
INVARIANT TRACE-FIELDS AND QUATERNION

ALGEBRAS OF POLYHEDRAL GROUPS

C. MACLACHLAN  A. W. REID

1. Introduction

Let P be a polyhedron in H$ of finite volume such that the group Γ(P) generated

by reflections in the faces of P is a discrete subgroup of IsomH$. Let Γ+(P) denote the

subgroup of index 2 consisting entirely of orientation-preserving isometries so that

Γ+(P) is a Kleinian group of finite covolume. Γ+(P) is called a polyhedral group.

As discussed in [12] and [13] for example (see §2 below), associated to a Kleinian

group Γ of finite covolume is a pair (AΓ,kΓ) which is an invariant of the

commensurability class of Γ ; kΓ is a number field called the invariant trace-field, and

AΓ is a quaternion algebra over kΓ. It has been of some interest recently (cf. [13, 16])

to identify the invariant trace-field and quaternion algebra associated to a Kleinian

group Γ of finite covolume since these are closely related to the geometry and

topology of H$}Γ.

In this paper we give a method for identifying these in the case of polyhedral

groups avoiding trace calculations. This extends the work in [15] and [11] on

arithmetic polyhedral groups. In §6 we compute the invariant trace-field and

quaternion algebra of a family of polyhedral groups arising from certain triangular

prisms, and in §7 we give an application of this calculation to construct closed

hyperbolic 3-manifolds with ‘non-integral trace’.

2. In�ariant trace-field and quaternion algebra

Let Γ be a finitely generated non-elementary subgroup of PSL(2,C) and Γ(#) ¯
©γ# r γ `Γª.

Define Γ# ¯P−"(Γ) where P is the natural projection P:SL(2,C)MNPSL(2,C).

The trace-field of Γ is Q(trΓ)¯Q(tr γ# :γ# `Γ# ), and is a finite extension of Q in the case

where Γ has finite covolume ([18, Chapter 5] and [9]). The invariant trace-field kΓ and

quaternion algebra AΓ are given by the following theorem, see [1, 13, 16].

T 2.1. The field Q(trΓ(#))BkΓ is an in�ariant of the commensurability

class of Γ.

The algebra

AΓ¯²3 a
i
γ#
i
r a

i
`kΓ, γ

i
`Γ(#)´

(where all sums are finite) is a quaternion algebra o�er kΓ which is an in�ariant of the

commensurability class of Γ.
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We now relate this invariant trace-field to the minimal field of definition as

discussed in [20]. For this we introduce some terminology, some of which is used in

[20].

For a vector space V over C and a subgroup ∆ of GL(V ), ∆ is definable o�er a field

K if there is a K-lattice of V which is invariant under ∆ ; that is if, with respect to a

suitable basis of V, ∆ can be represented by matrices with entries in K. We state

Vinberg’s results only for the case where the ambient group is PGL
#
. These results are

concerned with a Zariski dense subgroup Γ and we note that, if Γ is a Kleinian group

of finite covolume in PGL(2,C), then Γ is Zariski dense by Borel’s density theorem

(for example, [21, p. 41]). Before extending the notion of a group being definable over

K, we recall the following.

If G is an algebraic subgroup of GL(n,C) and JZC is a subring, we denote by

G(J ) the subgroup GfGL(n, J ). If KZC is a field, we say an algebraic group H is

a K-form of PGL
#

if H is definable over K and is isomorphic to PGL
#

over some

extension of K.

D 2.2. K is a field of definition of Γ if there is a K-form H of PGL
#
and

an isomorphism ρ :PGL
#
MNH defined over some finite extension of K such that

ρ(Γ)ZH(K ).

Recall (see [14] for instance) that every K-form of PGL
#

is of the form

A*

Z(A)*
FSO(A

!
, n)

where A is a quaternion algebra over K and the subspace A
!

of pure quaternions is

a quadratic space with quadratic map n being the restriction of the norm. In the

case where A¯M
#
, then A

!
¯,¯ sF(2), the subspace of traceless matrices, and

the above isomorphism is induced by Ad, the adjoint representation of SL
#

into

GL(, ).

T 2.3 (Vinberg). Let Γ be a Zariski dense subgroup of PGL
#
.

(i) Ad Γ is definable o�er K if and only if Q(trAdΓ)ZK.

(ii) If Γ
"
ZΓ of finite index, the classes of fields o�er which Γ

"
and Γ are defined

are identical.

(iii) If K is a field of definition of Γ, then AdΓ is definable o�er K.

For γ `Γ, and γ# as above, let γ# have distinct eigenvalues λ, λ−", so that γ# can be

represented by

0λ0
0

λ−"
1 .

Then from Figure 1 it follows easily that Ad(γ# ) has eigenvalues 1, λ#, λ−#. Now

tr(γ# )#¯ tr#(γ# )®2¯ (λ­λ−")#®2¯ trAd(γ# )®1.

The same formula holds if γ# has equal eigenvalues and so γ is parabolic.

T 2.4. Let Γ be a finite co�olume Kleinian group. Then kΓ is the minimal

field of definition of Γ so that K is a field of definition of Γ if and only if kΓZK.
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SL2 GL(,)

End(,),

exp exp

Ad

Ad

F. 1.

Proof. Note from above that kΓ¯Q(trAdΓ). By Theorem 2.3(iii) and (i), it is

immediate that if K is a field of definition of Γ, then kΓZK. Now each element of

Γ induces an automorphism of Γ(#) by conjugation and hence an automorphism of the

invariant quaternion algebra AΓ. Since each automorphism of a quaternion algebra

is inner, it follows that Γ embeds in the kΓ points of AΓ*}Z(AΓ )*. Thus kΓ is a field

of definition of Γ.

3. Gram matrices

Now let P be a polyhedron as described in the introduction. By representing P in

the Lobachevski model of H$, we obtain the Gram matrix G(P) as follows [19].

Consider VFR% equipped with a non-degenerate inner product

©x,xª¯®x#

!
­x#

"
­x#

#
­x#

$

and let C+ ¯²x r ©x,xª©0,x
!
ª 0´. Then a model for H$ is PC+ and the isometries of

PC+ are induced by the automorphisms of (V,©,ª) which preserve the component

C+.

If a vector v `V has positive norm, then its orthogonal complement is 3-

dimensional and is hyperbolic in the sense that the restriction of the inner product is

non-degenerate and indefinite. Its projection to PC+ is a hyperbolic plane.

A polyhedron P in H$ will be the projection of a polyhedral angle 0 in V bounded

by linear hyperplanes through the origin. For each hyperplane choose an outward

pointing normal ei and normalise such that ©ei, eiª¯ 1. The polyhedral angle 0 is

defined by ©ei,xª% 0. The Gram matrix G(P) of this system of vectors is G(P)¯ [a
ij
]

where a
ij
¯©ei, ejª. If the dihedral angle between the planes H

i
,H

j
is α then a

ij
¯

®cosα. More generally a
ij
¯®(H

i
,H

j
) where (H

i
,H

j
) is the inversive product of

the hyperbolic planes in H$. If P has n faces G(P) is an n¬n matrix, but in all cases

G(P) has rank 4.

If Γ is generated by reflections ²r
i
´
"
%i%n

in the faces of P, the reflection r
i
in the

hyperplane H
i
is given by

r
i
(v)¯ v®2©v, eiª ei

and so r
i
can be represented by an n¬n matrix X such that X tG(P)X¯G(P).

For any

²i
"
, i

#
,… , i

k
´Z ²1, 2,… , n´

define the cyclic products

b
i
"
i
#
Iik

¯ 2ka
i
"
i
#

a
i
#
i
$

Ia
ik−"

ik

a
ik i

"

(3.1)

and let K(P)¯Q(²b
i
"
i
#
Iik

´). It is not difficult to see that it suffices to assume in the

definition of K(P) that the suffices ²i
"
, i

#
,… , i

k
´ are distinct.
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Consider the following vectors

v
i
"
i
#
Iik

¯ 2ka
"i"

a
i
"
i
#

Ia
ik−"

ik

e
ik

(3.2)

with v
"
¯ 2e

"
and the suffices defined as above.

The K(P)-module M(P) spanned by ²v
i
"
i
#
Iik

´ is a Γ module. For if r
i
is as above,

r
i
(v

i
"
i
#
Iik

)¯ v
i
"
i
#
Iik

®2©v
i
"
i
#
Iik

, eiª ei

¯ v
i
"
i
#
Iik

®2k+"a
"i"

Ia
ik i

ei.

We also have that

©v
i
"
i
#
Iik

, v
j
"
j
#
Ijl

ª¯ 2ka
"i"

a
i
"
i
"

Ia
ik−"

ik

2la
"j"

a
j
"
j
#

Ia
jl−"

jl

a
ik jl

¯ 1}2(2k+l+"a
"i"

Ia
ik−"

ik

a
ik jl

a
jl jl−"

Ia
j
" "

) `K(P). (3.3)

Thus if u, u« `M(P) then ©u, u«ª `K(P). Now the real dimension of M is clearly 4 and

hence by the above its K(P)-dimension is also 4.

With the restriction of the inner product, M(P) is a quadratic space over K(P) and

so we have a representation of Γ into the orthogonal group O(M(P)). Let the

associated quadratic map be q
P

and pick an orthogonal basis x
"
,x

#
,x

$
,x

%
of M(P).

The signed determinant of M(P) is the element of K(P)*}K(P)*# represented by d¯
q
P
(x

"
) q

P
(x

#
) q

P
(x

$
) q

P
(x

%
).

We now state the main theorem. In this we let kP and AP denote the invariant

trace-field and quaternion algebra of the group Γ+(P).

T 3.1. (i) [kP :kPfR]¯ 2 and K(P)¯kPfR.

(ii) kP¯K(P) (od ).

(iii) APF 0®q
P
(x

"
) q

P
(x

#
),®q

P
(x

"
) (q

P
(x

$
)

kP 1 .
R 3.2. This theorem is proved in [11] and [15] for the arithmetic

tetrahedral groups.

R 3.3. The proof of Theorem 3.1 appears in §5.

4. Clifford algebras

Part of our proof relies on results on the Clifford algebras of the quadratic space

M(P). We first recall some general information on Clifford algebras which can be

found, for example, in [6].

Let V be a non-degenerate quadratic space over a number field k with quadratic

map q and associated bilinear form B. Let us denote its group of isometries by

O(V, q) and recall that O(V, q) is generated by reflections τu, defined, for u an

anisotropic vector in V, by

τu(x)¯x®
2B(x, u)

q(u)
u.

The determinant of τu is ®1 and each element of SO(V, q) is a product of an even

number of reflections.

The Clifford algebra C(V ) for (V, q) is a k-algebra containing V whose

multiplication is compatible with q in the sense that for all x `V, x#¯ q(x).1. The

Clifford algebra is universal with this property so that for any other k-algebra D,
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containing V and compatible with q, there is a unique k-algebra homomorphism

φ :C(V )MND such that φ(x)¯x for all x `V. If dimV¯ n and x
"
,x

#
,…,xn is an

orthogonal basis of V, then ²xe
"

"
xe

#

#
…xen

n :ei ¯ 0 or 1´ is a basis of C(V ) so that dim

C(V )¯ 2n. Clearly C(V ) acquires a Z
#
-grading with even and odd parts C

!
(V ), C

"
(V )

having dimensions 2n−". The structure of C(V ) depends crucially on the parity of the

dimension of V.

Note that

q(x­y)®q(x)®q(y)¯ (x­y)#®x#®y#¯xy­yx¯ 2B(x, y)

for x, y `V. Thus x, y `V are orthogonal if and only if xy¯®yx in C(V ). Note that,

if u `V is anisotropic, then it has an inverse u}q(u) in C(V ). Conversely, if u `V has

an inverse v `C(V ), then q(u) v¯ uuv¯ u and so q(u)1 0. Thus u `V has an inverse

in C(V) if and only if u is anisotropic. Now suppose that u is anisotropic. Then

τu(x)¯x®
xu­ux

q(u)
u¯®uxu−". (4.1)

Each isometry σ `O(V, q) admits a unique extension σ# to a k-algebra automorphism

of C(V ) by the universal property of C(V ). When σ is a product of reflections, this

extension can be expressed explicitly using (4.1). On basis vectors

σ# (xi
"

xi
#

…xir
)¯σ(xi

"

)σ(xi
#

)…σ(xir
)

and σ# preserves the grading, so by restriction determines an automorphism of C
!
(V ).

Let

φ :O(V, q)MNAut(C(V )) (4.2)

be defined by φ(σ)¯σ# .
Now the opposite algebra of C(V ) is also an algebra in which multiplication is

compatible with the quadratic map q. Since the underlying set is the same, the

universal property of C(V ) shows that there exists a unique algebra anti-

automorphism ε of C(V ) which fixes V. Note that ε(u
"
u
#
…ur)¯ ur…u

"
, ε has order

2 and preserves the grading.

If dimV¯ n, let z¯x
"
x
#
…xn. When n is odd, z `C

"
(V ) and lies in the centre of

C(V ). When n is even, z `C
!
(V ) and z lies in the centre of C

!
(V ). Note that z#¯

(®1)n(n−")/#q(x
"
)…q(xn)¯ d, which, modulo k*#, is the signed determinant of (V, q).

The mapping

φ :SO(V, q)MNAut(C
!
(V ))

has kernel ²³I ´fSO(V, q). For, each σ `SO(V, q) is a product of an even number of

reflections. Thus, for all x `C(V ), σ# (x)¯ �x�−" where � is the product of an even

number of vectors, so that � `C
!
(V ). Thus, if σ# (x)¯x for all x `C

!
(V ), then � `

Z(C
!
(V )) which is spanned by 1, z. Now the anti-automorphism ε fixes z and so

restricted to C
!
(V ) is the usual conjugation. Now if �¯ v

"
v
#
…v

#
m then n(�)¯

n(v
"
v
#
)…n(v

#
m−"

v
#
m). Also n(w

"
w
#
)¯ (w

"
w
#
) ε(w

"
w
#
)¯w

"
w
#

#w
"
¯ q(w

"
) q(w

#
) `k.

Thus n(�) `k. Thus if �¯ az­b then either a¯ 0 or b¯ 0. Hence either σ¯ I or

σ¯®I.

When V has dimension 4, then z lies in the centre of C
!
(V ) and C

!
(V ) is a central

simple algebra of dimension 4 over the field spanned by 1, z over k. When k is a

subfield of the reals and V has signature (3, 1) then z#¯ d is negative so that the

quaternion algebra C
!
(V ) is defined over the non-real field (k(od )).
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Now every automorphism of C
!
(V ) is inner and so via φ above we have

φ :SO(V, q)MN
C

!
(V )*

Z(C
!
(V ))*

. (4.3)

5. Proof of Theorem 3.1

5.1.

Part (i) of Theorem 3.1 is well known and follows from a more general result.

L 5.1. Let G be a finite co�olume Kleinian group normalised by an

orientation-re�ersing in�olution. Then [kG :kGfR]¯ 2.

Proof. Let σ be the orientation-reversing involution, which by conjugating if

necessary we can assume is the extension of complex conjugation to H$. Pass to a

subgroup G
!

of finite index in G for which Q(trG
!
) coincides with kG and G

!
is

normalised by σ. Since G
!

is normalised by σ it follows that if g `G
!
, then

tr g `Q(trG
!
)¯kG.

Since G
!

has finite covolume there are elements of non-real trace and it follows

that complex conjugation preserves the non-real field kG. Therefore [kG :kGfR]¯ 2.

5.2.

The next thing we shall show is that kPfRZK(P). To do this we apply the

results of §4 to the quadratic space M(P) which is defined over the real field K(P) and

has signature (3, 1), with negative signed determinant d.

Now Γ+(P) embeds in SO(M(P)). Since Γ+(P) has trivial centre, it follows from

(4.3) that it embeds, via φ, into

C
!
(M(P))*

Z(C
!
(M(P)))*

which by the results of §4 is a K(P) (od )-form. Thus K(P) (od ) is a field of definition

of Γ+(P). Thus by Theorem 2.4, kPZK(P) (od ). Hence kPfRZK(P) (od )fR and

K(P) (od )fR¯K(P) as required.

5.3.

For the reverse inclusion, we first note additional results proved in [20] and

continue the notation of §2. Consider the 4-dimensional space V¯R% equipped with

the inner product of signature (3, 1) as before, so that we have an embedding µ of Γ(P)

into O(V ). As this leaves the K(P)-lattice M(P) invariant, then µ(Γ(P)) is definable

over K(P).

T 5.2 (Vinberg [20]). Let Γ be Zariski dense in O(V ) and generated by

reflections with associated Gram matrix G. Let ∆ be any subgroup of finite index in Γ.

Then ∆ is definable o�er a field K if and only if K contains the cyclic products b
i
"
i
#
Iik

of G.
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Now let us consider again Γ+(P)ZPSL(2,C). Let σ be a reflection in one of the

faces of P so that the centraliser C(σ) of σ in Γ+(P) will stabilise the hyperbolic plane

H which is spanned by the face of P. C(σ) has finite covolume acting on H but may

contain reflections. However, it contains a non-elementary Fuchsian subgroup F of

index 2 and choosing a pair of non-commuting elements in F (#) as generators for the

quaternion algebra AP over kP (see [10]), we have that

APF 0a, b

kP1
with a, b ` FBkPfR. By Lemma 5.1 we can take a basis ²1,α´ of kP over F with

α# ` F and α#! 0.

Choose a standard basis ²1, i, j, ij´ of AP and define the conjugate-linear involution

on AP by

τ(a
!
­a

"
i­a

#
j­a

$
ij)¯ a

!
®a

"
i®a

#
j®a

$
ij.

Then exactly as in [11] we have the following properties :

(1) τ(cx­dy)¯ caτ(x)­da τ(y) for c, d `kP and x, y `AP.

(2) τ#¯ 1.

(3) τ(xy)¯ τ(y) τ(x) for x, y `AP.

Furthermore if Vτ ¯²x `AP r τ(x)¯x´, then Vτ is a 4-dimensional F-vector with

basis ²1,αi,αj,αij´ and the norm form of AP restricted to Vτ yields a quadratic form

q which with respect to the above basis is given by diag²1,®α#a,®α#b,α#ab´. Thus

over R, O(Vτ)FO(V ).

Now for each y `AP", the group of elements of norm one in AP, define φ
y

on Vτ

by φ
y
(x)¯ yxτ(y). Using the properties of τ listed above we deduce the following.

L 5.3. φ
y
(x) `Vτ and q(φ

y
(x))¯ q(x).

Lemma 5.3 determines a homomorphism

Φ :AP"MNO(Vτ, q ; F ).

Following this by the isomorphism to O(V), we obtain an embedding of Γ+(#) as a

finite covolume subgroup. By Mostow rigidity, this embedding will be conjugate

to µ. Thus this subgroup of finite index is defined over F and so by Theorem 5.2,

K(P)Z F.

5.4.

We can now complete the proof of Theorem 3.1. In §5.2 it was shown that FZ
K(P). §5.3 proves the reverse inclusion so that this together with Lemma 5.1 proves

Theorem 3.1(i). Since both indices [K(P) (od ) :K(P)], and [kP :kPfR] are 2, Theorem

3.1(ii) follows since kPZK(P) (od ). Finally, ²1,x
"
x
#
,x

"
x
$
,®q

P
(x

"
)x

#
x
$
´ is a

standard basis of C
!
(M(P)), and Theorem 3.1(iii) follows from the remarks above and

the proof of Theorem 2.4.

We remark that the same method of proof can be used to construct the invariant

trace-field and quaternion algebra of any finite covolume Kleinian group with a non-

elementary Fuchsian subgroup, and which is normalised by an orientation-reversing

involution.
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6. Examples

For q& 7, let Γ
q
denote the group generated by reflections in the triangular prism

P
q
shown in Figure 2, and Γ+

q
denote the subgroup of index 2 (as in §2) (cf. [3]).

2

2

3

2

2

3

2

2A

B

E

FD

q

C

F. 2.

By [19] (see also [15]) the group Γ+

q
is arithmetic exactly when q¯ 7, 8, 9, 10, 14.

Using Theorem 3.1 and the method of proof we give the invariant trace-field and

quaternion algebras for all Γ+

q
.

With the faces of the prism numbered as above we obtain the Gram matrix

G
q
¯

I

J

0

®c

1

0

0

®1}2

1

®c

0

0

1

®1}2

0

®1}2

0

®1}2

0

0

1

®cosπ}q

0

0

0

®cosπ}q

1

K

L
where c will be the inversive product defined by the two triangular faces. Since the

rank of G
q
must be 4, we can determine the value of c as

c#¯
3 cos#π}q®2

4 cos#π}q®3
. (6.1)

T 6.1. kΓ+

q
¯Q(o(2­2 cos 2π}q) (2®6 cos 2π}q)) and

AΓ+

q
F 0®1,®1

kΓ+

q

1 .
Proof. We proceed as above and compute an orthogonal basis for the quadratic

space M(P) over the field K(P). It is not difficult to show that K(P)¯Q(cos 2π}q).

With the notation of §2, we choose v
"
, v

#
, v

#$
, v

#$%
so that v

"
¯ 2e

"
, v

#
¯®2ce

#

± v
#$

¯
2ce

$
, v

#$%
¯®2ce

%
. Then

B
q
¯

I

J

4c#

4

0

0

4c#

4c#

2c#

0

2c#

0

4c#

2c#

0

0

2c#

4c#

K

L
.
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Diagonalising gives a form equivalent over K(P
q
) to

diag²1, 4c#, 3c#, 4c#(2®3c#)}3´.

Thus the signed determinant d¯ 16c'(2®3c#) so that the invariant trace field is

Q(o(2­2 cos 2π}q) (2®6 cos 2π}q)). From the diagram of the prism given above, we

see that the group Γ+

q
contains a subgroup isomorphic to A

%
. Thus the invariant

quaternion algebra is given by [5, Lemma 9.1] :

0®1,®1

Q 1CQ kΓ+

q
F 0®1,®1

kΓ+

q

1 .

7. Application

Let Γ be a subgroup of SL(2,C) (or PSL(2,C)) whose traces consist of algebraic

numbers. We say Γ has non-integral trace if Γ is not conjugate into (SL(2,A)

(respectively PSL(2,A)) where A is the ring of all algebraic integers in C. A

remarkable theorem of Bass is the following which forms part of the GL
#
-subgroup

theorem [1, 2].

T 7.1. Let Γ be a finitely generated subgroup of SL(2,C) with a non-

integral trace. Then Γ admits a splitting as a graph of groups in the sense of [17].

In the context of Kleinian groups and 3-manifolds, we have the following

topological interpretation.

C 7.2. Let M¯H$}Γ be a closed hyperbolic 3-manifold such that Γ has

a non-integral trace. Then M is Haken.

Very few examples of closed hyperbolic 3-manifolds with non-integral trace are

known. Examples of link complements in S $ are implicit in [13, §5–8]. Using the

examples in §6, many examples will be obtained as a consequence of the calculations

which follow.

Referring to Figure 2, we note that the edge of the prism which is the axis of an

elliptic element of order q is orthogonal to both triangular faces of the prism. Thus

it is the unique common perpendicular to these two faces. Thus if λ is the length of

that edge, then c¯ cosh λ since c is the inversive product of these two faces.

Consider a face of the prism which is a quadrilateral and contains this common

perpendicular. Let y
"
, y

#
denote the rotations of order 2 around the edges of this

quadrilateral which abut the triangles. Then y¯ y
"
y
#
`Γ+

q
and has the geodesic

containing the perpendicular as its invariant axis. Note that y
"
y
#
also leaves the plane

spanned by the quadrilateral face invariant. Thus y is a hyperbolic element with trace

2c. Thus 2c is a trace in the group Γ+

q
. Thus tr y is an integer if and only if 4c# is an

integer. Now

4c#¯ 3­
1

2 cos 2π}q®1

and so 4c# is an integer precisely when 2 cos 2π}q®1 is a unit.
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7.1.

First, we want to determine when 2 cos 2π}q®1 is a unit. Later we also need to

know the norm of other linear combinations of 2 cos 2π}q. This can be carried out as

follows. Let Φ
q
(x) denote the cyclotomic polynomial of degree φ(q), so that

Φ
q
(x)¯ 0

(r,q)=","
%r!q/#

0x#®2 cos
2rπ

q
x­11 . (7.1)

Thus for suitable choices of x we can evaluate the norm of linear combinations of

2 cos 2π}q by evaluating the cyclotomic polynomial. In particular, for x¯ ξ¯ eπi/$,

x satisfies x#­1¯x and so

rN(2 cos 2π}q®1) r¯ rΦ
q
(ξ ) r.

L 7.3. For q& 7, u¯ 2 cos 2π}q®1 is a unit for all q except

(i) q¯ 6pγ where p is a prime1 2, 3 and γ& 1, in which case rN(u) r¯ p ;

(ii) q¯ 2α±3 where α& 2, in which case rN(u) r¯ 2;

(iii) q¯ 2±3β where β& 2 in which case rN(u) r¯ 3.

Proof. Let q¯ dm where m1 1. Then

Φ
q
(x) )xmd®1

xd®1
¯xd(m−")­xd(m−#)­…­xd­1. (7.2)

For η¯ ξ³
", one has

1­η­…­ηm−"¯

1

2
3

4

0 if m3 0(mod6)

a unit if m3³1(mod6)

o3¬a unit if m3³2(mod6)

2¬a unit if m3 3(mod6).

Also, for η¯ ξ³
#, one has

1­η­…­ηm−"¯
1

2
3

4

0 if m3 0(mod3)

a unit if m3³1(mod3)

and for η¯ ξ $, one has

1­η­…­ηm−"¯
1

2
3

4

0 if m3 0(mod2)

1 if m3 1(mod2).

Thus let us assume that q¯ 2α3βm
"
m

#
where α, β& 0, (m

"
,m

#
)¯ 1 and

(m
"
m

#
, 6)¯ 1.

(1) If α¯ β¯ 0, take d¯ 1 in (7.2) to obtain that Φ
q
(ξ ) is a unit.
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(2) If α¯ 0, β" 0, take d¯ 3 to obtain that Φ
q
(ξ ) is a unit.

(3) If α" 0, β¯ 0, take d¯ 2 to obtain that Φ
q
(ξ ) is a unit.

(4) If α, β" 0, taking m¯m
#

in (7.2) gives that Φ
q
(ξ ) rm

#
and then taking

m¯m
"

gives that Φ
q
(ξ ) rm

"
.

From these we deduce that u is a unit unless q¯ 2α3βpγ where p is a prime

(1 2, 3), α, β" 0 and γ& 0.

(5) If α" 1, take m¯ 2 so that Φ
q
(ξ ) r 2.

(6) If β" 1, take m¯ 3 so that Φ
q
(ξ ) r 3.

(7) If γ& 1, take m¯ p so that Φ
q
(ξ ) r p.

From these we see that u is a unit unless q¯ 2α±3, 2±3β, 6pγ where α, β& 2, γ& 1.

Now

Φ
'p

γ (x)¯
(x$p

γ

­1) (xp
γ−"­1)

(xp
γ

­1) (x$p
γ−"­1)

¯
x$p

γ−"
(p−")®x$p

γ−"
(p−#)­…­1

xp
γ−"

(p−")®xp
γ−"

(p−#)­…­1
. (7.3)

Directly from this rΦ
'p

γ(ξ ) r¯ p. The other two cases are similar.

C 7.4. tr y fails to be an integer precisely when q¯ 6pα, 2a3, 2.3b.

7.2.

Here we extend the analysis of the non-integral traces further. First we state a

result which is a strengthening of Theorem 7.1. The method of proof is that of [7], and

we only sketch the relevant ideas. We need to recall the following. Let k be a number

field, and 0 be a k-prime divisor of the rational prime p. We say 0 is of degree 1 if

the norm of 0 is p.

T 7.5. Let Γ be a finitely generated subgroup of SL(2,k) with non-integral

traces. Furthermore, assume there is a non-integral trace t such that ©tª¯0 −a.I where

0 is a k-prime of degree 1 and I is a fractional ideal for which 0 does not appear in its

unique factorisation into prime ideals. Then Γ splits as a non-tri�ial free product with

amalgamation.

Sketch proof. Following the methods of [1] and [17], the degree 1 assumption on

the prime 0 yields the existence of a faithful representation of Γ into SL(2,Q
p
) where

0 rp, and so we get an action of Γ on the tree T
p
of SL

#
over Q

p
. The non-integral trace

assumption implies this action is non-trivial, and hence we deduce a splitting of Γ.

The ideas of [7, §5] show that Γ is dense in SL(2,Q
p
) in the p-adic topology, and

applying [17, Theorem 3] proves that the splitting is a free product with amalgamation.

Some of the groups Γ+(#)

q
satisfy the hypothesis of Theorem 7.5 as we now show.

By Corollary 7.4 taking q¯ 6p where p is a prime greater than 5 gives that the

groups Γ+

q
have non-integral trace. Note that the prime ideal 0 involved in the

denominator is of degree 1 in Q(cos 2π}q). Let 0¯ (2 cos 2π}q®1) in Q(cos 2π}q).
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We will now show that 0 splits in the extension kΓ+

q
rQ(cos 2π}q) for suitable choices

of p. It will then follow from properties of primes in field extensions that the pair of

primes in kΓ+

q
above such p will be of degree 1.

Recall from Theorem 6.1 that kΓ+

q
is generated by the element α¯

o(2­2 cos 2π}q) (2®6 cos 2π}q) and we first show that 0 is unramified in the

extension. The discriminant of the basis 1, α of kΓ+

q
over Q(cos 2π}q) has norm

2φ(q)N(2­2 cos 2π}q)N(2®6 cos 2π}q). From (7.1) and (7.3), N(2­2 cos 2π}q)¯
Φ

q
(®1)¯ 1. Again from (7.1),

N(2®6 cos 2π}q)¯ 0 3

x
!

1
φ(q)/#

Φ
q
(x

!
)

where x
!
¯ (1­2o®2)}3. Now Φ

q
(x) rx$p­1 and so in the ring of integers in

Q(o®2), which is a Euclidean domain, N(2®6 cos 2π}q), which is a rational integer,

divides (1­2o®2)$p­3$p. Now

(1­2o®2)$p­3$p 3 [(1­2o®2)$­3$]p 3 [o®2(®1­o®2)]$p J 0(mod p).

Thus 0 is unramified in the extension kΓ rQ(cos 2π}q) and we can apply Kummer’s

theorem (for example, [8, p. 20]). Reducing the minimum polynomial of α (mod0 )

gives x#­3. Thus if we choose p such that (®3}p)¯ 1 then 0 splits in the extension.

These remarks give the following corollary.

C 7.6. When q¯ 6p where p is a prime such that p3 1(mod3), then

the group Γ+(#)

q
has a non-integral trace whose denominator lies in an ideal of kΓ+

q
of

norm p.

By Dirichlet’s theorem on primes in arithmetic progression, it follows that there

are infinitely many such primes. Together with Theorem 7.5 we have the following

corollary.

C 7.7. With q as in Corollary 7.6, let Γ be a subgroup of finite index in

Γ+(#)

q
. Then Γ splits as a non-tri�ial free product with amalgamation.

The main interest to us here is not just the existence of this splitting but rather the

passage from the group theoretical splitting to the existence of a closed incompressible

surface. To prove our next theorem we will require some notation and to recall some

standard facts ; see [4, Chapter 1] for details.

Let M be a compact orientable irreducible 3-manifold, M4 denote the universal

cover of M and p :Mh MN M be the covering projection. Assume that π
"
(M ) acts

without inversions on a tree T. Let E be the set of midpoints of edges in T.

A properly embedded surface S in M is associated to the action if there exists a

π
"
(M )-equivarient map φ4 :Mh MNT which is transverse to E, and such that φ4 −"(E )¯

p−"(S ).

We have the following lemma (see [4, Proposition 1.3.6]).

L 7.8. Let S be a surface associated to the action of π
"
(M ) on T. Suppose

that S « is obtained from S by compressing S along a disc, then S « is also associated to

the action.
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T 7.9. With q as in Corollary 7.6 and Γ a torsion-free subgroup of finite

index in Γ
q
there is an incompressible component of the surface in M¯H$}Γ associated

to the action of Γ on T
p

(as abo�e) which is non-separating.

Proof. With reference to Figure 2, Γ+

q
can be generated by three elements x, y,

z where x is the rotation around the edge CF, y is the hyperbolic element described

earlier, which is the product of the rotations around the edges AC and DF and z is

the rotation around AD. By suitably locating the prism in H $, we obtain that x, y, z

are the images of the matrices

X¯
1

u 0
®1

®e#πi/q

2 cos 2π}q®1

e#πi/q 1 , Y¯ 0t0
0

t−"1 , Z¯ 0e
πi/q

0

0

e−πi/q1
where u¯ e#πi/q®1. Now the stabiliser in Γ+

q
of the plane H spanned by the face ABC

is a Z
#
-extension of the triangle group (2, 3, q). However, on passing to Γ+(#)

q
the

corresponding stabiliser is the Fuchsian triangle group F of signature (3, 3, 3p) which

is generated by the images of X and Z #. We note that X,Z # `SL(2,Q(e#πi/q)) and that

the trace field kF of F is Q(cos 2π}q). Now x, z# generate a non-elementary subgroup

of Γ+(#)

q
so that the quaternion algebra AF¯kF [I,X,Z #,XZ #] and A¯AΓ+

q
¯

kΓ[I,X,Z #,XZ #]. Thus AΓFAFC
kF

kΓ.

As before, let 0 be the ideal generated by 2 cos 2π}q®1 in kF and let 1 be one of

the ideals of kΓ which divide 0. Since, by Theorem 6.1, A can only have finite

ramification at dyadic primes

M
#
((kΓ )1)FAC

kΓ(kΓ )1 FAFC
kF

kΓC
kΓ(kΓ )1

FAFC
kF

(kF )0 FM
#
((kF )0).

Now L¯Q(e#πi/q) splits the algebra AF and, furthermore, the minimum polynomial

of the generating element over kF is

x#®2 cos 2π}qx­13x#®x­1(mod0 ).

Since (®3}p)¯ 1, the prime 0 splits in the extension L. Let 2 be one of the primes

in L which divide 0 so that L2 F (kF )0. In M
#
(L), since N(e#πi/q®1)¯Φ

q
(1)¯ 1, all

entries of X,Z # are integral. Additionally, since 2 cos 2π}q®1 can be chosen to be a

uniformiser π in (kF )0, then the images of X,Z # locally at 1 lie in the intersection of

adjacent maximal orders of AΓC
kΓ(kΓ )1 and so stabilise an edge of the tree T

p
[17].

Now if Γ
!
is any torsion-free subgroup of finite index in Γ+(#)

q
we therefore deduce

that an incompressible surface S associated to the action given by Corollary 7.6 must

contain a component that is totally geodesic since its fundamental group is a

subgroup of F. Notice that the quotient H}F gives rise to an embedded non-

separating 2-orbifold in the 3-orbifold H$}Γ+(#)

q
. Thus in the finite cover H$}Γ

!
we see

an embedded totally geodesic non-separating surface. By construction this surface is

associated to the action of Γ
!

on T
p

as above.
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