$R = \mathbb{C}[x_1, \ldots, x_n]$ or $\mathbb{C}[x_n, \ldots, x_1]$

$R_f = R/(\partial f)$ finite dimensional (ie regular sequence $\frac{\partial f}{\partial x_i}$)

MF_f category of matrix factorization

with $\text{Hom}_{\text{MF}}(M,N)$ is an R-module

HMF - homotopy category of matrix factorizations

triangulated category

$\text{Hom}_{\text{HMF}}(M,N)$ is an R-module, dually

since $D^2 = \mathbf{1}$ $\Rightarrow \frac{\partial D}{\partial x} \frac{\partial D}{\partial x} = 2f \mathbf{1}$

so $\frac{\partial f}{\partial x}$ is homotopic to the identity

Theorem (R.O. Buchweitz) HMF is a

Cohomology category:

$\text{Hom}_{\text{HMF}}(M,N) \times \text{Hom}(N,M) \to \mathbb{C}$

natural cochain pairing: m is even
If an odd natural pairing \((\alpha, \beta) \mapsto [H(\alpha \beta)]_{\mathfrak{m}} \) is 1.

Also \(K(\mathcal{H}M) \) is (believe to be) torsion? ??

Can read off a factorization by the maximal ideal:

\[
\begin{align*}
M^0/\mathfrak{m}^0 & \xrightarrow{D} M^1/\mathfrak{m}^1 \xrightarrow{D} M^2/\mathfrak{m}^2 \\
H(M) & = \text{homology of this complex.}
\end{align*}
\]

A map \(\alpha : M \rightarrow N \) is an isomorphism if

\(H(\alpha) : H(M) \rightarrow H(N) \) is an isomorphism.

… so analogy of homology & of derived category.

Category is Katz-Schmid: every object is \(\mathbb{Q} \)-acyclic.

A unique way to represent.

Let \(\mathbb{R}_{x,y} \) be the factorization

\[
\begin{align*}
R & \xrightarrow{x+y} R \\
\otimes (x) & = x \cdot y
\end{align*}
\]

Then \(M \otimes \mathbb{R}_{x,y} = M_x \) locally finitely

\[
\begin{align*}
\mathbb{R} & \xrightarrow{y} \mathbb{R} \\
\otimes (x) & = x \cdot y
\end{align*}
\]
The picture for any factorization of
\[f = \sum f_i \]
can be to \(\sum \) over common polynomial.

\[\implies M \otimes N \text{ matrix factorizations} \]
\[\sum_{x_i, y_i} \text{ of } (x_i, y_i) \text{ sum polynomial.} \]

Or \(\implies M \otimes N \rightarrow \odot M(x, y) \)

More generally, if we have \(f(x, \ldots, y) \),
\[f(x, \ldots, y) - f(x, \ldots, 1) = \sum (x_i, y_i) \text{!} \]
\[\implies L_{xy} = \odot (R \xrightarrow{xy} R) \text{!} \]

represents the identity (analogy of diagonal):
\[M @ L_{xy} = M \]
To $f = x^{n-1}$ assign extended 2d TQFT

\[\Delta \rightarrow \mathbb{C}^n \times \mathbb{C}^n \]

\[\Theta \rightarrow \text{Rep} \cong \mathbb{C}[x]/x^n \]

\[\begin{array}{c}
\tau \rightarrow \tau^2 \\
\psi \rightarrow \psi^3
\end{array} \]

\[x \delta_x R \xrightarrow{\sim} R \xrightarrow{\sim} R \]

\[R \xrightarrow{\sim} \mathbb{C} \xrightarrow{\sim} \mathbb{C} \]

\[\text{List by: we assigned } \chi^2 = (\chi \gamma(\sigma^{(x)}) \gamma(x)) \]

\[\chi = (\chi \gamma(\sigma^{(x)}) \gamma(x)) \]

To crossing the assign complexes of formal:

\[0 \rightarrow X \rightarrow \mathcal{T} \rightarrow 0 \]

\[0 \rightarrow \mathcal{T} \rightarrow 0 \]

\[0 \rightarrow (\mathcal{T}) \rightarrow \mathcal{T} \rightarrow 0 \]
For maps of complexes, consider homology in the category of HMFs.

Find in here Redei nice ones not satisfied.

\(\varphi \sim \psi \) do

\(F(\chi) \) to tasks with orientation.

[Need check if not: want x not to have nonzero degree ... ?]

\(\Rightarrow \) big idea: homology theory for links

\[K^2 P(U) \xrightarrow{\varphi^*} P(U) \xrightarrow{\partial} (2, \varphi^*) \]

\(\varphi \) homological potential of point \(\chi \)

\(o \sim g_l \sim g_l \sim 0 \) which vanishes satisfying Redei nice.
To any graph \(\Gamma \) with given boundary

one can assign an invariant tensor

\[m(\Gamma) \in \text{Inv}(V_0 V_1 V_2 \ldots V_r) \]

After categorification get \(M(\Gamma) \in \text{HMF} \)

but this has a bad K-groups ...

but can still obtain category by summing over all such graphs,

\[A : \text{\#} \text{Hom}(M(\Gamma), M(\hat{\Gamma})) \]

with I some (conjecturally finite) collection of \(\Gamma \) with \(m(\Gamma) \) spanning space of invariants

\[\Rightarrow \text{conjecturally f.g. proj A-modules } \subset \text{HMF} \]

Tangle: start categorify space of invariants of linear pencils

\[\text{K(C)} \text{-- ideals} \]

\[\text{(C)} \]
Conjecture: Direct sums of M^2 (Vor P)

Some basis dual canonical basis in kernel End $(V_0 \ldots V_0 \ldots)$

Replace $C(\text{HRF})$ with C^∞, not C_0.

Equation $\text{Am} = 0$ may not include things in R^2.

But Am may not include R^2.