Motivation from topology: E_n-operads

(X,x) pointed space

$LX = \text{Map}((\overline{[0,1]},\overline{0}), (X,x))$

- associative multiplication
- make sense of using operads:

\[
[\text{inhabited }] \quad \text{embedded in } L[X]
\]

- defines map $LX \times LX \times LX \to LX$

- i.e. a composition depending on a picture of little intervals.

E_n-operad: (an operad in spaces):

collection of spaces \{C(X_i)\}

$C(k)$ = configuration of k cubes (of dim n) inside $[0,1]^n$ (non-intersecting)
Ex (n=2) O(2) is space of pictures

To compare with draw inner one of the boxes:

Observation: X pointed space \(\Rightarrow \)
En operad acts on \(\mathcal{D}^X \)

\[O(n) \times (\mathcal{D}^X)^k \rightarrow \mathcal{D}^X \]

May: roughly, n-fold loop space \(\Leftrightarrow \) spaces with action of En operad.

Can make sense of En acts on any other kinds of objects – today, chain complexes.
K field, can make an E_n operad valued in chain complexes over k by taking singular chains:

Many operations: $C_\ast(O(n), k)$

So can talk about E_n-algebras A/k

Def: An E_n algebra A is a chain complex with an extra of this operad, i.e.

\[
C_\ast(O(n), k) \otimes A^{\otimes n} \to A
\]

compatible with compositions.

If A is an E_n algebra we have multiplication maps $A^{\otimes n} \to A$

labelled by points of $O(n)$

which (up to homotopy) is the configuration space of n points in \mathbb{R}^n.

$n=1: A^{\otimes n} \to A$ for every n points arranged on a line - it ordered

\iff "associative" algebra.
\[E, \text{ algebra} = A_\infty \text{ algebra} = (dg) \text{ associative algebra over } k. \]

\[n \rightarrow \infty, \text{ configuration spaces get more} \]
\[L \text{ more connected in limit become} \]
\[\text{contractible} \Rightarrow \text{ get } E\infty \text{ algebra}. \]
\[\text{If } deg k = 0 \text{ this is just a commutative} \]
\[\text{dg algebra (in general } E\infty \text{ is} \]
\[\text{a good notion of commutative product} \]
\[\text{on chain complexes).} \]

Case \(n = 2 \)

Suppose \(A \) is an ordinary (ie deg=0)
\[\text{vector space. For } n \geq 1 \text{ config spaces} \]
\[\text{in } \mathbb{R}^n \text{ are connected, so} \]
\[E_2 \text{ algebra} = E_3 = \ldots = E\infty = \text{commutative} \]
\[\text{algebra structure on } A \]
\[\ldots \text{ for chain complexes have a measure} \]
\[\text{of commutativity given by } n. \]
Suppose \(A \) is an \(E_n \)-algebra

\[\rightarrow \text{in particular } A \text{ is } E_1 \text{ : have an associative multiplication.} \]

\[\mathbb{R}^n \text{ look at configurations that happen to lie on same line.} \]

\[\mathbb{R} \]

But many kinds of lines

- eg. horizontal, vertical, etc.

in \(n \) dimensions get \(n \) different "compatible" \(E_n \) products (for each axis \(e.g. \) \(m_1, m_2, \ldots, m_n \) say.)

Compatibility:

\[(A, m_1) \otimes (A, m_2) \rightarrow (A, m_1 \cdot m_2) \]

is a map of associative \(E_n \) algebras

\[\Rightarrow E_n \text{-algebras } \leftrightarrow \text{chain complexes with } n \text{ compatible } \langle e \rangle \text{ alg. structures!} \]
Modules over E_n algebras

Two notions:

$n=1$: A is a homogeneous left A-module
- A-bimodule

General case: A is an E_n algebra
- notion of left A-module
 (passing to underlying associative algebra)

Module structure \Rightarrow
- certain collection of maps
 \[A^m \otimes M \rightarrow M \]

For left modules, these are parameterized
by configurations in the line
\[a_m \ a_2 \ a_1 \ a_0 \]
For binodals use all configurations

In two dimensions: consider
\[A \otimes \mathcal{M} \rightarrow \mathcal{M} \]
\[\text{parametrized by configs in the plane} \]

Use full 2-dimensionality of \(A \)

A notion of \(E_n \)-module over an \(E_n \) algebra, where these are actions parametrized by an \(S^{n-1} \) roughly.

Observation: Any \(E_n \)-module has an underlying left module

But have a lot more structure
Say A is an E_2-algebra, m_1, m_2 compatible assoc. multipliers.

Left A-modules (wrt m, multiplication) have functor $(\text{left } A\text{-mod}) \times (\text{left } A\text{-mod}) \rightarrow (\text{left } A\text{-mod})$

induced by $A \otimes A \rightarrow A$.

So if A, $E_2 \Rightarrow$ (left A-mod) is a monoidal category.

More generally if A, $E_n \Rightarrow$ (left A-mod) is an E_n category:

- n-compatible monoidal structures.

E.g on E_1 category \leftrightarrow monoidal category

E_2 category \leftrightarrow braided monoidal category

etc.

What do E_n-modules for $n \rightarrow$ get an E_n category?
E.g. n=1: A-bimodules for a monoidal category \(\mathcal{C} \) act on
moreover it acts on the category of left A-modules.

In general, \(E_n \)-modules/A act on left modules/A.
"cofree" action - compatibly with left structure.

E.g. n=2: left A-modules are a monoidal category \(\mathcal{M} \).

\(E_2 \)-A-modules form a braided monoidal category = Drinfeld center of \(\mathcal{M} \).

Koszul duality: An augmentation on an \(E_n \) algebra \(A \) is a map \(A \to k \) of \(E_n \) algebras.
\(\Rightarrow \) \(A \) splits \(I = \ker e \)
\(A = I \oplus k \).
I is an En algebra w/o unit

\[A \rightarrow k \] augmented associative algebra
\[\xrightarrow{\text{unit}} \] En algebra

Koszul duality for \(n = 1 \):
\[A \rightarrow k \] augmented associative algebra makes \(k \) an \(A \)-module

Def: The Koszul dual \(A^\vee = \text{RHom}_A(k, k) \)

\[A^\vee, \varepsilon^\vee \] augmented associative algebra \(\text{Hom}_k(k, k) = k \)

Break this process in two:

\[A \rightarrow \text{Hom}(k, k) \] augmented associative algebra
\[\xrightarrow{\text{unit}} \text{Hom}_k(k, k) \]
\[\text{vector space dual} \]

constructed on \(A \) to \(k \) constructed on \(A \) to \(k \)
\begin{align*}
&\{\text{Augmented } E_n\text{-algebras}\} \\
&\xrightarrow{\text{Koszul duality}} \\
&\{\text{augmented } E_n\text{-algebras}\} \\
&\{\text{complexes w/ n assoc.} \}
\uparrow \quad \text{vector space} \\
&\{\text{complexes with } + \varepsilon\} \\
&\downarrow \quad \text{Bar} \\
&\{\text{Bar} : c \otimes f\text{-factor}\} \\
&\{\text{En category}\} \\
&\downarrow \\
&\{\text{En category}\} \\
&\downarrow \quad \text{Bar} \\

\text{[really suppressing shift of } n \text{ - will matter if we want to take the limit]}

\text{n=0 : get just vector space duality}

\text{Under strong finiteness conditions this is an equivalence of categories, and we'll discuss this...}

\text{n=0 : K-theory = vector space duality}

\text{So } A(\text{algebra}) \rightarrow A \otimes A^* \rightarrow \text{pairing map of vector space}
\[n=1 : \quad A \otimes A^\nu \cong A \otimes \text{Hom}_A(\varepsilon, t) \rightarrow k \]

augmentation on \(A \otimes A^\nu \)

restricting to the two augmentations
gives a sense in which \(A, A^\nu \) are dual

In general \(A \otimes A^\nu \rightarrow 1 \) induces
augmentations on \(A, A^\nu \)
\(A^\nu \) is universal with this property.

Another POV: deformation theory

Say \(A \rightarrow k \) augmented \(\mathbb{E}_n \) algebra

"Spec \(A' \)" is finer

\[\text{comm. algebra (i.e. } \mathbb{E}_n) \rightarrow \text{Hom}_{\mathbb{E}_n}(A, R) \]

"Spec \(R \) valued point of Spec \(A' \"

\(\mathcal{E} \) gives a "point" \(\text{Spec } k \rightarrow \text{Spec } A \)

\(\Rightarrow \) take forget scheme (can target complex).
this is \(A^\nu \), up to shift.
Clear = 0: philosophy says n-nilpotent space is formally deformation by algebra.

Note we can think of Spec A as a functor on all En algebras.

\Rightarrow tangent space is an augmented En algebra, E as such is A^n.

Geometric interpretation via configuration spaces:

A En-coalgebra

$\Rightarrow A \rightarrow A \otimes A$ labeled by pairs of points in \mathbb{R}^n...

Put one at 0, get S^{n-1} worth of maps $A \rightarrow A \otimes A$.

Encode this by a sheaf F on \mathbb{R}^n.

s.t. stalk of F at 0 is labeled with A & stalk at any other point is labeled with $A \otimes A$.
- need specialization map new origin
\[\Rightarrow \text{sum of maps } A \rightarrow A \otimes A \]

More symmetrically:
\[\text{Def: The Ran space of } \mathbb{R}^n \text{ is the space of nonempty finite subsets } S \subset \mathbb{R}^n \]
\[\Rightarrow \text{filtered by cardinality of } S. \]

Given an Enr-algebra \(A \), can build a sheaf
\[\mathcal{A} \text{ on the Ran space of } \mathbb{R}^n \text{ with stalks } A_S = \bigotimes_{x \in S} A \]
\[\Rightarrow \text{describes the sheaf as a locally constant sheaf of any given cardinality} \]

Properties:
\[1. \ A_{|\text{Ran}^< (\mathbb{R}^n)} = \mathbb{R}^n \text{ is constant} \]
\[2. \text{If } S, S' \text{ are disjoint, } \]
\[A_S \otimes A_{S'} = A_S \otimes A_{S'} \]
- Very closely analogous to factorable algebras where we have algebraic version & drop condition 1.

Dictionary

<table>
<thead>
<tr>
<th>alg. topology</th>
<th>sheaves on \mathbb{R}^n space</th>
<th>chiral algebras</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_n (col)alg.</td>
<td>"factorizable" sheaf \mathcal{A} [\text{ie satisfy (1,2)}]</td>
<td>chiral object [\mathfrak{A} = 2, \text{curve } \mathcal{A}]</td>
</tr>
<tr>
<td>E_n module</td>
<td>sheaf or similar space</td>
<td>chiral module</td>
</tr>
<tr>
<td>left module</td>
<td>choose direction in \mathbb{R}^n [\mathfrak{A}]</td>
<td>(our chiral algebra is not a Drinfeld cubic of sorts)</td>
</tr>
<tr>
<td>Koszul duality</td>
<td>Verdier duality</td>
<td></td>
</tr>
<tr>
<td>A in deg 0</td>
<td>A is in deg 0</td>
<td></td>
</tr>
<tr>
<td>$\text{Bar}(A)$ is Hopf</td>
<td>A is perfect [\text{not all sheaves even dimensional...}]</td>
<td></td>
</tr>
</tbody>
</table>
Koszul duality induces equivalence on category of En modules (under certain hypotheses).

left E_n modules are comodules over $Hom_{A}(-, Dk(A))$

E_n modules over A are comodules over Drinfeld double of R/k

Any $n!$-Rim space has strata whose all strata have dim multiplicity of n in natural numeracy but also all rim constructions in our Koszul duality, and ask any one of them to be a plain vector space.

Condition 1 too strong for $n!$-algebras:
strong equivalence, stronger than tiny away from a vertex algebra.