373K Algebra I, Homework 3

From Artin

Chapter 2 (pp. 69-73): 4.6, 5.3, 5.6, 6.6, 6.7, 8.1, 8.3, 8.4, 8.6

Others:

1. Complete the proof that D_{4} has order 8 and the the set of quaternions Q (from class) is a group of orrder 8 that is not isomorphic to D_{4}.
2. Let

$$
\operatorname{Aut}(\mathrm{G})=\{\sigma: \mathrm{G} \rightarrow \mathrm{G}: \sigma \text { is an isomorphism }\}
$$

(i) Prove that $\operatorname{Aut}(\mathrm{G})$ is a group (with the group multiplication being composition). This is the automorphism group of G.
(ii) Suppose that $G=\mathbf{Z} / 5 \mathbf{Z}$. What is Aut(G)?
3. Let G be a group and $H, K<G$ with $|H|$ and $|K|$ being coprime. Prove that $H \cap K=1$.
4. Compute the orders of elements in $\mathbf{Z} / 12 \mathbf{Z}$.
5. For p a prime, set $U_{p}=(\mathbf{Z} / p \mathbf{Z}) \backslash\{[0]\}$. Define \cdot on U_{p} by $[a] \cdot[b]=[a . b]$. Prove that . is well-defined and that $\left(U_{p}, \cdot\right)$ is a group. Is U_{p} cyclic?
6. Classify groups of order 6 up to isomorphism.
7. Construct the lattice of subgroups (together with indices) of the quaternion group Q.

