_d = \mathbf{H}^3/\mathrm{PSL}(2, \mathrm{O_d})$$

are finite volume hyperbolic orbifolds.

Definition: Let $M = \mathbf{H}^3/\Gamma$ be a non-compact finite volume hyperbolic 3-manifold (or orbifold). Then Γ is *arithmetic* if some conjugate of Γ in PSL(2, \mathbf{C}) is commensurable with PSL(2, $\mathbf{O_d}$).

Hyperbolic Manifolds

Let \mathbf{H}^3 denote hyperbolic 3-space.



The full group of orientation-preserving isometries can be identified with $PSL(2, \mathbb{C})$.

We will only be interested in non-compact finite volume hyperbolic 3-manifolds (and orbifolds). These manifolds (and orbifolds) have the form:



These manifolds can be described as complements of links in closed orientable 3-manifolds.

Remarks:(1) Let h_d denote the class number of $\mathbf{Q}(\sqrt{-d})$. Hurwitz showed:

$$Q_d$$
 has h_d cusps.

(2) When $d \neq 1, 3$, every cusp cross-section of Q_d is a torus.

When d = 1 the cusp cross-section is

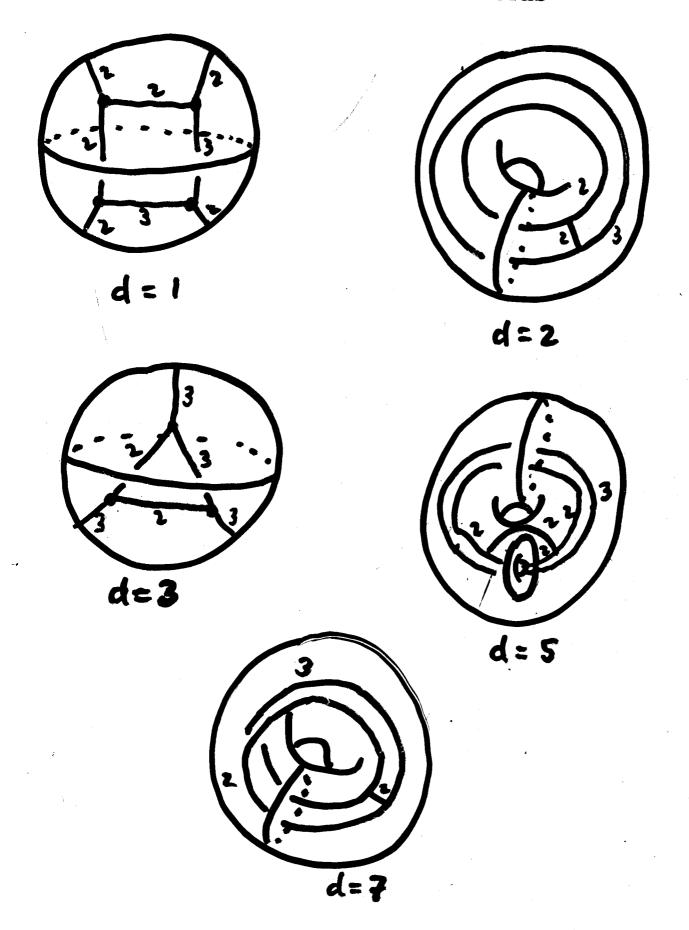
When d = 3 the cusp cross-section, is

$$\begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix} \text{ fixes as}$$

$$\omega = -1 + J - 3$$

imark: When $h_d > 1$ there can be orbifolds in the commensurability class with long There are only finitely many such commenses.

Some Bianchi orbifolds



Comparison with the $PSL(2, \mathbb{Z})$

Cuspidal Cohomology

Let Γ be a non-cocompact Kleinian (resp. Fuchsian) group acting on \mathbf{H}^3 (resp. \mathbf{H}^2).

Let $\mathcal{U}(\Gamma)$ denote the subgroup of Γ generated by parabolic elements of Γ and define:

$$V(\Gamma) = (\Gamma/\mathcal{U}(\Gamma))^{ab} \otimes_{\mathbf{Z}} \mathbf{Q}$$

Then $r(\Gamma) = \dim_{\mathbf{Q}}(V(\Gamma))$ denotes the dimension of the space of non-peripheral homology or equivalently $r(\Gamma)$ is the dimension of the Cuspidal Cohomology of Γ .

Examples:

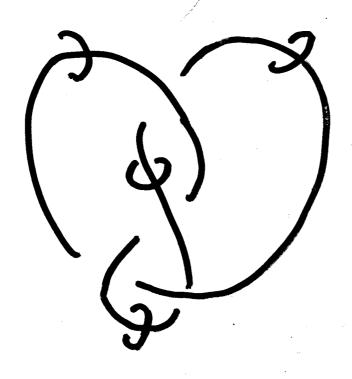
- (1) If \mathbf{H}^2/Γ is genus g surface with p punctures and finitely many orbifold points, then $r(\Gamma)=\mathbf{z}$. Thus $r(\mathrm{PSL}(2,\mathbf{Z}))=0$.
- Let n be a square-free positive integer and define:

$$\Gamma_0(n) = P\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : c = 0 \mod n \right\}$$

and $O_n = \mathbf{H}^2/\Gamma_0(n)$.

Now the Riemann-Hurwitz formula shows easily that $g(O_n) = 0$ if and only if $1 \le n \le 10$ and n = 12, 13, 16, 18, 25.

(2) If $L \subset S^3$ is a link then $r(\Gamma) = 0$. The link group is generated by meridians.



(3) If Lisa link in a rational homology 3-sphere, $\Gamma(\Gamma) = 0$.

Grunewald's work on Bianchi groups with Schwermer:

Subgroups of Bianchi groups and arithmetic quotients of hyperbolic 3-space. Trans. Amer. Math. Soc. 335 (1993).

A nonvanishing theorem for the cuspidal cohomology of SL_2 over imaginary quadratic integers. Math. Ann. 258 (1981/82).

Arithmetic quotients of hyperbolic 3-space, cusp forms and link complements. Duke Math. J. 48 (1981),

Free nonabelian quotients of SL_2 over orders of imaginary quadratic numberfields. J. Algebra 69 (1981).

with Elstrodt and Mennicke:

Eisenstein series for imaginary quadratic number fields.

Contemp. Math., 53.

Eisenstein series on three-dimensional hyperbolic space and imaginary quadratic number fields. J. Reine Angew. Math. 360 (1985).

On the group $\mathrm{PSL}_2(\mathbf{Z}[i])$. London Math. Soc. Lecture Note Ser., 56.

PSL(2) over imaginary quadratic integers. Asterisque, 94.

with Mennicke:

Some 3-manifolds arising from $PSL_2(\mathbf{Z}[i])$. Arch. Math. (Basel) 35 (1980).

with Helling and Mennicke:

SL₂ over complex quadratic number fields. I. Algebra i Logika 17 (1978).

with Hirsch: Link complements arising from arithmetic group actions. Internat. J. Math. 6 (1995).

with Jaikin-Zapirain and Zalesskii: Cohomological goodness and the profinite completion of Bianchi groups. Duke Math. J. 144 (2008).

Preprint with Finis and Tirao
The cohomology of lattices in Sla(C)

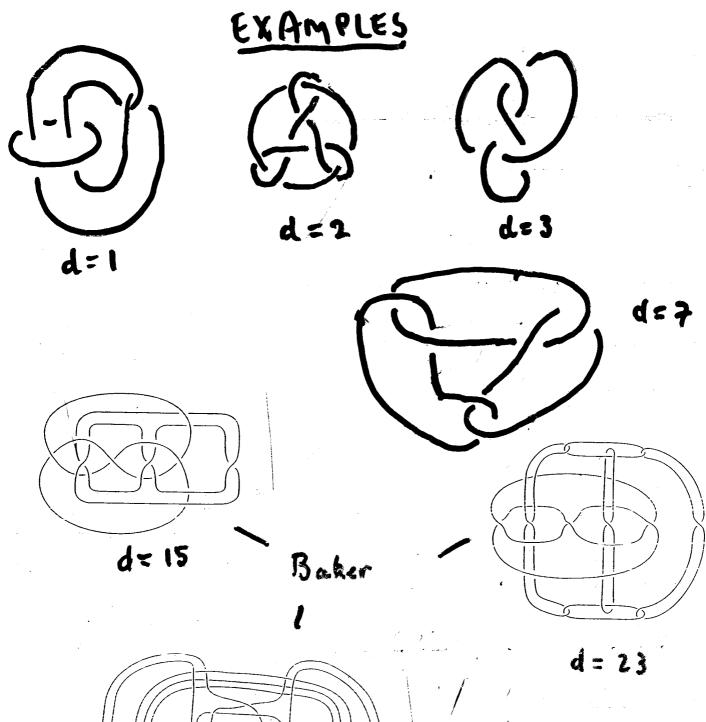
Theorem: (Cuspidal Cohomology Problem) (Harder, Zimmert, Grunewald-Schwermer, Rohlfs,, Vogtmann)

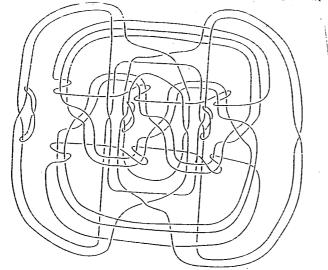
The only Bianchi orbifolds Q_d that can admit a finite sheeted cover that is a link complement in S^3 arise when

 $d \in \{1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 39, 47, 71\}.$

(ie ((PSC2(Od))=0 = de list above)

Theorem: (Baker) For all values d as above, there exists a link complement covering Q_d .





d=47

Arithmetic Knots

What can one say about $M \to Q_d$ with M having 1 cusp. (or more generally 1-usped auth. 3-mflds)

Note: If $M \to Q_d$ and M has 1 cusp, then Q_d has 1 cusp. Thus $h_d = 1$ (by Hurwitz's theorem).

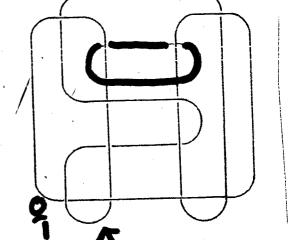
Solution to the class number 1 problem: $h_d = 1$ if and only if

$$d \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}.$$

Examples:

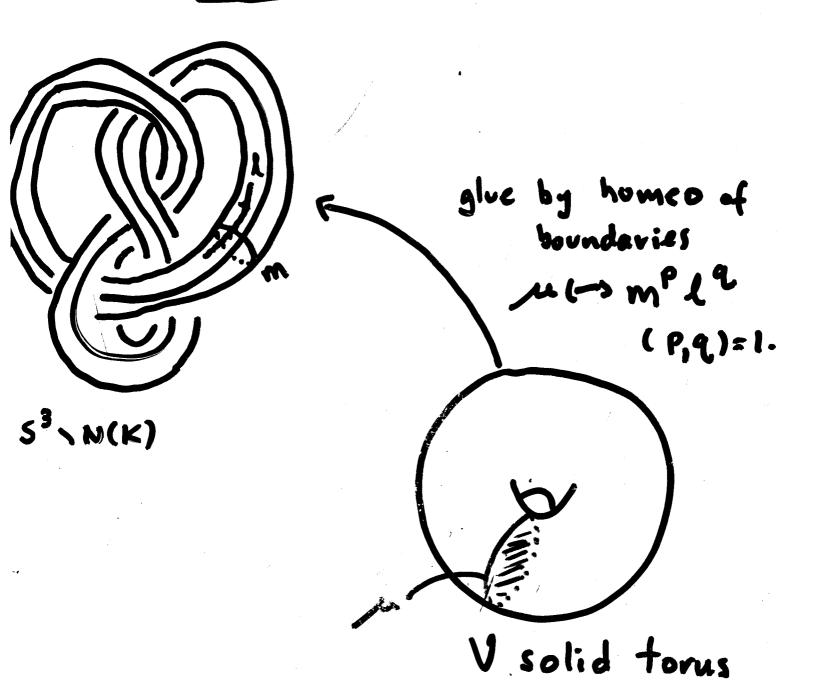
[cyclicovers] く(い),(いい)>

Remark: d= 2,7,11,19 there are also I cusped 16 COVEUS.



(Brunner, Frame, Lee Wielenberg)

Dehn Surjery



arithmetic 3-manifolds

Understanding 1-cusped the is the same as understanding arithmetic knots.

Definition: A knot K (or link L) in a closed orientable 3-manifold is called $\underbrace{arithmetic}$ if $M \setminus K$ (resp. $M \setminus L$) is arithmetic.

Example– S^3

Theorem:(R) The figure eight knot is the only arithmetic knot.

Links are different. There are infinitely many arithmetic links (even of two components).

Take
m-fold cyclic
covers (3,m)=1.

d=2.

A question that naturally arise from this:

Question: <u>Does every closed orientable 3-manifold</u> contain an arithmetic knot?

Why Care?

A positive answer implies the Poincare Conjecture.

The proof that the figure eight knot is the only arithmetic knot in S^3 shows that the figure eight knot in S^3 is the only arithmetic knot in a homotopy 3-sphere.

Remark: Once again links are different.

Every closed orientable 3-manifold contains an arithmetic link.

The reason is:

The figure eight knot is <u>universal</u> (every closed orientable 3-manifold arises as a branched cover of S^3 with branch set K).

Theorem 1:(Baker-R) Suppose L is a Lens space with $\pi_1(L)$ of odd order $\neq 5$. Then L does not contain an arithmetic knot.

Some ideas in Proof: L = Lens Spare

Assume | π, L | "large" >37

Prime

"11-3/Γ

Assume | π, L | "large" >37

Prime

Cohom.

The state of the stat

(2) Po ((PS(2(0d)) be peripheral subsp in Po = ((| x) (| y)) | x, y \ e Od = 2\old 2 M = "mevidian" of K.

Gromov-Thurston 2x-Thn =) 1x1 < 6 "small"
(Improvement, Agol, Lackenhy
6 Theorem)

Od c C discrete = only finitely many x.

Two Cases

X + a unit

ii) X a unit => LIX =>
Impossi

lupossible as 53,8

has no lens Space Dehn Susery.

(ii) X + a unit.

(x) non-trovial ideal, so 3 p (cx)

p a prime ideal.

 $PSL_{2}(O_{d}) \xrightarrow{Q_{p}} PSL_{2}(O_{d/p})$ UI UI $V_{2}(F) (Q_{p}(A) = I)$ $V_{3}(C_{A}) = \pi_{1}L$

=) lep(r) cyclic (#1 1113/ Kerlep > 1 las

BUT [F=0d/(p)] is bounded on 1×156 Contraduction.

Unlike the case of S^3 , there are examples of closed orientable hyperbolic 3-manifolds that contain more than one arithmetic knot.

Examples:

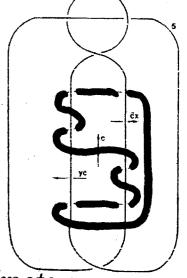
- I. $S^2 \times S^1$ contains at least 2 arithmetic knots (the complements being commensurable with Q_3 and Q_7).
- **2.** $\mathbf{RP}^3 \# \mathbf{RP}^3$ contains at least 2 arithmetic knots (the complements being commensurable with Q_1 and Q_3).
- ${\bf \$} \cdot L(4,1) \# L(4,1)$ contains at least 2 arithmetic knots (both the complements being commensurable with Q_7).
- $\mathbf{\Phi} \cdot \mathbf{RP}^3 \# (S^2 \times S^1)$ contains at least 2 arithmetic knots (the complements being commensurable with Q_1 and Q_3).

There are hyperbolic examples:

The manifold obtained by 5/1-Dehn surgery on the figure eight knot contains at least 2 arithmetic knots.

One obvious one, and the other is shown:

Bruner - Frame - Lee Wiclenberg.



Question: Is the number of arithmetic knots in a

closed orientable 3-manifold finite?

One can generalize the question about the uniqueness of the figure eight knot in S^3 in two obvious ways.

spherical

integral homology
3-sphere.

Question: What can one say about arithmetic knots in spherical 3-manifolds or integral homology 3-spheres?

Theorem 2:(Baker-R) Suppose M be a spherical 3-manifold or an integral homology 3-sphere. Suppose that

$$M \setminus K \to Q_d$$
.

Then,

- (1) If M is spherical then d = 3.
- (2) If M is an integral homology 3-sphere, d = 1, 3.

Remark: If M is an integral homology 3-sphere and $K \subset M$ an arithmetic knot then one can show that $M \setminus K \to Q_d$ for some d.

[True for knots in mod 2 homolosy spheres]

Conjecture: Let M be an integral homology 3-sphere.

If M contains an arithmetic knot K, then M is obtained by 1/n-Dehn surgery on the figure eight knot complement and K is "the core of the surgery solid torus".

i.e.
$$M \setminus K \cong S^3 \setminus \text{fig 8 knot.}$$

Final Comments

1-cusped congruence subgroups

In the case of the modular group H. Petersson showed that there are only finitely many 1-cusped congruence subgroups of $PSL(2, \mathbf{Z})$.

In her (2005) thesis, K. Petersen (my former student) showed that there are only finitely many maximal 1-cusped congruence subgroups.

Indeed for d = 11, 19, 43, 67, 163 there are only finitely many 1-cusped congruence subgroups.

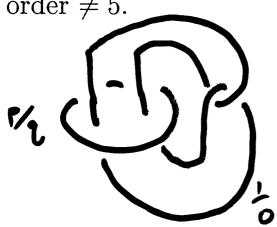
For d = 19, 43, 67, 163 there are no torsion-free 1-cusped congruence subgroups

Arithmetic number of a closed orientable 3-manifold

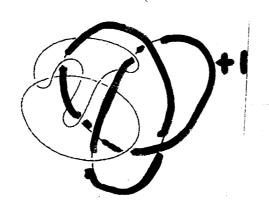
Let M be a closed orientable 3-manifold. The <u>the</u> arithmetic number of M, denoted $\mathcal{A}(M)$, is the minimal number of components of a non-empty arithmetic link in M.

As remarked, M contains an arithmetic link, so $\underline{\mathcal{A}(M)}$ is well defined positive integer.

Examples:(1) A Lens Space L is a Dehn surgery on the Whitehead link, so that $\mathcal{A}(L) \leq 2$. Theorem 1 therefore shows $\mathcal{A}(L) = 2$ for L with $\pi_1(L)$ odd order $\neq 5$.



(2) The Poincare homology sphere Σ contains a 2-component arithmetic link so $\mathcal{A}(\Sigma) \leq 2$.



Brunner - Frame - Lee - Wielenberg.

This prompts:

Question: Does the Poincare homology sphere contain an arithmetic knot?

(3) Methods of proof of Theorem 1 show "many" non-hyperbolic 3-manifolds have arithmetic number ≥ 2 .

Challenges:

- (1) Prove that there exists closed orientable 3-manifolds for which $\mathcal{A}(M)$ is arbitrarily large.
- (2) Prove that there exists a closed orientable hyperbolic 3-manifold that does not contain an arithmetic knot; ie $\mathcal{A}(M) \geq 2$.
- (1) looks like it is related to Heegaard senus.
- (2) There are candidate integral homology 3-spheres.