Doubled with triangulated categories! As basic but not as good as Hilbert spaces.

DG & Aoo category ... perfectly equivalent

nicer structures, also simpler, come naturally in derived category context.

k module ring

Complex: complex of k-modules $\cdots \to \mathcal{E}^n \to \mathcal{E}^{n+1} \to \cdots$

usual picture of complex. Alternatively $\mathcal{C} = \{ \mathcal{E}^i \}$,

$\delta^2 = 0$ i.e. \mathcal{C} is a DG k-module: better AU psychologically!

complexes form a tensor category (symmetric monoidal category)

$\otimes : \{ kDGMod \} \times \{ kDGMod \} \to \{ kDGMod \}$

simpler to write in DG language:

$\mathcal{C} \otimes \mathcal{C}$ usual \otimes on underlying k-modules with sum of δs, differential using (graded) $\delta^2 = 0$ form.

--- think uniformly in language of \otimes categories

rather than in "complex" picture.

$(A \otimes B) \otimes C \to A \otimes (B \otimes C)$, $A \otimes B \to B \otimes A$ functorial

isomorphisms satisfying identities.

Associativity for complexes obvious, commutativity is super-important.

$A \otimes \phi : \mathcal{C} \to \mathcal{C}$. \phi is p=deg a, q=deg b

k-module category.

\[\text{DG - category = category enriched over } kDG - modules. \]

A category has objects $Ob = X$,

$\text{Hom} (X, Y) \in kDGmod$ morphism

composition $\otimes \text{Hom} (X, Y) \otimes \text{Hom} (Y, Z) \to \text{Hom} (X, Z)$ associative.

Identity:

$X \in Ob \Rightarrow \text{Hom} (X, X) = kDGmod \text{ morphism} k \to \text{Hom} (X, X)$

map $kDGmod A \to kDGmod A$ with $\delta z = 0$ & $dz = 0$

so $i dz \text{Hom} (X, X) dz = 0$ trivial.

Can consider \otimes plain category: forget grading altogether

$\to k$-linear category.
Another categorical way to pass from an exact to usual category can replace C by $\text{Set} \cap \text{Hom}(k, k) = \text{cycles}$ of degree zero...

Examples

1. k-DG-mod is a k-DG-category:
 \[\text{Hom}(C, C) \] has natural DG-mod! grading comes from natural k-action on \[\text{Hom} \]...
 replace whole Hom by sum of homogeneous submodules \[\text{Hom}(C, C) = \bigoplus \text{Hom}(C, C)_{n} \]

Morphism of complexes is a 0-cocycle in this dg hom \[\text{Hom}(C, C') \] i.e., \[\text{Hom}_{\text{complex}}(C, C') \in \text{Hom}(k, \text{Hom}(C, C')) \]

So DG-categories are categories with dg k-mod structure on hom sets so that compositions are k-linear, where does commutativity of \circ come in? So can speak of dual DG category \[\text{D}G^* = \text{dual } DG \text{ category} \]

Example 1

- DG category with one object \longleftarrow DG-algebra (unit $-$ implicit basefield k)
 2. A usual k-DG-category $= DG$ category with k-mod k-linear Hom are dg 0 $d=0$.
 3. Complexes of R-modules R an algebra \longrightarrow k-DG-category:
 - R-$mod = k$-DG-category mod R k-linear
 - Psychologically important that \circ more accurately denoted by \circ_R \circ \[\circ_R \]
 - Use conventions for R-mod \longrightarrow
 - e.g., $X, \ldots X \in R$ for any object X (usual R-mod $\cong k$-DG-category $\text{End}_R X$ $\cong k$-DG-category $\text{End}_R X$)
 - If R arbitrary can form formal limit \mathbb{A} $\text{Hom}(X, X)$ $\text{get } k$-DG-algebra but without unit, only new idelephants
 4. DG-modules over a DG-algebra R $\longrightarrow \mathbb{R}$ $\longrightarrow \mathbb{R}$ mod R k-DG-module mod R mod R mod
Another POV: a quasi-functor is a bimodule over A, A will contain projms.
Another POV: the factors between DG categories
in replace at by a certain (canonical?) which
at least over a field!

Triangulated Categories

Example $K(C)$: homotopy category of complexes in
a k-linear category.

A triangulated category is a graded category with additional structure.
A "candidate triangle" is $X \xrightarrow{f} Y \xrightarrow{g} Z$.

Additional structure: some candidate Δs are "distinguished" + axioms...

Don't require shift as structure; keep in this graded setting
ask for representability of suspension:

$$\text{hom}_C(0, X \otimes I) \xrightarrow{\sim} V \otimes \mathbb{Z} \Rightarrow \mathbb{Z}
\text{ s.t. } f^{-1} \text{ exists.}$$

\Rightarrow define map to unique generator, call $X \cong \mathbb{Z}$
\Rightarrow weak action of \mathbb{Z} on C.

$K(C)$: distinguished Δ is given to $X \xrightarrow{f} Y \xrightarrow{0} \text{Cor} f \xrightarrow{-} X(1)$

$\text{Cor} f = Y \otimes X^\otimes 1$

$\partial = \partial + d$.

Another POV (Deligne):

$X \xrightarrow{f} X \xrightarrow{f} \cdots$

Forms a double complex (no chain), & care
is taken co-where ... really naive double complex!

$df = 0$

does not $(d + c_1) = 0$ so must introduce sits

Examples:

a. $K(C)$, $K(C\text{-mod})$, R is acyclic.

b. $Ho(R \text{-DG-mod})$, R a DG algebra.

c. $Ho(R \text{-DG-mod})$
T a triangulated category \(\Rightarrow T' \) a full subcategory.
A candidate image in \(T' \) is distinguished if it is so in \(T \).

Advantage of DG categories: Yoneda \(A \rightarrow A^0 \) -DG nod.

Triangulated core base \(T \rightarrow (\text{dg-categories}) \rightarrow \text{graded modules} \)

and a left \(T' \rightarrow \) cohomological functor, i.e. graded factors \(T'^0 \rightarrow \text{graded k-modules} \).

Hyper cohomological functors don't have natural triangulated structure.

DG categories

A DG category \(\rightarrow \) homotopy category \(\text{Ho}^*(A) \)

\(A \rightarrow A^0 \) - DG factors is a quasi-equivalence \(\Rightarrow \text{an equivalence} \) \(\text{Ho}^*(A) \rightarrow \text{Ho}^*(A^0) \).

Would like to localize "world" of DG categories in quasi-structure.

Triangulated category = graded category:

Yoneda: \(A \rightarrow A^0 \) - DG nod, \(\text{Ho}^*(A) \rightarrow \text{ho}(A^0 \text{-mod}) \).

Def. A candidate triangle \(\rightarrow \) has triangulated structure.

\(\text{Ho}^*(A) \) is said to be distinguished if it is distinguished in \(\text{Ho}^*(A^0 \text{-DG nod}) \).

\(A \) is said to be pre-triangulated if \(\text{Ho}^*(A) \) is triangulated when equipped with this structure, i.e.

\(\text{Ho}^*(A) \) is a triangulated subcategory of \(\text{Ho}^*(A^0 \text{-DG nod}) \).

- i.e. closed under cones & desuspensions.

Problem: the def is not self-adj. set two rules of distinguished triangle, opposite to each other, not clear if they agree. Do DG factors preserve these distinguished triangles? etc.

More convenient to reformulate correctly.
4. DG-cats are over a DG-category \mathcal{A} as DG-models (DG-models of \mathcal{A}).

For any DG-category \mathcal{A}, the Yoneda embedding $\mathcal{A} \to \text{Ho}\mathcal{A}$ is continuous:

$\text{Hom}_\mathcal{A}(Y, Z) = \text{Ho}(\mathcal{A})(Y, Z)$.

"embedding": fully faithful (Ho(\mathcal{A})(Y, Z) \to \text{Ho}(\mathcal{A})(Y, Z))

$A = \text{DG category}, \quad \text{Ho}(A) = \text{homotopy category}\).

Ob $\text{Ob}(A) = \text{Ho}(A)$.

$\text{Hom}_{\text{set}}(X, Y) \to \text{Hom}_{\text{Ho}(A)}(X, Y)$,

$\text{Hom}(X, Y)$ maps $X \to Y$ as $\text{Ho}\text{Hom}(X, Y)$.

Other notation: $\text{Ho}(A) \equiv \text{Ho}(A)$.

$\text{Ho}(A)$ is the homotopy category, with morphisms elements of $\bigoplus \text{Ho}\text{Hom}(X, Y)$.

One can have property (not strictly) of being triangulated... if not can adjoin cone objects to make it triangulated.

Def. A DG-functor $F: \mathcal{A} \to \mathcal{B}$ is a quasi-equivalence if $\text{Ho}(F): \text{Ho}(\mathcal{A}) \to \text{Ho}(\mathcal{B})$ is an equivalence, i.e.,

1. $\text{Hom}(X, Y) \to \text{Hom}(F(X), F(Y))$ is a quasi-equivalence.

2. Existence of $\text{Ho}(F): \text{Ho}(\mathcal{A}) \to \text{Ho}(\mathcal{B})$ (enlarged version):

 $\forall Z \in \mathcal{B}, \exists X \in \mathcal{A}$,

 $\text{Ext}^{n}(Z, X) = 0$.

A homotopy inverse.

A, \mathcal{A}_2 DG-categories are quasi-equivalent if

$F: \mathcal{A}_1 \to \mathcal{A}_2$ is a quasi-equivalence.

$\mathcal{A}_1 \to \mathcal{A}_2$:

Not enough to define correct where on "work" of DG-categories... as equivalence of categories.

"Fuzzy notion" of quasi-functor $\mathcal{A}_1 \to \mathcal{A}_2$.

$A_1 \to \mathcal{A}_2$: These form (Albrecht Kock's) a DG-category in $\text{Ho}(\mathcal{K})$.
Need for \(A^0 \)-DG-mod: carries cones of morphisms
functor \(f \circ \bullet : \text{Cone}(f : X \to Y) \to \text{Cone}(f : A \to A) \)
on
representable functor.

- Don't need full \(A^0 \)-DG-mod just cones (no iterated one).

\(\mathcal{C} \) pre-waddell category (have susp of maps but not are direct sus)
- So formally add direct sus if so several ranks:

\[\mathcal{C} \to \mathcal{C}^{\omega}-\text{mod}. \]

Or conceptually just take all categories with objects \(\mathcal{O} : \mathcal{C} \to \mathcal{C} \) to see what the
for direct sus morphisms just matrices (rather than "linear transformations" in other defs).

\[\text{Step 1: Replace } A^0 \text{-DG-mod by } A \subset A^0 \text{-DG-mod} \]

- Full subcategory: smallest full DG-subcategory s.t. \(A \to A \) and

\[\text{M} \to \text{M}, \quad \text{M} \to \text{M} \text{ iterated } \Rightarrow \text{M}^1 \to \text{M}^2 \to \text{M}^2 \to \text{M}^3 \to \text{M}^3 \to \]

\(\text{M} \to \text{M} \) stable wrt semi-split extension:

\[0 \to M_i \to M_2 \to M_3 \to 0 \]

- Semi-split extension (of DG-modules) is split in sense of

graded modules.

- So cone \(0 \to N \to \text{Cone}(M \to N) \to M/N \to N \to 0 \)

- Determines failure of splitting to be closed.

- Its differential is \(F \).

More concretely

\[\text{M} \to \text{M} \quad \leftrightarrow \quad \exists \quad \text{M}_{i=0} \subset \ldots \subset \text{M}_{i} = \text{M} \]

finite filtration s.t. \(\text{M}/\text{M}_{i-1} = \text{ker}(\text{g}: \text{M} \\ \text{M}/\text{M}_{i-1} = \ldots \text{representable up to shift}, \quad \text{dg} \}

- the extensions \(0 \to M_i \to M_j \to M_j \to 0 \)

- automatically semi-split because representable functors

are projective objects.

By suppose \(A \to A \) is an algebra (i.e., only \(A \)-object)

- As \(A \) \-object \(\to \text{mod-}A \) \(\text{h}_A = A \) as

\(A \)-module, which is free \(\to \text{projective} \).

\[\text{Step 2: Fix the splittings } 0 \to M_i \to M_j \to M_j/N \to 0 \]

So \(M_i = \oplus \text{h}_A [i] \) as graded modules.
As a D_5-module $M = (\bigoplus_{i} a_i \otimes [r_i] \ V_i = d + w)$

d: standard differential on direct sum of dg modules

$w = (w_{ij}) \quad w_{ij} \in \text{Hom} (a_j, a_i) \ [r_i, r_j]$

of degree 1 (wrt grading)

1. w is strictly upper triangular $w_{ij} = 0$ if $i > j$
2. $\nabla_2 = 0$ is flat connection

(Maurer-Cartan eqn.)

D_6 A pre

A pre-triangulated hull of A : "D_6 category of twisted complexes"

D_6 A pre

are formal expressions $\sum_{i=1}^n (a_i, [r_i], w)$

$w = (w_{ij})$ as above.

$\text{Hom} (\bigoplus a_i \otimes [r_i], \bigoplus a_i \otimes [r_i])$ as graded module

ie ignore d, hence w is just space of natural

$f = (f_{ij}) \quad f_{ij} \in \text{Hom} (a_j, a_i) \ [r_i, r_j]$

composite automorphism $f' f = \nabla \ f = f - f \nabla w(-1) \text{ super commutator}$

symbol ∇ has degree 1 $\text{ch}r = d r + w'(r - (-1)^{\text{deg}} r w)$

"twisted complexes" --- Tohoku-Tsy

This definition is clearly self-dual, & clear that

D_6 functors extend automatically to pretriangulated hull

$f: X \to Y \text{ in } A \Rightarrow \text{Core}(f) \in \text{pretr. cauchy object}$

$\text{Core}(f) = (Y \otimes X[7], (f'))$

$X \in A$, $X \in \text{pretr}$

Def

$X \to Y$ in $\text{Ho}(A)$ is distinguished if it is isomorphic to $X \to Y \to \text{Core}(f)$

X is pretriangulated if $A: X \to Y$ in A, Core(f)

is homotopy equivalent to an object of A & so for $X \otimes J$ not?

Exercise 1. Notion of distinguished Δ is self dual

2. $F: A \to B$ D_6-functor \Rightarrow $\text{Ho} \ F: \text{Ho} A \to \text{Ho} B$
3. \(A \) is a pretriangulated DG-category
4. \(Ho (A^{tr}) \) is equivalent to \(\Delta \)-category by \(Ho(A) \)
5. \(A \) is pretriangulated if \(A \rightarrow A^{tr} \) is a quasi-equivalence
6. \(A \rightarrow A^{tr} \) (pretr) is an equivalence of DG-categories.
7. If \(F : A \rightarrow B \) is a quasi-equivalence then it induces a quasi-equivalence \(F^{tr} : A^{tr} \rightarrow B^{tr} \)

Bondal-Kapranov notation \(A^{tr} := Ho^* (A^{pretr}) \).

A DG-category \(\rightarrow \) triangulated category.

Do derived categories, e.g. \(D(A) \)-modules or \(D_k \)-modules, come from a DG-category? 2-categorical constructions are complicated objects take care now.

A DG category \(\Rightarrow D (A) := \text{derived category of } A \)-modules \(A = \text{Ho}^* (A^{pretr}) \) (cycle DG-triangulated)

Importance of this example (B. Kellers) have yields \(A \rightarrow A^{tr} \)-derived exacts \(\Rightarrow \) fully faithful \(A^{tr} = Ho^* (A^{pretr}) \rightarrow D(A) \)

fully faithful --- so any of the \(A^{tr} \)'s embed into such a derived category of modules.

Exercise: A quasi-equivalence \(A \rightarrow B \) yields an equivalence \(D(A) \rightarrow D(B) \), hence restriction factor is a quasi-equivalence functor of ind-sheaves.

\(D(A) \underset{Res}{\rightarrow} D(B) \) always adjoint --- in this case only inverses are isomorphisms.

\(D(A) = Ho^* (_?) \) ? DG-category containing \(A \)

Arrow (learn to bro guilds through quartz Cass?)
- Spaltenstein, Arras, Hillel, Hirsch
Will define $A \rightarrow A^0$-D_\ast-module : category of
semi-free D_\ast-modules \\
so that $Ho^0(A) \rightarrow D(A)$ is an equivalence.

Well known (in bounded setting) : R a usual ring,

\[\text{derived category of bounded above complex of } R\text{-modules} \]
\[\cong \text{category of bounded above complex of } R\text{-modules} \]

by 6-clique boundedness

Example : $R = \mathbb{Z}/4\mathbb{Z}$

\[0 \rightarrow R \rightarrow R \rightarrow R \rightarrow \ldots \]
acyclic complex but not homotopic to zero ;

apply $\otimes \mathbb{Z}/2\mathbb{Z}$

\[\ldots \rightarrow \mathbb{Z}/2 \rightarrow \mathbb{Z}/2 \rightarrow \mathbb{Z}/2 \rightarrow \ldots \]

with nonzero cohomology !

So to eliminate boundedness need projectivity assumption on whole complex not its terms !

Exercise : if A has finite homological dimension, (i.e. finitely projective) then can remove boundedness in above equivalence.

(in particular acyclic complexes of projectives will be null homotopic)

Def : a D_\ast-A^0-module P is free if it is D_\ast-isomorphic to 0 (i.e. \otimes-free \Rightarrow projective). (in case of not a D_\ast-algebra! module generated by e_i's of degree $-r_i$ with $d(e_i) = 0$).

P is semi-free if $0 \rightarrow P \otimes R < \ldots$ exhaustive filtration by D_\ast-modules such that each quotient is free.

Free \Rightarrow projective so exaherbas are semi-split. (not split for differential !)

A A^0-D_\ast-module introduced before is just the D_\ast-category of finitely generated semi-free D_\ast-modules !

so (semi-free modules) A^∞ is infinite version of A.
A category of ind-objects (systems $\text{L} \rightarrow \text{X}$) or certain ∞-modules (representable functors)

I abstr. categ of ind-objects. Funct $I \rightarrow \infty$ consider homotopy colimit of this funct Δ^I.
Consider simplicial object. Colimit of such I of weak (Aoo-)functors live in ∞.

Inspired by (generalized) cell complexes -- ie don't necessarily after in correct order.

A DG-algebra. A DG-module P over A^\otimes is free if $\exists \ O \subset P \subset P_i \subset \ldots \ (\forall i \geq 0 \ P_i = P)$.

P_i freely generated by $P_i \sim$ homogeneous generators, $g_j \in J$, so $\text{deg } g_j \in P_i - 1$.

Of course, $\Rightarrow P_j/P_i$ is free as dg module.

Adv: of above formula: semi-groups makes sense in non-linear situation. Eg for DG algebras...

one def: exists nilpotent, of course queinites won't be algebras. $P_i = P_i \sim X_j$ purely graded by $P_i \sim$ generators X_j, differentials are defined in subalgebra of old generators.

G for algebras over any operad...

Eg topological semi-groups: attach by cell and add cell in topological sense (map from sphere), generate semi-group by old semi-group & this cell with attaching map. Construction of algebraic free semi-group & topological algebra alg.

Eg Steenrod operad: to what is it an answer? Contact semi-free resolution of the assemble operad (in topological sense).

Theo: \exists model structure on A^\otimes DG-mod (co-nbd eg or semi-free operad).
The results also hold for objects C (e.g., morphism 0 → P are cokernels) are retracts of semi-free objects.

Example 3 A banded above complex of free R-modules

is semi-free.

\[\text{so \ a \ banded \ above \ complex \ is \ semi-free.} \]

Example 4 $\mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$ is not semi-free (can't find basis vector annihilated by the differential!)

Theorem $\text{Ho}(\mathcal{A}) \to \text{DG}(\mathcal{A})$ is an equivalence.

Proof In banded above setting, we can use Lemma 1. Anything has banded above projective object.

Lemma 1 $M \in \mathcal{A}^\mathbb{Z}$ is a direct sum of $\text{Hom}(P, M)$ for P in \mathcal{A}.

A similar result can be obtained using the axioms not involving Hom.

Lemma 2 $P \xrightarrow{f} M$ is acyclic if every morphism $P \to M$ is homotopic to 0.

Every morphism $P \to M$ is homotopic to 0.

Exercise M is homotopically projective if it is homotopy equivalent to a semi-free module.

Proof of Lemma 2 $P = \bigoplus P_i$, P_i/M_i free, $f : M \to P$, i.e., $f \in \text{Hom}(P, M)$, $\deg f = 0, \partial f = 0$.

Construct boundary: $H_0 = 0, H_i \in \text{Hom}(P, M)$, $\deg h = -1$.

Choose H_i such that $H_i : f_i = f_i' - i$.

Correct $H_i = \tilde{H}_i - H_i : \text{Hom}(P, M)$, $\deg \tilde{H}_i = 1$.

Corresponding H_i.

Theorem: $\text{Ho}(\mathcal{A}) \to \text{DG}(\mathcal{A})$ is an equivalence.
$\delta(\delta) = 0$.

But this DG-module of hom's is acyclic:

A/P is a direct sum of free (shifted) modules, so then

is a product of shifted copies of $M \Rightarrow$ acyclic.

Proof of Lemma:

Sublemma: $N \to M$ morphism of DG modules

\[\Rightarrow \exists \text{ factorization } N \to N' \to M \]

1. $N' \to M$ acyclic

2. N'/N semisimple

Sublemma \Rightarrow kernel constant surjective $\phi: P_1 \to M$

P_i semi-free $\Rightarrow H^i \phi \to H^i M$

Then apply sublemma for $N=P_i \Rightarrow P \to M$

Surjective \Leftrightarrow isomorphism on cohomology:

$H^i M$ a generator, make module with no generator

degree of correct degree, $d_e = d_e'$ $d_e = 0$.

\Rightarrow surjectivity on module, similarly for cohomology.

Left to convince.

Proof of sublemma: Enough to consider $N \to N_1 \to M$, N_i semi-free

with $\ker (H^* N \to H^* M) = \ker (H^* N \to H^* N_1)$

Then build $N' = \bigcup N_i$ and $N' \to N_1 \to N_2 \to M$

$\ker (H^* N \to H^* M)$.

kick homs generators $(H^* N_1)$

... odd refs to fill empty.
2.-category of DG-categories --- partial answer

Today: All DG-categories are pre-triangulated unless mention.

Typical example of 2-category: \(\text{Cat} \) -- have objects: category, morphisms: functor, 2-cell: natural transformation

We'll define 2-category \(\text{DG-cat} \). Objects: (small) DG-categories \(A, B \in \text{DG-cat} \Rightarrow \text{T}(A, B) \) category

of quasi-functors ... Ob \(\text{T}(A, B) \) are 1-morphisms of our 2-category, morphisms in \(\text{T}(A, B) \) are 2-morphisms of \(\text{DG-cat} \).

Composition is functor \(\text{T}(A, B) \times \text{T}(B, C) \rightarrow \text{T}(A, C) \)

Associativity here is structure, not property:

- Weak associativity:
 \[
 \begin{array}{ccc}
 A & \xrightarrow{F} & B \\
 \downarrow & \searrow & \downarrow \\
 C & \xrightarrow{G} & D
 \end{array}
 \]

- is an isomorphism

In all three -- *associativity constraint

1. Pasty axiom for composable functors

\[
(F_1 F_2) F_3 F_4 = F_1 (F_2 F_3) F_4
\]

\[
F_1 (F_2 (F_3 F_4)) = (F_1 F_2) (F_3 F_4)
\]

\[\forall A \in \text{DG-cat} \exists ! \text{Ho}(A) \in \text{T}(A, A) \text{ s.t.} \]

3. Isomorphism \(\text{id}_A \Rightarrow F \) functorial with \(F \)

\[F \text{ similar for } \text{Fut} \Rightarrow \text{Fut} \]

Here \(\text{T}(A, B) \) will not be triangulated.

- Problem: should really replace \(\text{T}(A, B) \) by \(\text{DG-categories} \)

Possible over a field, not over ring...

\[A \in \text{DG-cat} \Rightarrow \text{Ho}(A) \text{ triangulated category} \]

will give a 2-functor \(\text{Ho} : \text{DG-cat} \rightarrow \text{Cat} \)
Stupid 2-category: DG-cat
- Objects are \ast-categories.
- Morphisms are DG-functors, 2-morphisms are closed morphisms of DG-functors.

A closed morphism is $\eta: F \to G$ s.t. $\forall A : \eta(A, F(A)) \to G(A)$ is closed.

Problem: want to invert quasi-equivalences, but this notion of closed morphism not invariant under quasi-equivalence.

Ex. 1: arbitrary DG-category \mathcal{C} with DG-algebra k.

As DG-algebra on \mathcal{C} with one object $T(k, A) = T(k, \text{pretr}, A)$

Answer: $H_0(X)$

Ex. 2: $T(A, k) = k$-version of pretr

$k_3 = \text{semifree envelopes}$

Answer: $T(A, k_3) = \text{derived category of } A$-modules

(well A-mod-k_3 is just $\text{DG-functor } A \to \text{complexes}$)

Here get derived cat. homotopy category

... does't change under quasi-equivalence unlike homotopy cat.

$= H_0(A^0)$

$k^\perp\text{ semifree } A$-modules

$= D(A)$

Ex. 3: $T(A, k^{\text{pretr}}) = D(A)$ full subcategory

$= \{ F: A \to \text{complexes s.t. } F(a) \text{ is quasi-isomorphic to a finite complex of } k \text{-modules of finite rank } \}$

Keller's def k = field

$T(A, B) := D(A \otimes B^0)$ derived category of \mathcal{C}_k

..."ind quasi-functors"

$N_\ast T(A, B)$ give wedge $\text{Fun} : H_0(A) \to D(B^0)$

$= H_0(B)$
\[T(A, B) = \{ M \in \text{Mod}(A, B) : \forall a \in \text{Hom}(A) \text{ isomorphic to an object of } \text{Hom}(B) \} \]

- can define \(\text{DGcat} = \overrightarrow{\text{DGcat}} \) where homomorphisms are ind quasi-factors in \(I(A, B) \) ...

Composition: \(M \circ I(A, B) = D(A \circ B^0), N \circ D(B^0) \Rightarrow M \circ B^0 \circ N \in D(A \circ B^0) \)

Note: over a field can lift anything from \(D^0 \) to \(\text{DGcat} \) ... can choose all cohomology trivial over a field! \(M, N \) semi-free don't need to derive \(M \circ B^0 \circ N = M \circ B^0 \circ N \) semi-free.

Note over field: only \(\circ \) will be well defined under quasi-equivalence (without use of above assumption ...)

Any \(k \) - everything works under additional assumption of "DFeness":

Def: \(k \) is homotopically flat if all hom complexes are homotopically flat.

Def: A complex \(C^\cdot \) is said to be homotopically flat if \(C^\cdot \circ (acyclic) \) is acyclic.

Homotopically Flatness & Projectivity: Recall \(M \) is projective if

\(\text{Hom}(M, -) \) is exact,

complex \(C \) is homotopically projective if \((D) \text{ functor} \)

\(\text{Hom}(C, -) \) preserves acyclics \(\Leftrightarrow \) preserves quasi-isomorphisms

A semi-free complex is homotopically flat (\(\Leftrightarrow \) of \(k \)

semi-free modules \(\otimes \) commutes with \(\text{Hom}(A, B) \))

Stable homotopical projectivity \(\Rightarrow \) homotopically flatness

Suppose \(C \) is homotopically flat \& acyclic \(\Rightarrow \)

\((\otimes \text{acyclic}) \) is acyclic ...
A DG category can have a semi-free resolution, hence in particular a homotopically flat resolution.

\[A \rightarrow A_i \rightarrow A_{i-1} \rightarrow \cdots \rightarrow A_0 \]

We need to compare categories \(T(A_i, B_i) \) (don't need to resolve with \(A_i, B_i \)).

\[\text{Ob } T(A, B) = \prod_{i} T(A_i, B_i) \]

Don't have to be strict in defining objects in a category since only care about categories up to equivalence.

or even \(\prod_{i} T(A_i, B_j) \).

or etc.

\[A_i \rightarrow A, \quad B_i \rightarrow B \]

\(\forall i, j \), there exist canonical objects \(F_{ij} \in T(A_i, A_j) \) up to equivalence.

\[i, j \in I \text{ with coproduct } i \oplus j \in I \]

\(i, j \oplus k \in I \), with \(F_{ij} F_{jk}

\[T(A_i, A_j) = \bigoplus_{i,j} D(A_i \otimes A_j) \]

(\(\forall i, j \))

\(A_i \rightarrow A_j \rightarrow A_k \rightarrow \cdots \rightarrow A_0 \rightarrow \text{Bounds} \)

\[(a, b) \in A_i \otimes A_j \]

\[\text{Hom}(T_i(a) \otimes T_j(b)) \]

\(\Rightarrow \) canonical \(F_{ij} \).

So this allows us to define DG category without imposing strictness, which is often enough.

\[\text{eg. dg complexes of abelian groups} \]

Problem doing all this on DG level:

- Get not concrete complexes but complexes up to canonical homotopy equivalence, should instead

DG category, to 2 objects assign many models of hom complexes & compatible family of homotopies.
equivalences ... even weaker than Ab category ... so
kind of \mathcal{D}-category, ... so for now
$T(A,B)$ is only triangulated not D.

Note: category A is quasi-equivalent to
category of pairs $X,Y \in A$ and map $X \to Y$
with quasi-isomorphism, i.e.,

horizontall diagoal of A.
Each of the two preorders is a homotopy
equivalence with \mathcal{A}.

Kontsevich model

There is a canonical 2-functor $\mathbf{D}G\mathbf{a}$
(assumed only flat versus homology).
$F : \mathbf{A o B}^0 \rightarrow \mathbf{D}G\mathbf{a}$

analogy of bimodule case to algebra $A \rightarrow B$

- namely \mathcal{B} is a $(\mathcal{A} o \mathcal{B}^0)$-module.

- in categorical version $\mathcal{M}_{\mathcal{E}}: \mathcal{A} \times \mathcal{B}^0 \rightarrow \text{complexes}$

is $\mathcal{M}_{\mathcal{E}}(a,b) = \text{Hom}(b,F(a))$.

which actually maps in $T(a,b) \in I_{\mathcal{B}}(a,b) \Rightarrow D(\mathcal{A} o \mathcal{B}^0)$

and the functor $\mathcal{B}(a) \rightarrow \mathcal{B}(a,b)$ carry from $\mathcal{M}_{\mathcal{E}}$ is

just $\mathcal{B}(F)$.

So we have the 2-functor on morphisms.

Stere: any quasi-functor can be visual as functor
$A \rightarrow \mathcal{D} o \mathcal{B}$-modules with quasi-operations $\mathcal{D} o \mathcal{B}$.

j quasi to representable one

--- localization of factors $A \rightarrow \mathcal{B}$. ---

$\text{Ext}^1_{\mathcal{A} o \mathcal{B}^0}(\mathcal{M}_{\mathcal{E}}, \mathcal{M}_{\mathcal{E}}) = \text{Ext}^1_{\mathcal{A} o \mathcal{B}^0}(\mathcal{M}_{\mathcal{E}}, \text{Hom}(\mathcal{F}, \mathcal{G}))$

$\text{Hom}(\text{Hom}(\mathcal{F}, \mathcal{G}))$ is the $\mathcal{D} o \mathcal{A} o \mathcal{B}^0$-module

$(a, a') \rightarrow \text{Hom}(\mathcal{F}(a'), \mathcal{G}(a))$
What is Hom_A? For algebra A as a A-bimodule.

Hom_A is the category whose DG $A \otimes_A$-module
$(a, a') \mapsto \text{Hom}(a, a')$ (i.e. $\text{Hom}(\text{Id}, \text{Id})$)

This gives 2-morphisms for any DG bimodule M_A^C, with

This gives the full subcategory of

with pullback and pushout.

Ex: If A is semi-free, then $\text{Ob}_{\text{DG}(T(A, B))}$ is

Note $\text{Hom}_A = \text{diagonal bimodule}$

$\text{Ext}^i(\text{Hom}_A, -) = \text{H}^i(A)$ (cohomology)

- gives full description of DG A for A-

semi-free by a base exercise... in general must

use semi-free resolutions.

A semi-free, i.e. $\text{Ann} \text{cochains of } A$ is semi-free A-

standard Ann has a semi-free resolution.

- has a semi-free resolution

- use semi-free resolution.

- can compute $T(A, B)$ in terms of this resolution.

$\text{std}(A)$:

Oh $\text{Ob}_{\text{DG}(T(A, B))}$ are DG-factors $\text{std}(A) \rightarrow R$

aka Ab-factors $A \rightarrow B$...

$\text{std}(A)$ is named, counter to two adjoint factors,

maps to the identity ("twisting cocycles" of Quillen)

gives way to understand Ab-factors.

\Rightarrow DG model this way for $T(A, B)$...

\[\text{std}(A) \]

\[\text{std}(A) \text{ is semi-free, i.e. } (A^*) \text{ is semi-free.} \]
Example of comparison of Keller & Kontsevich models:

\[T(A, k) \quad (k_{pers} = \text{parameters with } A = \text{DG algebra for simplicity}) \]

Keller: semi-free DG - A-module M s.t. \(\text{dim}_k H^*(M) < \infty \)

Kontsevich: finite complexes of fin dim k-vector spaces with a weak action of A.

Weak action: For any \(a \in A \) have an endomorphism \(fa : C \to C \) (depending linearly on \(a \)), \(f_0 a \neq a f_0 \) necessarily, but \(f_0 = a f_0 = d(a) \), some combo of \(d \) which is compatible with boundary, etc...

- Come naturally to this by trying to construct f.d. model of Keller module \(M \). \(M \) is homotopy equivalent to a f.d. complex \(C \), get for \(a \in A \) an endomorphism up to homotopy, will satisfy \(A \)-gerbe relations.

Again find \(\text{dim} \) by losing strictness of action.

Quotients of DG categories

Verdict: \(T \) triangulated, \(Q = T \) full triangulated subcategory get \(I \to T/Q \) quotient triangulated category with universal property w.r.t. such quotient.

What is DG version: \(B \in A \) DG categories [Keller]

2-categorical version: [advantages: works over rings, disadvantage: less precise, weaker form of uniqueness]
Theorem-definition A 2-categorical quotient of A and B is a pair (C, ξ) of a DG category C, a quasi-functor $\xi \in \text{Hom}(A, C)$, s.t. the above equivalent properties hold:

1. $\text{Ho}(\xi) : \text{Ho}(A) \to \text{Ho}(C)$ identifies $\text{Ho}(C)$ with $\text{Ho}(A)/\text{Ho}(B)$, i.e., $\text{Ho}(A) \to \text{Ho}(C)$ (B killed in $\text{Ho}(C)$).

 (Note that $\text{Ho}(C)$ is an equivalence).

2. For $C \in \text{DG Cat}$ the functor $\text{Tor}(\xi, C) \to \text{Ker}(\text{Tor}(A, C) \to \text{Tor}(B, C))$ is an equivalence. [When $B \to A \to C$ is zero.] (Verdier setting: universal property $\text{Ker}(\text{Tor}(A, C) \to \text{Tor}(B, C)) = \text{Tor}(\xi, C)$ every further killing B factors through C.)

Such (C, ξ) exist in 2-categorical sense.

Not obvious that either implies the other.
Recall $\text{Ho}(A^+) = T(C^+, A^+)$ while second property formulated in terms of $T(A^+, -)$.

In brief each $T(\cdot)$ is actually a DG-category.

Worse precise version, what is tight in shifting case.

Problem is not to prove but to formulate question.

It is anything.

Suppose $T(A, C)$ exists for a DG category $D(A, C)$
- above formulation means have collection of objects $\xi, \eta \in D(A, C)$ together with a homotopy class of homotopy equivalences $\xi \to \eta$.
- So more precise version need either specific ξ or functor contractible space of morphisms from the object ξ, η (i.e., $\text{Prod}(\xi, \eta) \to \text{Hom}(\xi, \eta)$).

k not a field don't have $D(A, C)$ yet...
Def. A DG quotient A and B is a diagram

\[\xymatrix{ T(A, C) = T(C, C) } \]

s.t. (C, T) is a 2-categorical quotient.

Replacing T by $D(C) : DGC(C, C') \to \text{ker}(\text{DG}(C) \to D(C'))$

is a quasi-equivalence (automatic from definition 1, just need to define $DGC(C, C')$)

2 constructions. $T :\text{new (Donald)}$, works if A

is homotopy flat.

$\text{Ob } C^{\text{op}} = \text{Ob } A^{\text{op}}$, add new morphisms:

\[\forall X \in B, \text{ add } Ex : X \to X, \text{ of degree } -1 \]

\[dEx = \text{id}_X \] C is freely generated by A and the Ex.

If A is homotopy flat this gives desired answer.

Rather than inverting quasi-isomorphisms, part of killing objects is by killing all morphisms to & from this object (homotopically) -

enough to kill identity morphisms.

II. Keller's definition: consider inclusion $A \to B$.

$B \to B^{\perp}$ full subcategory: we have

$\text{Ext}^{1}(B^{\perp}, M) = 0 \forall B \in B^{\perp}$

Fact: $H^0(B^{\perp}) \cong H^0(A)$, $H^0(B^{\perp})$ is an equivalence.

$H^0(A) / H^0(B^{\perp})$ fully faithful.
So define \(\tau \in C = \mathcal{L}(\mathcal{B}) \colon \exists \alpha \in \Delta \) s.t. \(\triangle \) with \(\mathcal{N} \subset \mathcal{B} \)

--- essential image of \(H(\mathcal{C}) \rightarrow H(\mathcal{B}) \)

Here consider \(\mathcal{D} \) valued \(\mathcal{A} \rightarrow C \) but need \(\mathcal{N} \subset \mathcal{B} \)
--- try to assign \(\mathcal{M} \) to \(\alpha \) using a choice
but with compatible space of cores
(possibly equivalent s.s.s.)

Equivalently, consider \(\mathcal{N} \subset \mathcal{B} \)
\(f \) of deg 0 \((P : \mathcal{N} \rightarrow \mathcal{B}) \)
so that \(\text{Core}(f) \subset \mathcal{B} \)
--- Core \(\mathcal{A} / \mathcal{B} \) is exact
\(\text{Core}(f) / \mathcal{B} \) is exact
\(\text{fl} / \mathcal{B} \) is a quasi-isomorphism

Restrict to \(\mathcal{B} \) - think of \(\mathcal{A} \) as a representable functor by \(\mathcal{D} \)
\(\mathcal{D} \rightarrow \mathcal{B} \) and take a semi-free resolution \(P \rightarrow \mathcal{B} / \mathcal{B} \)
--- this is our choice
but unique
in strongest homotopical sense
(constantly space of cores)

Not self-dual definition - so would like universal property to identify all.

How might you come to this data? Why semi-free \(\mathcal{D} \)-modules?
--- believe \(\mathcal{D} \)-module exists:
\(\mathcal{A} \rightarrow \mathcal{C} \) with property

Yoneda:
\(C \rightarrow \mathcal{C}^0 \rightarrow \mathcal{D} \cdot \mathcal{C} = \mathcal{D} \cdot \mathcal{A} \)
\(A \rightarrow \mathcal{D} \cdot \mathcal{A} \) nat.

\(f \cdot (C) \rightarrow H(\mathcal{A} : \mathcal{D} \cdot \mathcal{A} \rightarrow \mathcal{D} \cdot \mathcal{A}) \)
--- fully faithful, so natural to look
for \(C \) in \(\mathcal{A} \).

In fact \(\mathcal{A} \) (infinite torsor) is implicit in Verbera:

\(\text{Ob } T / \mathcal{Q} = \text{Ob } T \), morphisms: invert \(\mathcal{Q} \) quasi-isomorphy
--- i.e. morphisms with core in \(\mathcal{Q} \).
So morphisms are zigzags in \(T / \mathcal{Q} \), \(\mathcal{E} \in \mathcal{Q} \),
But also to take \(\mathcal{E} \) and \(\mathcal{M} \).
Verdict: \(X \to \mathcal{C} \to \mathcal{E} \to \mathcal{D} \to (X, Y) = \)

\[\text{Imm } \mathcal{C} \xrightarrow{c_y} \mathcal{E} \]

over all "injective registers" \(c_y \) given by

\[c_y = \text{category with objects } 0 \text{-maps } X \to Y \]

if maps \(X \to Y \), give map \(X \to Y \) and category \(c_y \).

\(c_y \) is a filling category.

-- need for group structure on the limit of \(c \).

\(c_y \) commute with finite projective limits (i.e. pullbacks).

Claim this is same infinity as \(\mathcal{A} \to \mathcal{A} \)

-- can write in homotopy category but Keller's construction takes care of this via semifun.

\[
\text{Exer. a, a' } \in \mathcal{A} , \quad \mathcal{P}_{a,b} \xrightarrow{p_{a,b}} \mathcal{A} \text{ semifun. nodis. }
\]

\[
\text{Show directly that } \mathcal{E} \text{ as follows: } \\
\text{Hom}_{\mathcal{A}}(a', a) = \text{Imm } \text{Hom}_{\mathcal{E}}(a', a) \\
\text{and } \\
\text{Keller } \text{Hom}_{\mathcal{A}}(a', a) \text{ of } \mathcal{P}_{a,b} \text{ (i.e. projective limit)} \\
\text{up to homoto. }
\]

\[
\text{write } \mathcal{P} = \mathcal{P}_{a,b}, \text{ with } \mathcal{A} \text{ nodis. filling (filling family)}
\]

-- see codensity of \(\mathcal{E} \). The limit over filling in

\text{direct limit of codensity -- slightly different filling categories}

\text{get hom to from one to another by direct construction of one sequence -- make it is an equivalence.}