373K Algebra I, Homework 10

From Artin

Chapter 7 (page 224) 7.2, 8.1, 8.3, 8.5.
Chapter 11 (page 354) 1.6, 1.7, 1.8.

Others:

1. Prove that there is no simple group of order 56 .
2. Finish the proof that there are no non-abelian simple groups of order $n \leq 100$ with $n \neq 60$ (i.e. finish the product of three primes case).
3. Prove that if $H \neq 1$ is a normal subgroup of A_{5} then H contains a 3-cycle.
4. Prove that if $|G|=60$ and G contains more than one Sylow 5 -subgroup then G is simple.
5. Prove that a group of order 108 has a normal subgroup of order 9 or 27.
6.(Tricky) Suppose that $|G|=231=3.7 .11$. Show that the Sylow 7 and 11 subgroups are normal and that the Sylows 11-subgroup is contained in $Z(G)$.
6. Let G be a finite group, H a normal subgroup of G and P a Sylow p-subgroup of H. Show that $G=H N_{G}(P)$ and $[G: H]$ divides $\left|N_{G}(P)\right|$. (This is known as Frattini's argument.)
7. Let $\mathbf{Z}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbf{Z}\}$. Prove that this ring has infintely many units.
8. Let R be a commutative ring with 1 , and let $R[x]=\{$ polynomials with coefficients in $R\}$.
(a) Prove that $R[x]$ is a commutative ring with 1.
(b) Prove that if R is an integral domain, then $R[x]$ is an integral domain.
(c) What are the units in $R[x]$?
