373K Algebra I, Homework 6

From Artin

Chapter 2 (p. 74–75): 10.2, 10.4, 11.7, 12.2, 12.3.

Others:

1. Let G be a group, show that G/Z(G) is never isomorphic to Q (the quaternion group of order 8).

2. Let G be an abelian group with $|G| = p^n$ for some prime p. Show that if G/H is cyclic for every $H \neq 1$, then G is cyclic or $|G| = p^2$ (**Tricky**).

3. A group G is called *solvable* if there is a chain of subgroups:

$$1 = G_0 < G_1 < \dots G_k = G$$

such that G_i is normal in G_{i+1} and G_{i+1}/G_i is abelian.

Prove that $PSL(2, \mathbb{Z}/3\mathbb{Z})$ is solvable.

4. Referring to Q3, suppose that G is a group of order p^n were p is a prime. Prove that G is solvable.

5. Referring to Q3, prove that a quotient group of solvable group is solvable.

Sample Midterm 1 Questions

1. Let G be a group and for each $g \in G$ define $\phi_g : G \to G$ by $\phi_g(x) = gxg^{-1}$. Define $Inn(G) = \{\phi_g : g \in G\}.$

(i) Prove that Inn(G) is a normal subgroup of Aut(G).

(ii) Prove that $Inn(G) \cong G/Z(G)$.

2. Prove that S_4 has no subgroup of order 8. Does it have a normal subgroup of order 3?

3. Prove that if G is a group and H a subgroup of index n, then G has a normal subgroup K with $[G:K] \leq n!$.

4. Exhibit, with a complete explanation, 6 non-isomorphic groups of order 24, at least 4 of which must be non-abelian.