373K Midterm 1, Spring 2017

DO BOTH QUESTIONS IN PART A AND 2 FROM PART B

All questions are worth **25 points**. Indicate which four you want graded. State clearly Theorems you are using.

Notation: Throughout, D_n will denote the dihedral group of order 2n, and S_n the symmetric group on n letters.

PART A

1. Let G denote the set of all rational numbers of the form $2^m 3^n$, with $m, n \in \mathbb{Z}$.

(a) Show that G forms a group under multiplication.

(b) Prove that G is isomorphic to $\mathbf{Z} \times \mathbf{Z}$.

2. Answer the following *true* or *false*. You must explain your answers to get full credit.

(a) D_9 is isomorphic to $D_3 \times \mathbf{Z}/3\mathbf{Z}$?

(b) A group of order 27 is cyclic?

(c) Let p and q be distinct primes and G a group of order pq. Every proper subgroup of G is cyclic.

(d) Let G be a group and H, K normal subgroups of G. $H \cap K$ is a normal subgroup of G.

PART B

3.(a) Let A be an abelian group, prove that all subgroups of A are normal. Does the converse hold? i.e. a group in which all subgroups are normal is abelian?

(b) Let A be an abelian group and let D be the diagonal subgroup of $A \times A$; i.e. $D = \{(a, a) : a \in A\}$. Prove that D is a normal subgroup of $A \times A$ and identify the quotient $(A \times A)/D$.

(c) If A is now assumed to be non-abelian, is the digaonal subgroup still normal?

4. Let $C = \langle x \rangle$ be a cyclic group of order 5, and let $G = S_3 \times C$

(a) Compute the order of G, and for each element of G compute its order.

(b) Let H be a subgroup of G order 10, show that H is cyclic.

(c) Construct a non-Abelian group N which has the same order as G but is not isomorphic to G. You must show your work that the groups are non-isomorphic.

5. Recall that by an automorphism α of a group G we mean an isomorphism α : $G \to G$. If G is a group, a subgroup H is called *characteristic* if $\alpha(H) = H$ for all automorphisms of α of G.

(a) For each $g \in G$ define $\phi_g : G \to G$ by $\phi_g(x) = gxg^{-1}$. Prove that ϕ_g is an automorphism of G.

(b) Prove that if H is a characteristic subgroup of G, then H is a normal subgroup of G.

(c) Let K be a normal subgroup of G and M a characteristic subgroup of K. Prove M is normal in G.