373K Algebra I, Homework 5

From Artin

Chapter 2 (p. 74): 11.3, 11.5, 11.6, 11.9.

Others:

1. Let G be a group and $S \subset G$ (only a subset, possibly empty). Let $<S>=\cap\{H<G$: $S \subset H\}$.
(i) Prove that $<S>$ is a subgroup of G, called the subgroup generated by S.
(ii) Let G denote the dihedral group D_{n}, ρ a rotation of order n, and σ any reflection. Prove that $<\{\rho, \sigma\}>=G$.
2. Referring to Question 1 above. Let G be a group and $S=\left\{a b a^{-1} b^{-1}\right\}$. The group $<S>$ is called the commutator subgroup of G and denote G^{\prime}.
(i) Prove that G^{\prime} is a normal subgroup of G.
(ii) Prove that G / G^{\prime} is abelian.
(iii) Prove that if N is a normal subgroup of G and G / N is abelian then $G^{\prime}<N$.
3. Referring to Question 2 above. What is D_{4} / D_{4}^{\prime} ?
4.(i) Compute the orders of $\operatorname{PSL}(2, \mathbf{Z} / 3 \mathbf{Z})$ and $\operatorname{PSL}(2, \mathbf{Z} / 5 \mathbf{Z})$. Prove that $\operatorname{PSL}(2, \mathbf{Z} / 3 \mathbf{Z})$ has no subgroup of order 6.
(ii) Prove that $\operatorname{PSL}(2, \mathbf{Z} / 3 \mathbf{Z})$ is not simple but $\operatorname{PSL}(2, \mathbf{Z} / 5 \mathbf{Z})$ is simple.
4. Let G be a finite group, let p be a prime, and let $H<G$ be a normal subgroup. Prove that if H and G / H have orders which are a power of p, then $|G|$ is a power of p.
5. Let $G=S_{4}$ and $H=<1,\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}1 & 4\end{array}\right)>$. Prove that $H<G$ is normal and identify G / H.

Sample Midterm 1 Questions

1. Answer the following true or false. You must explain your answers to get full credit.
(a) There is a non-abelian group of order 17.
(b) There is a non-abelian group of order 14.
(c) There is an abelian non cyclic group of order 49.
(d) S_{5} contains an element of order 6.
2. Suppose A is a normal subgroup of G and $H<G$ and these satisfy:
(i) A is abelian,
(ii) $A \cdot H=G$.

Show that $A \cap H$ is a normal subgroup of G.
(Hint: Show $A \subset N_{G}(A \cap H)$ and $H \subset N_{G}(A \cap H)$.)
3.(a) Let G be a group containing normal subgroups H, K such that $H \cap K=1$ and $G=H K$. Show that G is isomorphic to $H \times K$ (Hint: Consider G / K and $G / H)$.
(b) Use (a) to deduce that an Abelian group of order 9 is cyclic or isomorphic to $\mathbf{Z} / 3 \mathbf{Z} \times$ $\mathbf{Z} / 3 \mathbf{Z}$.
4. Prove that if $\alpha \in S_{n}$ is an m-cycle (i.e has the form $\left(a_{1} a_{2} \ldots a_{m}\right)$ for distinct integers $a_{1}, \ldots a_{m} \in\{1, \ldots n\}$) then α is a product of transpositions (ie. permutations of the form ($i j$) for some $1 \leq i \neq j \leq n$).
5. Suppose that G is a group and $N<G$ a normal subgroup. Assume that there is no normal subgroup $M<G$ with $N<M$. Prove that G / N is simple.

