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1. INTRODUCTION

Let G be a co-compact Fuchsian group. As such, it acts discontinuously
on the hyperbolic plane H2 and the quotient is a closed hyperbolic
2-orbifold. The structure theory for co-compact Fuchsian groups yields a
canonical presentation for such groups. This information is described by
the signature

s s g ; m , . . . , m 1Ž . Ž .1 r

where g is the genus of the base surface of the quotient 2-orbifold, and the
conjugacy classes of the maximal non-trivial finite cyclic subgroups have
orders m , . . . , m . In the case when g is zero we will abbreviate the1 r

Ž .signature to m , m , . . . , m .1 2 r
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The study of decompositions of co-compact Fuchsian groups as free
products with amalgamation can be traced back to work by Fenchel and

w x Žw x.Nielsen 6 , and more recently to the work of Zieschang 23, 24 and
w x.Rosenberger 15 . Now for most co-compact Fuchsian groups, it is easy to

decompose the group as a free product with amalgamation. In these cases,
this is achieved geometrically by finding a separating simple closed curve.
An exceptional case is that of the triangle groups, that is groups of

Ž .signature p, q, r for positive integers p, q, and r satisfying 1rp q 1rq q
1rr - 1, which are easily seen not to admit any splitting as a free product

Žwith amalgamation or HNN-extension for instance, they have Property
Ž . w x.FA of 17 . However, there is a class of Fuchsian groups, namely those of

Ž .signature 1; n for which there is no geometric splitting and so the
question of whether they admit a free product with amalgamation decom-
position is a non-trivial one. This is an old problem, which for example was

w x Ž .explicitly stated in 25, Chap. 4.12 and references cited above , and more
w xrecently restated as Question 26 of The Problem Session in 7 :

Ž .QUESTION 1.1. Let G be a Fuchsian group of signature 1; n . Does G
ha¨e a decomposition as a free product with amalgamation?

As is easy to see G has a presentation on two generators;

n² :w xa, b ¬ a, b s 1 .

Using this, it is known that there does exist such a decomposition for
w xcertain values of n. The following discussion is contained in 15 , correcting

w x23 .
Suppose n is an odd positive integer greater than 1, and suppose H is a

Ž .Fuchsian group of signature 2, 2, 2, n . It is immediate that H admits a
free product with amalgamation decomposition with an infinite cyclic
group amalgamated. This group is known to be 2-generator, since if the
canonical presentation is given by

² 2 2 2 n :x , x , x , x ¬ x s x s x s x s 1, x x x x s 1 ,1 2 3 4 1 2 3 4 1 2 3 4

� 4then a pair of generators is x x , x x . Furthermore, one can check that1 2 2 3
Ž . Ž .a group G of signature 1; n with n as above surjects H, and hence one

can pull back the splitting of H. In addition, if n is not a power of 2, there
Ž .is an epimorphism from the group of signature 1; n to a group of

Ž .signature 1; odd from which the splitting derived above can be pulled
back. Here we give a proof of the following theorem valid for all n G 2
which answers Question 1.1 and therefore can be seen as the natural



Ž .SPLITTING GROUPS OF SIGNATURE 1; n 331

w xconclusions of the sequence of works 6, 23, 24, and 15 :

Ž .THEOREM 1.2. Let G be a Fuchsian group of signature 1; n , then G
admits a decomposition as a free product with amalgamation. Moreo¨er, there
exists such a decomposition where the factor groups and the amalgamating
subgroup are all finitely generated.

The proof of the theorem actually applies to a more general class of
Ž .groups see Theorem 5.1 . The method of proof is to invoke the Bass]Serre
w x Ž .theory 17, 1, and 2 , applied to a suitable representation of G in PSL Q2 p

where Q denotes the p-adic rationals. The Bass]Serre theory yields anp
action on a tree. To deduce we have a free product with amalgamation

w xdecomposition we apply further results of Serre 17 together with the
theory of p-adic Lie groups. Although the constructed action on the tree
may not have finitely generated vertex and edge stabilizers, we can invoke

w xTheorem 1 of 3 which guarantees that if there is a splitting as a free
product with amalgamation, there is one with finitely generated factor and
amalgamating subgroups.

We have attempted to make the discussion of p-adic Lie groups reason-
ably self-contained for the benefit of the reader. Consequently, some
material in Section 4 is a synopsis of known results.

2. VALUATIONS AND THE TREE OF SL2

w x w xIn this section, for convenience, we recall material of 17 and 2
concerning the tree of SL over a local field. We will only be interested in2
non-archimedean local fields arising as completions of a number field.
Therefore we describe Serre’s constructions in the context of these fields.
We also recall some basic facts from the theory of number fields and their

Ž w x .completions see for instance 11 for details .
Let k be a number field, that is, a finite extension of Q. Denote by OOk

the ring of algebraic integers of k. For each prime PP of k we denote by nPP

Ž .the discrete valuation the PP-adic ¨aluation associated to PP, normalized
to take values in Z. Let k denote the completion of k with respect to thePP

�valuation n and OO the ring of PP-adic integers, that is, the set x gPP PP

Ž . 4k : n x G 0 . The ring OO has a unique maximal ideal generated by anPP PP PP

Ž .element p , called a local uniformizing parameter, such that n p s 1. AnPP

Ž .element x of OO is called a PP-adic unit if n x s 0. Any element x g kPP PP PP

can then be written as up s for some PP-adic unit u and s g Z. Let P be
the set of all prime ideals PP of OO and, for each PP g P, fix an embeddingk
of k in k .PP

Ž w x.The following lemma is well-known cf. 1, Lemma 6.8.2 :

LEMMA 2.1. Let k be a number field and let a g k. Then a g OO if andk
only if a g OO ; PP g P.PP
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We next recall the construction of the tree of SL . Let PP g P, K s k ,2 PP

Ž .and OO s OO . The group SL K acts on a tree T constructed as follows;PP 2
w x 2see 17, Chap. 2 . Let V denote the vector space K ; a lattice in V is a

finitely generated OO-submodule which spans V. Define an equivalence
relation on the set of lattices of V as follows: L ; L

X if and only if L
X s xL

U w xfor some x g K . Let L denote the equivalence class of L. These
equivalence classes form the vertices of a combinatorial graph T where two

w x w X x Uvertices L , L are connected by an edge if there is an x g K such that
X X w xxL ; L and LrxL ( OO rp OO . It is shown in 17 that T is a tree; i.e., itPP PP

is connected and simply connected.
Ž .The obvious action of GL K on the set of lattices in V determines an2

action on T which is transitive on vertices. Restricting the action to
Ž . Ž .SL K yields an action of SL K on T with no inversions. The vertices2 2

Ž .form two orbits and the stabilizers are represented by SL OO and a2
a p bŽ . �Ž . 4conjugate of SL OO , namely : ad y bc s 1, a, b, c, d g OO . Iny12 p c d

particular, we deduce:

Ž .LEMMA 2.2. Let G be a subgroup of SL K which fixes a ¨ertex, then2
the traces of elements of G are elements of OO.

The version of the splitting theorem we will work with is given below.
Ž . w xFirst we recall Property D defined by Serre on p. 78 of 17 .

Ž .Let j : GL K ª Z be the composite epimorphism obtained by com-2 2
posing reduction modulo 2 with the map, n (det. The kernel of j isPP

qŽ . Ž .denoted by GL K . Note that this contains SL K .2 2

qŽ .DEFINITION 2.3. Let G be a subgroup of GL K . We say G has2
Ž . Ž .Property D if the closure of G in the PP-adic topology in GL K2

Ž .contains SL K .2

w xWith this, Theorem 3 on p. 79 of 17 yields:
qŽ . Ž .THEOREM 2.4. Let G be a subgroup of GL K . If G has property D2

then G splits as a non-trï ial free product with amalgamation G ) G X ,XL G LL L

where G# denotes the ¨ertex stabilizer or edge stabilizer.

Ž .We remark here that if G satisfies Theorem 2.4 and the center Z G is
non-trivial, then since the center of an amalgamated product is contained

Ž .in the amalgamating group it follows that GrZ G also splits as a free
product with amalgamation.

3. ALGEBRAIC REPRESENTATIONS

Ž .By definition a Fuchsian group G is a discrete subgroup of PSL R and2
Ž .thus the elements of G can be realized by elements in SL R up to a2
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w x w xfactor of "1. Following the notation of 21 and 22 , if k is a number field,
we say s has a representatï e in k, if there exists a Fuchsian group G of0

Ž .signature s such that G ; PSL k .0 2
Ž .It is clear that any field k for which s , as at 1 , has a representative,

contains the field

K s Q cos prm , cos prm , . . . , cos prm .Ž .1 2 r

Ž .Let TT G be the Teichmuller space of G. As is well known the only¨
Ž .Fuchsian groups for which TT G is a point are triangle groups. In all that

follows, it will be a standing assumption that G is not a triangle group. In
Ž . Ž .particular, TT G has dimension greater than 0. Here we are viewing TT G

Ž .as a quotient variety of the representation variety of G in PSL R . Let k2
Ž .be a field and denote by TT G the subspace corresponding to groupsk

Ž .whose elements lie in PSL k .2

Ž .DEFINITION 3.1. Let k be a number field, and G - PSL k . Say G is2
nonintegral at PP, if there is an element g g G and a k-prime PP such that

Ž Ž ..n tr g - 0.PP

Ž .With this definition in the notation above we prove:

LEMMA 3.2. With s as abo¨e, we can choose PP such that s has a
representatï e G in K which is non-integral at PP and if p s PP l Z, p is odd
and splits completely in K.

w xRecall that if k : Q s n with ring of integers OO and p a rationalk
prime, then p is said to split completely in k if p OO s PP . . . PP for distinctk 1 n

w xPP . It is well known, cf. 14, Theorem 4.12 that there are infinitely manyi
rational primes that split completely in any number field.

w x w xThe proof of Lemma 3.2 is essentially implicit in 21 , and also in 19 for
the case of k s Q.

For convenience of notation we deal explicitly with the case of a
Ž .Fuchsian group of signature 1; n . The general case follows from a similar

argument in the cases where the genus is positive, and a related argument
w xwhen g s 0 21, 19 .

² w x n : Ž .Thus let G s a, b, t ¬ a, b s t, t s 1 , and f : G ª PSL R be an2
y1Ž . Ž .isomorphism with discrete image G. Let F s P G , where P : SL R ª2

Ž . ² :PSL R . Then F is a central extension of y I by G. When n is even2
this extension does not split and F has the presentation

² n 2 :w xA , B , T , J ¬ A , B s TJ , T s J , J s I , J commutes with A , B . 2Ž .

By conjugating we can assume that B is diagonal. Suppose also that
w x w x w x w xA, B s D s TJ with A s a , B s b , and D s d . Discretenessi j i j i j
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implies that none of a , a , d , d can be zero. The following is con-12 21 12 21
w x w xtained in 21 and 19 :

w x Ž .LEMMA 3.3. Gï en Z s z g SL R with z / 0, and x, y g R, x /i j 2 12
w x Ž .0, y / 0, 1, there exists a unique solution to X, Y s Z, with X, Y g SL R ,2

w x w xX s x , Y s y , x s x, y s y, y s 0; namely,i j i j 12 11 12

y 0
1 y z 1 y z 1 111 22Y s

y q� 0z z y y12 12

yy z 112 12
x q x2 2 x1 y y 1 y y

X s .2 2z y y yy z y 1 1 z y yŽ .22 21 22 22
x q x� 022 x z1 y yz 1 y yŽ . 1212

Proof of Lemma 3.2. With reference to the normalized representation
of F above, with B diagonal, we can perturb the matrix T slightly so that
the entries of Z s TJ lie in K, the entries z , z / 0, and T still defines12 21
an elliptic element of order n.

If we now specify x and y, then by Lemma 3.3 there is a unique solution
w xto X, Y s Z, where the entries of X, Y are rational functions in x, y and

Ž . y1the entries of Z. Furthermore note that tr Y s y q y . Let p be any
large odd prime which splits completely in K}as remarked above, there
are infinitely many such primes. Choose x, y g Q close to a , b and12 11
such that y s ¨rp with ¨ a p-adic unit.

Ž .This yields a representation G ¨ PSL K which is close to the original.2
Ž .Since TT G has dimension greater than zero, the subspace of isomorphic

representations with discrete image is open in the representation space. It
Ž .follows that the image group is discrete of signature 1; n , and has an

element whose trace is arp for some a g Q which is a p-adic unit. This
concludes the proof of Lemma 3.2.

Remark. The reason for insisting on a trace with denominator as above
will become clear in Section 5. The main point is that it makes for a more
direct application of the technology of p-adic Lie groups discussed in
Section 4.

4. p-ADIC LIE GROUPS AND LIE ALGEBRAS

The proof of our main result is the next section requires some results on
p-adic Lie groups and algebras. Here we gather together the background
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information required. For general information on Lie algebras and Lie
w xgroups, see 9, 10, and 18 . For the particular discussion on p-adic Lie

w xgroups and algebras that follows, we refer to 5 .
Throughout p will denote an odd prime.

DEFINITION 4.1. Let H be a topological group. Then H is defined to
be a p-adic Lie group if H has the structure of an analytic manifold over

Ž . y1Q and if the function H = H ª H defined by x, y ª xy is analytic.p

By a Lie algebra over Q we mean a vector space over Q with ap p
multiplication which satisfies the conditions

x 2 s 0 and xy z q yz x q zx y s 0.Ž . Ž . Ž .

p ² p :Notation. If G is a group, then G s g ¬ g g G .

Recall that a profinite group is a compact Hausdorff topological group
whose open subgroups form a base for the neighborhoods of the identity

� 4and can be characterized as an inverse limit of an inverse system G ofi
finite groups. If the finite groups G are all p-groups, we obtain a pro-pi
group and if, furthermore, the maps in the inverse system are all surjective
and the quotients G rG p abelian, then the inverse limit is a powerful pro-pi i
group. Finally, a pro-p group is termed uniform if it is finitely generated,
powerful, and satisfies

P G : P G s G : P G for all i ,Ž . Ž . Ž .i iq1 2

Ž . Ž . Ž . pw Ž . xwhere P G s G and P G is defined recursively as P G P G , G .1 iq1 i i
One should take closures in the previous statement, but under the assump-

w xtion that G is finitely generated 5, Corollary 1.20 there is no need.
For such groups, a dimension can be defined as the minimum cardinality

of a topological generating set. The following fundamental result charac-
wterizes p-adic Lie groups in terms of these uniform pro-p groups, cf. 5,

xTheorem 9.34 .

THEOREM 4.2. Let G be a topological group. Then G is a p-adic Lie group
if and only if G contains an open subgroup which is a uniform pro-p group.

We remark that the dimension of G is defined to be the dimension of
w xthe uniform pro-p subgroup in the above theorem. By 5, Theorem 9.38

this is also the dimension of every chart belonging to an atlas defining the
Ž .manifold structure on G recall Definition 4.1 .

For applications in the next section, we actually only need to consider
Ž .properties of the group SL Q . However, the same techniques allow us2 p
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to discuss p-adic groups of dimension 3 more generally, which we do for
completeness.

Recall that there are, up to isomorphism, exactly two quaternion alge-
Ž w x.bras over Q cf. 20, Chap. 2 ,p

u , p
M s M Q and D s , 3Ž .Ž .2 p ž /Q p

where u is a non-square unit in Z . We will show that the elements ofp

Ž . 1norm 1 in these algebras, SL Q and D , are p-adic Lie groups of2 p
dimension 3.

In what follows A will denote either M or D. Let OO be a maximal order
Ž .in A. In the case of M, we choose OO s M 2, Z . In the second case, Dp

can be represented as

a b
D s a, b g L ,½ 5ž /pb a

where L is the unique unramified quadratic extension of Q and cp
Ž w x.denotes the L ¬ Q conjugate of c g L see 20, Chap. 2 . The uniquep

maximal order in this case consists of those matrices with a, b g R , theL
ring of integers in L.

The principal congruence subgroups are defined in each case by:

Ž i . 1DEFINITION 4.3. G s 1 q p OO l OO .i

� 4Now G is the inverse limit of the p-groups G rG and each G is open1 1 i i
in G . Furthermore, for each i, it is straightforward to show that G p s G1 i iq1
and that GrG is an elementary abelian p-group of order p3. In the casei iq1
of D,

1 q pia pib
iq1GrG ( g SL R rp R .Ž .i iq1 2 L Li½ 5ž /0 1 q p a

Ž w x. Ž .cf. 5, pp. 85]86 . Thus G s F G , the Frattini subgroup of ‘‘non-gener-2 1
w xators.’’ This discussion together with Propositions 1.13 and 1.14 of 5 then

implies that G is a finitely generated powerful pro-p group for which1
Ž .P G s G . Hence G is a uniform pro-p subgroup of dimension 3.i 1 i 1
Each one of the principal congruence subgroups G is an open subgroupi

1 1 Ž .of OO . In the case of M, OO is an open subgroup of SL Q and, in the2 p
other case, OO1 s D1 and so D1 is compact. With this discussion together
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with Theorem 4.2, we deduce:

Ž . 1COROLLARY 4.4. SL Q and D are p-adic Lie groups of dimension 3.2 p

We next discuss the Lie algebras of these Lie groups. Let A denote the0
w xsubspace of pure quaternions of A. For x, y g A define x, y s xy y yx.0

Under this operation, M and D become three-dimensional p-adic Lie0 0
w xalgebras, denoted LL and LL respectively, such that LL , LL s LL ,M D M M M

w xLL , LL s LL . For any basis e , e , e of such a Lie algebra LL , the setD D D 1 2 3
w x w x w xf s e , e , f s e , e , f s e , e is also a basis and the matrix1 2 3 2 3 1 3 1 2

Ž . w xM LL s a where f s Ýa e is symmetric. In the cases above, startingi j i i j j
� 4with the standard basis from the quaternion algebra i, j, ij , the matrices

are

y2 p 0 0y2 0 0
M LL s M LL s .Ž . Ž .0 y2 0 0 y2u 0M Dž / � 00 0 2 0 0 2

THEOREM 4.5. Let LL be a Lie Algebra o¨er Q of dimension F 3. Thenp
LL is sol̈ able or LL ( LL or LL , and further LL \ LL .M D M D

w x Ž wProof. If dim LL F 2 or LL / LL , LL then LL is solvable see 9, Chap.
x. w x1; 10 . Thus we can assume that LL has dimension 3 and that LL s LL , LL .

Then choosing a basis as above, we obtain a 3 = 3 symmetric matrix
Ž .M LL over Q . Now given Lie algebras LL and LL we have that LL andp 1 2 1

U Ž .LL are isomorphic if and only if there exists x g Q and N g GL Q2 p 3 p
such that

M LL s xN tM LL NŽ . Ž .1 2

Ž w x.see 9, Chap. 1 . Denote the equivalence relation ; .1
Ž .The symmetric matrices M LL determine ternary quadratic forms and

Ž . Ž .the corresponding quadratic spaces Q LL , Q LL are isometric if and only1 2
Ž .if there exists N g GL Q such that3 p

M LL s N tM LL N.Ž . Ž .1 2

Ž . Ž .Denote this equivalence relation ; . The spaces Q LL , Q LL are2 1 2
Ž . Ž . Ž . Ž . Ž .isometric if and only if d LL s d LL and s LL s s LL , where d LL1 2 1 2

Ž . U Ž U .2denotes the determinant of the matrix M LL as an element of Q r Qp p
Ž . Ž .and s LL the Hasse invariant of M LL , which is this case is a quaternion

Ž w x.algebra. See 12, p. 124 .
Ž . Ž . Ž . Ž .Note that d LL s 2, d LL s 2up, s LL s M, and s LL s D. SoM D M D
Ž . X Ž X.for each LL , s LL s M or D. Furthermore, for every LL ; LL , s LL s1

Ž . X Ž X.s LL and so LL \ LL . Now we can find LL ; LL such that d LL s 2 orM D 1
X2up. Thus LL ; LL of LL and hence LL ; LL or LL .2 M D 1 M D
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A global chart can be defined on G using the log map. For1

n
paŽ .nq1log 1 q pa s S y1Ž . Ž .
n

converges to an element of p OO for a g OO. Denote the reduced norm of A
1 Ž . Ž .Ž .by n . For 1 q pa g OO , n 1 q pa s 1 q pa 1 q pa s 1 and soA A

Ž .log 1 q pa has trace zero. Hence log G ; p OO l A , where A is the1 0 0
three-dimensional subspace of pure quaternions.

Now applying the exponential map to pure quaternions in p OO gives
elements of G , so that p OO l A is the precise image of G under the log1 0 1

Ž .map. Since LL ( p OO l M m Q and similarly for LL , these are theM 0 p D
Ž . 1Lie algebras of the groups SL Q and D respectively. Thus, summariz-2 p

ing this section, we have

THEOREM 4.6. Let G be a p-adic Lie group of dimension 3 with Lie
algebra LL . If LL is not sol̈ able, then LL is isomorphic to the Lie algebra of

Ž .exactly one of LL , LL , the Lie algebras of SL Q , and the compact groupM D 2 p
D1 respectï ely.

5. PROOF

Here we shall prove the following theorem, from which Theorem 1.2
follows. As mentioned in the Introduction, this is well known for geoemet-
ric reasons in most cases.

THEOREM 5.1. E¨ery co-compact Fuchsian group which is not a triangle
group splits as a free product with amalgamation.

Ž .By Lemma 3.2, there is a representative of s in PSL K which is2
non-integral at PP and for which p s PP l Z is an odd prime that splits

w x w xcompletely in K. By, for example, 11 or 14 , K ( Q .PP p
Ž .It will be convenient to work with a representative in SL K , e.g., as at2

Ž . Ž . Ž .2 , which we denote by F, and let i F denote the image in SL Q ,2 p
under the map induced by completion at PP and the above isomorphism.

Ž . Ž .We now intend to show that i F has property D and apply Theorem 2.4.
Ž . Ž .Since SL Q is a closed subgroup of GL Q , it clearly suffices to show2 p 2 p

Ž . Ž .that i F is dense in SL Q . From this, together with the remarks2 p
following Theorem 2.4, the proof of Theorem 5.1 will be complete.

Ž . Ž . Ž .Let cl F denote the closure of i F in SL Q , which, by a result of2 p
w xCartan, cf. 18, p. 155 , as a closed subgroup of the p-adic Lie group

Ž .SL 2, Q , is a p-adic Lie group.p
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Ž .LEMMA 5.2. The Lie algebra of cl F is not sol̈ able.

Ž . Ž .Proof. Suppose that the Lie algebra of cl F were solvable. Then cl F
w xwould contain a solvable open subgroup 4, Chap. 3 .

Ž .First note that i F is not discrete. For if it were, then every torsion-free
w xsubgroup of finite index would be discrete and hence free 17, p. 82; 8 . But

Ž .i F contains subgroups of finite index which are isomorphic to torsion-free
Ž .co-compact Fuchsian groups. Thus S l i F is a non-trivial solvable sub-

Ž .group of i F . Since every solvable subgroup of a co-compact Fuchsian
group is cyclic, it follows, by considering subgroups of finite index, that

Ž . ² : ² :S l i F s Z or Z [ y I , where Z s z is infinite cyclic.
Ž . Ž . Ž .Since i F is dense in cl F and S is an open subgroup, S l i F is

Ž .dense in S and so Z is dense in S. Let w g i F be an element of infinite
order which does not commute with z. Let U s S l wSwy1 which is an
open solvable subgroup. Since Z is dense in S, wZwy1 is dense in wSwy1.
Thus there exist powers z n, wz m wy1 which lie in U. But, for large enough

Ž w x.m and n, these elements generate a non-abelian free group N e.g., 13 .
Ž .Thus N cannot lie in U and the Lie algebra of cl F cannot be solvable.

Ž .Now recall that i F was constructed to have a non-integral trace. Thus
Ž . Ž .cl F cannot be compact. For, as a compact subgroup of SL Q , it would2 p

fix a vertex of the tree T described in Section 2, and so by Lemma 2.2
would be conjugate to a group with p-adic integral traces. Hence we have

Ž .COROLLARY 5.3. cl F is a non-compact Lie group

y 0Ž . Ž .y1 y1From Lemma 3.3, there is an element g g i F of the form ,by q cy y

y 0Ž . Žy1where y, b, c g Q . By taking h to be where d s y by qd yp
y1 . Ž 2 . y1cy r y y 1 we obtain that hgh is diagonal and has trace of the form

arp where a is a p-adic unit. Thus we shall assume without loss of
Ž . � y14generality that cl F contains the diagonal element g s diag y, y of a

non-integral trace. We are now in a position to complete the proof.

Ž . Ž .THEOREM 5.4. cl F s SL Q .2 p

Ž . Ž .Proof. Since cl F is a p-adic Lie subgroup of SL Q , it has dimen-2 p
Ž .sion F 3. Hence the Lie algebra of cl F is a Lie subalgebra of LL andM

therefore Theorems 4.5 and 4.6, Lemma 5.2, and Corollary 5.3 show that
Ž .the Lie algebra of cl F is isomorphic to LL .M
Ž .By Theorem 4.2 cl F contains an open uniform pro-p subgroup which is

Ž .compact, and thus via its action on the tree T, there is an x g GL Q2 p

Ž . y1 Ž .such that x cl F x contains a subgroup G of finite index in SL Z . In2 p

particular, as G is open it contains one of the fundamental neighborhoods
of the identity, namely one of the principal congruence subgroups G ofj
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y1 Ž .Section 4. By increasing j if necessary, we can ensure that x G x ; cl Fj
Ž . y1 Ž .l SL Z . Since x G x is open, it therefore follows as above that there2 p j

y1 Ž .is an i such that G ; x G x, and hence G ; cl F .i j i
Ž .We therefore conclude that cl F contains some G , and from thei

y 0Ž .y1discussion prior to the theorem, the diagonal element g s where0 y

Ž .y s ¨rp with ¨ a p-adic unit. Now SL Q is generated by the subgroups2 p

1 q 1 0
U s q g Q and L s q g Qp p½ 5 ½ 5ž / ž /q 10 1

w x16 . Now

1 q
U l G s n q G i s U .Ž .i p i½ 5ž /0 1

1 q sŽ .Let g U with q s wp where w is a unit and s g Z. Choosing m0 1

m 1 q ymŽ .such that y2m q s G i, it follows that g g g U and so U ;i0 1

² : ² : Ž . Ž .U , g . In the same way L ; L , g . Thus cl F s SL Q .i i 2 p
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