373K Algebra I, Homework 7

Due on Thursday March 23d-after Spring Break

Re-do Miterm 1 problems you missed or did not do from Part B

From Artin

Chapter 7 (p. 223): 5.1(c), 5.2, 5.3, 5.4, 5.6, 5.7.

Others:

1. Let $\alpha \in S_{9}$ denote the permutation (19)(28)(37)(46). Is α even or odd.
2. For $1 \leq r \leq n$ compute the number of r-cycles in S_{n}.
3. Show that an r-cycle is even if and only if r is odd.
4. Give an example of $\alpha, \beta, \gamma \in S_{5}$ with $\alpha \beta=\beta \alpha, \alpha \gamma=\gamma \alpha$ but $\beta \gamma \neq \gamma \beta$
5. If $\alpha \in S_{n}$ is an r-cycle is α^{k} an r-cycle?
6.(a) Show that $\alpha \in S_{n}$ has order 2 if and only if its cycle decomposition is a product of commuting transpositions.
(b) Prove that the order of an element in S_{n} equals the least common multiple of the lengths of the cycles in its cycle decomposition.
6. Let p be a prime and let H_{p} denote the set of matrices of $\mathrm{SL}(3, \mathbf{Z} / \mathrm{p} \mathbf{Z})$ given by:

$$
\left.\left\{\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbf{Z} / p \mathbf{Z}\right)\right\}
$$

(a) Prove that H_{p} is a subgroup of $\mathrm{SL}(3, \mathbf{Z} / \mathrm{p} \mathbf{Z})$ of order p^{3} (The $\bmod p$ Heisenberg group).
(b) Identify H_{2}.
(c) Prove directly (i.e. without using the class equation) that $Z\left(H_{p}\right)$ is non-trivial. What is it?
(d) Compute the abelianization of H_{p}; i.e. $H_{p} /\left[H_{p}, H_{p}\right]$ where $\left[H_{p}, H_{p}\right]$ is the commutator subgroup of H_{p}.
8. Let S be the collection all functions $f: \mathbf{R} \rightarrow \mathbf{R}$ that have derivatives of all orders. Define a binary operation + on S by $(f+g)(x)=f(x)+g(x)$.
(i) Prove that $(S,+)$ is a group.
(ii) Define $\phi:(S,+) \rightarrow(\mathbf{R},+)$ by $\phi(f)=f^{\prime}(0)$. Prove that ϕ is a homomorphism. Is ϕ one-to-one?
(b) Let $C=\{f:[0,1] \rightarrow \mathbf{R}: f$ is continuous $\}$, i.e. the set of continuous real-valued functions with domain $[0,1]$. As in (a) define a binary operation + on C by $(f+g)(x)=$ $f(x)+g(x)$ which makes $(C,+)$ a group (you do not need to prove this).

Define $\sigma:(C,+) \rightarrow(\mathbf{R},+)$ by

$$
\sigma(x)=\int_{0}^{1} f(x) d x
$$

(i) Prove that σ is a homomorphism.
(ii) Give an example of a non-zero function in the kernel of σ.

