373K Algebra I, Homework 11

From Artin

Chapter 11 (pages 354-357) 3.2, 3.5, 3.8 (just take $R=\mathbf{F}_{p}$), 3.9, 3.12, 3.13, 7.5.

Others:

1. Let $R=\mathbf{F}_{2}[x]$ and $p(x) \in R$ given by $x^{2}+x+1$. Prove that $R /<p(x)>$ is a field with four elements.
2. The center of a ring R (with 1) is:

$$
Z(R)=\{z \in R: r z=z r \quad \forall r \in R\} .
$$

(a) Prove that $Z(R)$ is a subring of R that contains the identity.
(b) Prove that the center of a divison ring is a field.
3. Let G be a finite group, and R a commutative ring with 1. Prove that $Z(R G)$ is non-trivial. (Hint: sum all the elements of G).
4. Which of the following are ideals of $\mathbf{Z}[x]$?
(a) the set of all polynomials with constant term a multiple of 3 .
(b) the set of all polynomials whose coefficient of x^{2} is a multiple of 3 .
(c) the set of polynomials in which only even powers of x appear.
(d) the set of polynomials $p(x)$ such that $p^{\prime}(0)=0$ (where $p^{\prime}(x)$ is the usual derivative function).
5. Prove that $M_{2}(\mathbf{R})$ contains a subring isomorphic to \mathbf{C}.
6. Let R be a commutative ring with 1 .
(a) Define

$$
\operatorname{rad} \mathrm{I}=\left\{\mathrm{r} \in \mathrm{R}: \mathrm{r}^{\mathrm{n}} \in \mathrm{I} \text { for some } \mathrm{n} \in \mathbf{N}\right\}
$$

Prove that rad I is an ideal of R containing I (called the radical of I.
(b) An element $a \in R$ is called nilpotent if $a^{m}=0$ for some $m \geq 1$. Prove that the set of nilpotent elements form an ideal (the nilradical), and that $1+a$ is a unit.
(c) What is $\operatorname{rad} \mathrm{I} / \mathrm{I}$?
7. Determine the nilpotent elements of $\mathbf{Z} / 72 \mathbf{Z}$.

