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1 Introduction

Let G be a semi-simple Lie group, and Γ < G a lattice. Following Sarnak (see [19]), a finitely
generated subgroup ∆ of Γ is called thin if ∆ has infinite index in Γ, but is Zariski dense. There has
been a good deal of interest recently in thin groups (see for example [7], [8] and [19] to name a few),
and there are many results that give credence to the statement that “generic subgroups of lattices
are free and thin” (see [7], [9] and [18]). Our interest is rather more focused on the case where ∆
is freely indecomposable, and in previous work [14], the authors exhibited thin surface subgroups
contained in any non-uniform lattice in SL(3,R). This note devotes itself to proving the following
theorem.

Theorem 1.1. There are infinitely many commensurability classes of cocompact lattices in SL(3,R)
which contain thin surface subgroups.

In [12], Kahn and Markovic prove that every cocompact lattice in Isom((H2)r) contains a thin
surface subgroup. Until recently, as far as the the authors’ were aware, the examples provided by
Theorem 1.1 were the first examples of thin surface subgroups constructed in a cocompact lattice
in any higher rank simple Lie group. However, U. Hamenstädt has informed the authors that using
the methods of [10] (that build on those of [11]) she is able to construct examples of thin surface
subgroups in any cocompact lattice contained in SL(3,R).

Regarding Theorem 1.1, one can say rather more for certain lattices. In the notation established
below, we construct explicit lattices in SL(3,R) that contain thin surface subgroups.

Theorem 1.2. Suppose that u is a totally real Pisot integer for which (u− 1)/2 is an integer.
Then the lattice Λ(u−1),(u−1) contains infinitely many commensurability classes of thin surface

subgroups.

The fact that such a plethora of examples can (at least sometimes) exist inside such lattices is
rather striking. This second result uses the following, which should be of independent interest:

Theorem 1.3. Suppose that ∆ is a hyperbolic triangle group, and that {ρn(∆)} is an infinite family
of representations whose characters determine distinct points on the Hitchin component.

Then there is an infinite subsequence, no two of which are commensurable up to conjugacy.

This is the only case that we shall need, but there is a much more general statement. However,
even this statement suffices to show that the main theorem of [13] exhibits infinitely many genus
two surface groups in SL(3,Z) which are non-commensurable, even up to conjugacy. (We are unable
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to prove that sharper genus statement here, as control on the genus seems to be lost at two points:
Lemma 3.3 and the Gram-Schmidt process).

The method of proof will follow the ideas in [14], and is a mix of computational and theoretical.
However, the proofs here require somewhat more care than what was required in [14].

The outline of the paper is as follows. As stated above, we follow the ideas in [14], and in partic-
ular the basic idea there that exploits characters of representations lying in the Hitchin component
of a certain triangle group as a means of certifying that a representation of that triangle group with
certain algebraic integer traces is faithful. This is reviewed in §3 (where we also impose conditions
on traces and construct a Hermitian form that will be needed later). In §2 we recall the algebraic
framework that is needed to construct certain cocompact lattices in SL(3,R), and in §4, put the
constructions of §2 and §3 together to generate explicit examples of cocompact lattices containing
thin surface subgroups.

2 Hermitian forms and cocompact lattices in SL(3,R)

In this section we recall some facts about certain cocompact lattices attached to Hermitian forms,
as well as some background on Hermitian forms (we refer the reader to [21] for further details about
the former, and to [20] for the latter).

Let F be a totally real algebraic number field, different from Q, with ring of integers OF , and
suppose that t, a, b ∈ F are such that

• t, a, b > 0.

• L = F (
√
t) with ring of integers O.

• τ is the non-trivial Galois automorphism of L over F .

• At the non-identity embeddings σ : F → R, we have σ(t), σ(a), σ(b) < 0.

Define Ja,b = diag(−1, a,b) which we view as a Hermitian form on V = L3. Note that at the
identity place of F , Ja,b has signature (2, 1), whilst at the non-identity places, our assumption above
shows that Jσa,b = diag(−1, σ(a), σ(b)) has signature (3, 0).

Suppose now that J ∈ GL(3,F) defines another Hermitian form on V , then J is L-equivalent to
Ja,b if there exists P ∈ GL(3,L) so that P ∗Ja,bP = J . From [20] Chapter 10, Example 10.1.6(iv),
the L-equivalence class of J is completely determined by the determinant of Ja,b (which is −ab
(modulo F ∗2)) and the signatures at the real embeddings.

For a matrix X = (xij) ∈ SL(3,L) define X∗ = (τ(xij))
t and define:

SU(J; L, τ) = {X ∈ SL(3,L) : X∗.J.X = J}.

Of particular interest to us will be the integral special unitary group:

SU(J;O, τ) = {X ∈ SL(3,O) : X∗.J.X = J}.

In the special case when J = Ja,b we let Λa,b = SU(Ja,b;O, τ).
If J is L-equivalent to Ja,b, say P ∗Ja,bP = J , then for X ∈ Λa,b, a computation shows that

PXP−1 ∈ SU(J; L, τ) and a standard argument upon clearing denominators shows that PΛa,bP
−1

is commensurable with SU(J;O, τ).
Summarizing this discussion we have:
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Proposition 2.1. In the notation above, there is a unique L-equivalence class of Hermitian forms
equivalent to Ja,b and this determines a unique commensurability class of groups (up to conjugation)
commensurable with Λa,b.

2.1

The existence of thin surface subgroups in certain cocompact lattices depends on having an explicit
description of certain cocompact lattices in SL(3,R). In particular, the basis of our construction is
the following result, drawn from [21] Chapter 6.7. For convenience, we sketch the proof of this. The
notation is as in §2.1.

Proposition 2.2. Let F be a totally real algebraic number field, different from Q. Suppose that
t, a, b ∈ F are as in §2.1. Then Λa,b is a cocompact arithmetic subgroup of SL(3,R).

Note that by Margulis’s Arithmeticity Theorem [15] Chapter IX, any cocompact lattice in
SL(3,R) is arithmetic.

Proof. Following Margulis, [15] Chapter IX.1.5, an arithmetic lattice Γ in SL(3,R) is defined via
the following construction.

Let k be a totally real number field with ring of integers Rk, G an absolutely almost simple
algebraic group defined over k (i.e. the only proper normal algebraic subgroups of G are finite)
and φ : G(R)→ SL(3,R) a continuous isomorphism. Suppose that for every non-trivial embedding
σ : k → R, Gσ(R) is compact. Then Γ is arithmetic if it is commensurable with φ(G(Rk)). Note
that by standard considerations if k 6= Q the group Γ is cocompact.

In our setting, we take as the field k, the field F as in the statement of Proposition 2.2. For
the algebraic group, we take a group G defined over F whose F -points can be identified with
SU(J; L, τ) = {X ∈ SL(3,L) : X∗.J.X = J}. The group G can be made explicit by using the
restriction of scalars from L to F thereby embedding L ↪→ M(2, F ) and G(F ) ⊂ SL(6,F) (see [21]
Chapter 6).

To complete the discussion, we need to understand the nature of the groups Gσ(R) for σ : F →
R. The nature of these real groups is determined by the conditions on a, b, t and σ(a), σ(b), σ(t)
given above. In particular, the special unitary nature will persist when σ(t) < 0, in which case
Lσ = F (

√
σ(t)) is an imaginary quadratic extension equipped with a complex conjugation τσ, given

by the non-trivial Galois automorphism of Lσ/σ(F ). The type of the special unitary group is then
determined by the signature of the form Jσa,b, which in our case has σ(a), σ(b) < 0, so that in
summary for σ a non-identity embedding, we have Gσ(R) = SU(Jσa,b; C, τσ) is the compact group
SU(3).

At the identity place L/F is a real extension, and in this case we have R⊗F L = R×R. It now
follows that in this case we get G(R) ∼= SL(3,R) (see [16] Chapter 2.3.3 for example).

We can now apply the definition of an arithmetic group given above to deduce that Λa,b <
SL(3,R) is a cocompact arithmetic lattice. tu

Remark: Note that by construction, the lattices Λa,b all contain arithmetic Fuchsian groups which
arise as subgroups of SO(Ja,b; Rk) ↪→ Λa,b. However, these are not Zariski dense in SL(3,R) and so
not thin.

3 The surface group and its representations

As remarked in §1, we will use the ideas of [14] and construct the surface subgroups from certain
points in the Hitchin component of the triangle group
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∆ = ∆(3, 4, 4) =< a, b | a3 = b4 = (a.b)4 = 1 > .

It follows from [4] that this Hitchin component is 2-dimensional and (see [3]) that any represen-
tation corresponding to a character in the Hitchin component, different from the character of the
Fuchsian representation, is Zariski dense (cf. Theorem 2.1 of [14]).

The details involved in the construction of the representation ρu described below are contained in
[13] and [14] building on the work in [5]. We note that while this is a two parameter representation,
we only require the case u = v, so we record only that specialization here. Moreover, since we have
conjugated to normalize the representation ρu, different parameter values u will give rise to non-
conjugate representations (since they determine distinct points in the Hitchin component). Note
that the Fuchsian representation occurs when u = v = 7:

u=v=7
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Figure 1: The Hitchin Component

ρu(a) =

 1 1 −
(

1 + u+
√

(u− 7)(1 + u)
)
/4

0 −1 1
0 −1 0



ρu(b) =

 1 0 (3− u−
√

(u− 7)(1 + u))/4

(1 + u−
√

(u− 7)(1 + u))/2 1 −1

(−3 + u−
√

(u− 7)(1 + u))/2 0 −1



It is crucial in the setting of Proposition 2.2 that all traces are integral. One might hope that
one could conjugate the representation so that all the entries are integral, but this is apparently not
easily accomplished. Instead, we use the technique introduced in [1] (see Lemma 2.2 therein).

Lemma 3.1. The representation ρu has traces which are integral polynomials in u and
√

(u− 7)(1 + u).

Proof: This involves a computation (as it must); we sketch the idea here and have placed a file
with an implementation at [22].

By inspection, one can find elements g1, ....., g9 which are a basis for the vector space of 3 × 3
matrices M(3,R). We always choose g1 to be the identity matrix. Let g∗1 , ....., g

∗
9 be the dual basis

with respect to trace, i.e.
tr(gi.g

∗
j ) = δij
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One can use the action of the group on this dual basis by left multiplication to obtain a 9-dimensional
left regular representation i.e. if γ ∈ ρu(∆), then its action is defined by

γ.g∗i =
∑
j

αij(γ)g∗j

Taking traces in this equation, we get

tr(γ.g∗i ) =
∑
j

αij(γ)tr(g∗j )

Notice that since we have chosen g1 = I, we have that tr(g∗j ) = tr(g1.g
∗
j ) = δ1j , in particular these

are all rational integers. Writing I =
∑
τjg
∗
j , notice that τi = tr(gi) by duality; one verifies that

these traces are all integral. Moreover, multiplying by γ and taking traces, we have

tr(γ) =
∑
j

tr(gj)tr(γ.g
∗
j ) =

∑
j,k

tr(gj)tr(g
∗
k)αjk(γ) =

∑
j

tr(gj)αj1(γ)

The upshot of these two computations is the following: Fix some choice of basis and verify the
associated left regular representation matrices for the generators have determinant 1. It then follows
that the denominators of the entries for these generators contains the denominators for the traces
of the original collection of matrices of Γ.

Therefore, if one could find a basis for which this construction gave integral matrices (αij(γ)),
then this would prove the result claimed by the lemma. However, this appears to be hard. We bypass
this difficulty by constructing two representations via two different choices of basis {gi} which give
rise to different, coprime denominators. Since traces are not dependent on choice of basis, the traces
of the original representation must be integral. tu

Corollary 3.2. Specializing u to be an algebraic integer determines a representation ρu with alge-
braic integer traces.

The passage to a commensurable integral representation is now achieved using the next result.

Lemma 3.3. Let k be a number field and suppose that Γ < SL(3, k) is a finitely generated non-
solvable group satisfying:

• Q(tr(γ) : γ ∈ Γ) = k, and

• tr(γ) ∈ Ok for every γ ∈ Γ.

Then Γ has a subgroup of finite index contained in SL(3,Ok).

Proof: Consider
OΓ = {Σ aiγi | ai ∈ Ok, γi ∈ Γ }

where the sums are finite. It is shown in [2] (see Proposition 2.2 and Corollary 2.3), that OΓ is
an order of a central simple subalgebra B ⊂M(3, k), which by the first assumption is defined over
k. By Wedderburn’s Theorem, since the dimensions of central simple algebras are squares, the
non-solvable assumption implies that B = M(3, k). Hence OΓ is an order in M(3, k), and therefore
it is contained in some maximal order D of M(3, k) (cf. [17] p. 131, Exercise 5 and the proof of
Lemma 2.3 of [13]).

Now it is a standard fact that the groups of elements of norm 1 in orders contained in M(3, k)
are commensurable (since the intersection of two orders is an order and the unit groups of orders
will be irreducible lattices, see [21] Chapter 5). In particular, SL(3,Ok) and D1 are commensurable.
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Let H = SL(3,Ok) ∩ D1, which has finite index in both groups. Then Γ ≤ D1, so that Γ ∩H has
finite index in Γ and lies inside SL(3,Ok) as required. tu

Remark: Note that so as long as u is chosen so that
√

(u− 7)(1 + u) does not lie in the field F =

Q(u), then the groups ρu(∆) < SL(3,F(
√

(u− 7)(1 + u))) will satisfy the conditions in Lemma 3.3.

For example, the commutator ρu(a.b.a−1.b−1) has a trace 1
2

(
−1 + u2 + (u− 1)

√
(u− 7)(1 + u)

)
which generates F (

√
(u− 7)(1 + u)).

3.1 The form

Given the data of §2.3, and assuming that L = F (
√

(u− 7)(1 + u)) is a quadratic extension of F ,
it is easy to compute that the matrices ρu(a) and ρu(b) preserve the form J below; i.e. they satisfy
X∗.J.X = J , where X∗ is given by transposing and mapping√

(u− 7)(1 + u)→ −
√

(u− 7)(1 + u) (∗)

with J given by

J =

 12 5 + u+
√

(u− 7)(1 + u) 2(1− u−
√

(u− 7)(1 + u))

5 + u−
√

(u− 7)(1 + u) 4 −1− u−
√

(u− 7)(1 + u)

2(1− u+
√

(u− 7)(1 + u)) −1− u+
√

(u− 7)(1 + u) 4


The application of 2.2 requires some understanding of signatures in J and how they are controlled
by u. An entirely routine application of the Gram-Schmidt process, together with the remarks of
§2, shows that J is L-equivalent to the form

Λ =

 1 0 0
0 (1− u) 0
0 0 (1− u)


We refer the reader to Figure 2, of particular relevance are the intervals along the line u = v.

u+v=2

u = v

u=1

u=-−1
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Figure 2: Control of the signature.

The form Λ has signature (3, 0) for u < 1 and (2, 1) when u > 1. Also note that the automorphism
of (∗) is complex conjugation when (u− 7)(1 + u) < 0.
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4 Proofs of Theorem 1.1 and 1.2.

Given the previous set up, we are now in a position to prove Theorem 1.1.

4.1 Proof of Theorem 1.1.

In this subsection we construct infinitely many commensurability classes of cocompact lattices which
contain thin surface groups.

Let F be any totally real field; this will be the field F of Proposition 2.2. We claim that inside
F there are infinitely many integers u with the properties that:

(i) At the identity embedding of F , u > 7;

(ii) At all the other embeddings σ : F → R one has −1 < σ(u) < 1.

Assuming this claim for the moment, we finish off as follows. Set t = (u−7)(1+u) and L = F (
√
t).

Note that t cannot be a square in F , since if this were the case t = x2 for some x ∈ F . Now F is
totally real, so if σ : F → R is any non-identity Galois embedding then σ(t) = σ(x2) = σ(x)2. On
the other hand, by construction σ(t) < 0, and so we have a contradiction.

One can now check that with the choice a = b = (u− 1), the hypotheses of Proposition 2.2 are
satisfied for the form −Λ = J(u−1),(u−1). Hence it follows that Λ(u−1),(u−1) is a cocompact lattice
in SL(3,R). Now the group ρu(∆) is a faithful representation of the triangle group ∆ since, by
construction u > 7, places the character of ρu in the Hitchin component. Moreover, from §3.2, we
see that a conjugate of ρu(∆) which we denote by W is a subgroup of SU(J(u−1),(u−1); L, τ). This
observation, coupled with Lemma 3.3 and the Remark following it, shows that there is an integral
subgroup of finite index in W . Hence we deduce the existence of a surface subgroup of finite index
in W that lies inside Λ(u−1),(u−1) as required. Note the surface subgroup is thin by the discussion
at the start of §3.

That we have infinitely many commensurability classes of cocompact lattices follows from the
discussion in §2.1 and Proposition 2.1 when we let F vary and choose L = F (

√
t) as above. tu

Examples: (1) Let d be any square-free positive integer and take F = Q(
√
d). Let u be any unit in

the integers of F ; by replacing u by −u if need be, we can suppose that u > 1. Since u is a unit, it
follows that the other conjugate lies in the interval (−1, 1). Then all sufficiently large powers satisfy
ur > 7 and −1 < σ(ur) < 1.

(2) A more complicated example is the following. Consider the polynomial f(u) = −1 + 2u+ 8u2−
7u3 − 12u4 + u5; this has five real roots, four of which lie in the interval (−1, 1) and the fifth is
around 12.507542 > 7.

We sketch a proof of the claim.

Lemma 4.1. Any totally real field F contains an integer (in fact a unit when the field is different
from Q) which is > 7 at the identity embedding and has all other conjugates in the interval (−1, 1).

Proof: Suppose that [F : Q] = k+1 and let v1, ....., vk be generators of the unit group as determined
by Dirichlet’s Unit Theorem. As usual, there is a canonical embedding of F into Rk+1 and by
squaring each vj , we can suppose that the image of each of the vj ’s has all its co-ordinates positive.
Taking logarithms gives a map from the positive orthant of Rk+1 to Rk+1 so that each vj lies
in the hyperplane where the sum of the co-ordinates is equal to zero. Dirichlet’s Unit Theorem
says that the images of the set {v1, ....., vk} form a basis for this hyperplane, so there is a linear
combination of their images which yield the vector (−1/k,−1/k, ......,−1/k, 1), whence a rational
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linear combination giving a vector very close to that vector and therefore by scaling, one obtains an
integer linear combination with the property that the first k co-ordinates are negative and the last
co-ordinate is positive. After possibly taking further powers (to arrange u > 7) this unit has the
required properties. tu

Remark: Notice that once a unit u has the requisite properties, so do all its powers.

4.2 Proof of Theorem 1.2.

In this section we show that at least for certain sequences of u-values, one can construct infinitely
many thin surface groups inside a single cocompact lattice. Here is the outline:

In order to construct infinitely many commensurability classes of surface subgroups in some
of the lattices Λ(u−1),(u−1), we need to find infinitely many totally real integers u that satisfy the
conditions stated in §3.1, i.e. (i) At the identity embedding u > 7 and (ii) at all the other embeddings
−1 < σ(u) < 1. Such u we will call totally real Pisot integers. As in §3.1 such a u defines a quadratic
extension L = F (

√
(u− 7)(u+ 1)), and our first task is to prove that we can find infinitely infinitely

many totally real Pisot integers u which determine the same quadratic extension. This is achieved in
Theorem 4.2. It will then follow from §2.1 that the arithmetic groups Λ(u−1),(u−1) are commensurable
(up to conjugacy). That these surface groups are non-commensurable up to conjugacy is shown in
§4.2.1.

Theorem 4.2. Suppose that u is a totally real Pisot integer of OF for which (u−1)/2 is an integer.
Then there are infinitely many totally real Pisot integers u′ in OF for which

L = F (
√

(u− 7)(u+ 1)) = F (
√

(u′ − 7)(u′ + 1))

Remark. If we begin with any totally real Pisot unit u, then since it does not represent the zero
class in the ring OF /2OF , there are infinitely many powers so that uk represents 1 in this ring. It
will follow from the work in this section that for any such power, the lattice defined by uk contains
infinitely many non-commensurable surface groups.

Proof of 4.2: Given a totally real Pisot u = u1 ∈ OF , we seek to construct infinitely many
other totally real Pisot integers u2 ∈ OF for which (u1 − 7)(u1 + 1) = x2(u2 − 7)(u2 + 1) for some
x ∈ F . Since we do not require that x be an integer, we can introduce a slack variable λ satisfying
(u1− 7)(u1 + 1) = λ and claim we can use u1 to generate infinitely many totally real Pisot solutions
to

(u− 7)(u+ 1) = λx2u (1)

whence generating solutions satisfying

(u1 − 7)(u1 + 1)

(u− 7)(u+ 1)
= (1/xu)2

as required.
Completing the square in (1), we obtain (u−3)2−16 = λx2u, which we re-write as a Pell Equation

U2 − λX2 = 1 (2)

where U = (u − 3)/4 and X = xu/4; with initial solution given by u = u1 and xu = 1, which
determines the value of the slack variable λ. In the usual fashion, if we regard (2) as the equation

(U +
√
λX)(U −

√
λX) = 1
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one sees that one can generate solutions to (2) from the powers (U+
√
λX)k. The fact that (U+

√
λX)

satisfies Pell’s equation means that over F , it satisfies

Q2 − 2UQ+ 1 = 0 (3)

Our condition on u1 means that the initial solution 2U1 = (u1 − 3)/2 is an integer and that 2U1 >
(7 − 3)/2 = 2, so the two roots of (3) are both real and integral, whence so are their powers.
Moreover, if σ is any other embedding of F , then (3) becomes Q2 − 2σ(U)Q + 1 = 0 and one sees
that −2 < 2σ(U) = (σ(u1) − 3)/2 < −1, so that all the other Q-conjugates are pairs of complex
conjugate numbers on the unit circle. The upshot of this discussion is that the number u1 +

√
λ is a

Salem number and it is well known (it follows easily from Kronecker’s Approximation Theorem) that
the complex embeddings of the powers of such a number form a dense set in the relevant product
of unit circles. We deduce that infinitely many powers of the initial solution u1 +

√
λ can be used

to generate totally real Pisot integer solutions, as required. tu

Example. If one takes u1 = 4+
√

13 and u2 = 35787970+9925797
√

13, one finds that (u2−7)(u2+1)
(u1−7)(u1+1) =

((31354669 + 8696221
√

13)/2)2

4.2.1 Infinitely many commensurability classes

In this section we show that infinitely many commensurability classes of thin surface subgroups can
arise from certain values of u as in the construction of §3.1. The key result is the following:

Theorem 4.3. Suppose that ∆ is a hyperbolic triangle group, and that {ρn(∆)} is an infinite family
of representations whose characters determine distinct points on the Hitchin component.

Then there is an infinite subsequence, no two of which are commensurable up to conjugacy.

Deferring the proof of this for now, we will complete the proof of:

Theorem 4.4. Suppose that u is a totally real Pisot integer and has (u− 1)/2 an integer.
Then the lattice Λ(u−1),(u−1) contains infinitely many commensurability classes of thin surface

subgroups.

Proof: Theorem 4.2 shows that for totally real Pisot u1 satisfying (u1 − 1)/2 an integer, there
are infinite sequences of representations {ρun(∆)} all of which lie in a fixed field L, moreover,
the remarks of §2.1 show that the invariant forms for this family of groups are all equivalent. In
addition, from the discussion in §3, different values of the parameter u determine non-conjugate
representations. The subsequence provided by Theorem 4.3 now completes the proof, since we
may pass to subgroups of finite index in {ρn(∆)} and conjugate them so they all lie in the lattice
Λ(u−1),(u−1). By construction, no two of these are commensurable up to conjugacy. tu

The proof of Theorem 4.3 will require some facts about about projective manifolds and the actions
of subgroups of PGL(3,R) that preserve a properly convex domain in RP2. We refer to [6] for
standard facts about such matters.

We begin with some preliminary remarks. Since the groups ρu(∆) have characters in the Hitchin
component and are chosen different from the character of the Fuchsian representation, it follows that
this defines a properly convex projective structure on the triangle orbifold S = H2/∆, which arises
as Ωu/ρu(∆) where Ωu ⊂ RP2 is a properly convex domain that is not an ellipsoid (see for example
[4] and [6] for more details). For convenience we set Ω = Ωu and we will refer to the frontier of
Ω as the limit set. For an element g ∈ PGL(3,R) we let [g] denote the action on RP2, and set
Stab(Ω) = {g ∈ PGL(3,R) : [g]Ω = Ω}. Then we have:
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Lemma 4.5. Suppose that Ω ⊂ RP2 is a properly convex domain, not an ellipsoid, and that Ω has
a compact quotient.

Then Stab(Ω) ≤ PGL(3,R) acts discretely on Ω.

Proof: Suppose in search of a contradiction that gn ∈ Stab(Ω) is a collection of matrices with
the property that [gn] converges to the identity map on Ω. We recall that the domain Ω admits a
Finsler metric, the so-called Hilbert metric (see [6]) for which Stab(Ω) acts as a group of isometries.
In particular, we may fix a point p ∈ Ω and eventually the terms of the sequence [gn]p are within a
Hilbert distance 1, say of p.

We now appeal to Theorem 7.1 of [6] : For every d > 0, there is a compact subset K of PGL(3,R),
so that the subset of Stab(Ω) which moves p a distance at most d lies inside K. It follows that the
subgroup Stab(Ω) is non-discrete in PGL(3,R), and we may therefore take its topological closure,
denote this by G. This is a closed subgroup of a Lie group, so a Lie group. However, it is a
result of Benoist [3] (this may also be seen directly in this small dimension) that since Ω has a
compact quotient and is not an ellipsoid, Stab(Ω) must be Zariski dense in PGL(3,R); it follows
that G = PGL(3,R). However, this is a contradiction, since it is easily seen that G must preserve
Ω. tu

Corollary 4.6. For Ω as in 4.5, Stab(Ω) acts properly discontinuously on Ω.

Proof: Fix any ball B of radius R in the Hilbert metric and suppose that B∩ [gn]B is non-empty for
some sequence of elements in Stab(Ω). It follows that for any point p ∈ B, [gn]p is no further than
3R from the centre of B. Appealing again to [6] Theorem 7.1, it follows that we may subconverge
the gn sequence in PGL(3,R) and hence get a convergent sequence in Stab(Ω), a contradiction to
4.5. tu

Proof of 4.3: Suppose that there were an infinite subsequence for which the limit sets of the groups
ρn(∆) were all projectively equivalent. Thus we can conjugate all those groups into Stab(Ω), where
Ω is the properly convex set defined by this limit set; abusing notation we continue to denote these
groups by ρn(∆).

Corollary 4.6 shows that Stab(Ω) acts properly discontinuously and so it is isomorphic to the
fundamental group of a negatively curved 2-orbifold. In particular, it is finitely generated and so
has only finitely many subgroups of a fixed index.

However, we are supposing the group Stab(Ω) contains infinitely many groups ρn(∆), all isomor-
phic to ∆, and it follows that all of these image groups have index [Stab(Ω) : ρn(∆)] given by the
ratio of the orbifold Euler characteristics χ(Ω/ρn(∆))/χ(Ω/Stab(Ω)). Therefore at least two these
groups must determine the same subgroup of Stab(Ω), in other words, two of the original groups
ρn(∆) were conjugate. This is a contradiction.

The result now follows, since groups which are commensurable up to conjugacy must have
projectively equivalent limit sets and this argument shows that each limit set can only occur finitely
often. tu

Remark. In fact we produce an infinite family of groups with projectively distinct limit sets; such
groups cannot be mapping class group equivalent either.
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