Some doubts problems

- Important distinction between algebraic Langlands: use theory of rational adeles, instead of Galois reps separate \rightarrow treat Eisenstein & cuspidal separately

Geometric story: they lie together, reducible reps can be deformed to others!

Today: 2 separate stories: G K V conjecture of irreducible GL, Beilinson-Drinfeld for geometric Eisenstein, satisfactorily for generic orbital Ls.

Problem 1: Take abelian toris to GL, deform it to be irreducible (using a universal deformation)

\rightarrow how to construct Langlands theory of this universal deformation? Can one find a deformation of geometric Eisenstein reps as Hecke eigenform?

- In general even for GLz: to be done very crudely C. V. technique but would be better to deduce in more uniform form

G reducible \Rightarrow \text{T} max torus, T good torus

Cas \text{\mathfrak{t}} \text{local system} p on X, generic

\Rightarrow E_{isp} \text{ Eisenstein series (Beilinson-Drinfeld): power series on } B_{reg}

E_{isp} = \bigoplus \text{E}_{isp} \text{ graded object labeled by } \lambda \text{ weights of } T

\text{version of infinite series}

Graded object \leftrightarrow \text{torus action: } \text{T} \text{ acts on } E_{isp}

\text{with character } \lambda

p \text{ a} \text{ torus } \Rightarrow p \text{ considered as } \mathfrak{g} \text{ local system}
Wahl: $V \rightarrow \text{local system } p \rightarrow \text{lagendeh factors, a complex } \mathcal{L}_p \text{ on } \mathbb{G}_m$.

As p varies, fibers of \mathcal{L}_p (complex of sheaves) should form complex of \mathcal{O}-modules on stalk of local systems. Even for fixed p have rank-1 stalk since p has automorphism p grading is the central stalk on \mathbb{G}_m (center of p generic at ξ_t).

Fix p_0 & consider formal stalk S of p_0's infinitesimal close to p_0. p_0-stalk of \mathcal{O}-module by a game (crude) V/\mathbb{G}_m

$V = \text{Spec } \mathcal{O}$ complete local ring \mathcal{O}-def of complete red-ide local systems $\rightarrow V$ singular

\mathbb{G}_m case \Rightarrow quadratic case singular.

generally systems of quadratic cases

that of \mathbb{G}_m shadowy $T \cap [A, B] = 1$

get \mathfrak{m}-local relations from \mathfrak{m}-def of center \mathfrak{m}

Problem: construct \mathcal{L}_p, on $(\mathbb{O}, \mathcal{O})$-module a \mathcal{O}-module.

Lie algebra setting on also specify class of objects.

Verdier stalk of \mathcal{O}-modules with \mathfrak{m} action

Result: $B T < S$ should get Einstein series & \mathcal{L}_p

should be Herbe eg-nuch.

Technique to solve \Rightarrow semi-ample flag \mathcal{O}

Finkenberg, Miura: geometric realization of \mathfrak{g}

get \mathbb{G}_m variety $\mathcal{O} \rightarrow E_{\mathbb{G}_m}$.

Hint: \mathfrak{g}-determine many of local systems: controlled by cohomology of Lie algebra twisted by \mathfrak{g} with \mathfrak{g}-action?
\((\gamma_2, \text{Flag II}) \Rightarrow \log: H^0(\cdot) \rightarrow \text{End} \, E_{\log}\)

Now we cut a few of the delta's \(\Rightarrow \) solve problem in char. 0 of coefficients...

To get away from char. 0 need not delta vanish but different entire vs. vs. not. Very needed but difficult to group should act

char. 0: have delta \(\mathbb{R} \mathbb{P}(X, \log_{\mathbb{P}_0})\) (i.e.,

want to convert rep. \(R\) to \(\text{End} \, E_{\log}; \quad E_{\log}\) should be isomorphism. Rankin-Selberg \(\text{L-element}\)

suggests this is an isomorphism.

If everything is ok, \(\log E\) is all proper \(\Rightarrow\) probably don't need more stupid algorithm of delta's with higher rank...

Q: What happens when \(\mathbb{P}_0 = \text{trivial}?\)

\(\text{GL}_2\) picture: (de Rham, etc., etc., etc., etc.)

\(\text{Noise hope:} \quad (\mathcal{O}, \mathcal{O}) - \text{module on} \, \text{LocSys}_{\mathbb{G}_m} \times \text{Bun}_{\mathbb{G}_m}\)

\(\text{flat} / \text{LocSys} \times \text{Hodge-\text{esquisse}}\)

\(-\quad \text{can realize this noise hope on open subspace} \quad \text{LocSys}_{\mathbb{G}_m} \times \text{Bun}_{\mathbb{G}_m} \Rightarrow (\mathcal{O}, \mathcal{O}) = \text{Hodge}\)

\(\text{P: difficult if reducible & irreducible case.}\)

\(\text{Isomorphic to each other -- eg trivial and difficult!}\)

\(\text{Theorem:} \quad \text{Maurin.
}

\(\text{M} \text{ on } \text{LocSys}_{\mathbb{G}_m} \times \text{Bun}_{\mathbb{G}_m} \text{ so that } \text{M is}\)

\(\text{codimension over Loc Sys}_{\mathbb{G}_m}, \text{Hodge-\text{esquisse}}, \text{etc.}\)

\(\text{Replace pictures by CM, vector properly, not flat} \)

\(\text{Loc Sys are l.c.i., in particular CM, so}\)

\(\text{no contradiction flat vs. CM!}\)

\(\text{on a smooth variety being flat } \Longleftrightarrow \text{CM,}\)

\(\text{good sing. flat } \Rightarrow \text{CM}\)
Does M define an equivalence of categories?
A: Which categories? 'til or not, etc?

Analogous situation: Fourier transform in \mathbb{R}^d on
It obeys group & field H^{*} which class of functions? need to specify.
Generic representation \to complexes
function spaces \implies derived categories
need generic function analysis, consider various
classes of functions

test situations: as local systems with the inclusion
of some parts be fixed local monodromies
if at least one local monodromy nontrivial \to easy
local systems. Need to think about group Cech
analysis: stack B with this case not
questions, loc sys singular so use
different notions of address/potential

Weka: check equivalence of derived categories in simplest
truly nonabelian situation, \mathbb{P}^1 with monodromies
to eliminate all reducible etc \to remove all
singularities/infinite, some genericity.

To construct (triv): want to use Einstein
series construction... Grady tors symmetry
But for triv out of sys / symmetry
is G2 \implies need exactly one B G2 not 17

F-dim vec of G2 decomposes onto T, labeled
by pairs of Higgs $& V_m = V_{mm}$ on L primes
(very! symmetric)
- so if your Einstein series carried G2 coh

Some trick to make vs get finite (kill above)
complex of D-modules
proof very technical & computational.
would love such base functional eqn. \[f(x) \rightarrow \text{something would get made for an eqn.} \]
as if \(E \) is not a pole.

Suppose \(f(t) = \sum a_n t^n \quad g(t) = \sum b_n t^n \)
form series in two variables in opposite order.

What does \(f(t) = g(t^n) \)
mean? A finite series, Laurent polynomial.
More sophisticated; two Laurent expansions
of zero function,

\[a_n \cdot b_m \rightarrow \text{root n of general progression} \]
\[(\sum \text{finite series}) \leftrightarrow \text{pole of} \]
\(E \), \(s \) series when \(a_n \cdot b_m \) are equal,
so no pole equation, \(\text{V}_{\text{max}} = \text{V}_{\text{min}} \).

So don't have action of \(GL_2 \) since \(E \) is not a pole!

Milnor-Eisenbud etc: Every \(GL_2 \) action of the Lie algebra
Login -- so don't get stack or stack \(B GL_2 \).
Maybe this is wrong object.

Familiar notation: \(\tilde{f}(g) = \int_R \tilde{K}(\tilde{s}, \tilde{x}) \)
inverse Fourier: at a minus sign
Special version: replace kernel sheaf by
Verdier dual.

Orthogonality: \(\int e^{i(s-y)x} dx = \Gamma(s-y) \)
--- need such both ways, one
as \(\text{B}_{\text{GL}_2} \) in \(D\)-module sense \& one
as \(\text{L}_{\text{GL}_2} \) "\(D\)-module."

Orthogonality / \(D\)-module: Lysenko (or \(B_{\text{GL}_2} \)):
--- need of capital \(D\) or \(\mathbb{Q}\) and dualized

Vectors over functions: \(GL_2 \) answer by
Routine. Systems defined \(\Rightarrow \) geometric vector for \(GL_2 \).
Orthogonal to our local tools: no standard tools to replace.

Lysoko: only irreducible data at work. Direct counter to no orthogonal (or see) or orthogonal scalar square.

Factor on represented to our subject.

An important technical tool — another corollary of Bun_B or $\text{Specs of rational maps}$ different for Direct germ's.

\[G = B \quad \text{Bun}_B \to \text{Bun}_B \]

\[\varphi = \text{const of relative compactification of } \]

this representable morphism:

\[\varphi^{-1}(F) = \text{B-structures on } F \quad \text{sector of } (G/B) = \Gamma(X, (G/B) \gamma,) \]

\[\varphi^{-1}(F) = \Gamma_{\text{quasi}}(X, (G/B) f) \quad \text{quasi-secures} \]

Fibers of $\text{Bun}_B \to \text{Bun}_G$ will be compact but not algebraic.

Bun_G not algebraic, since just schemes, as fibers.

\[\text{SprC} \quad \text{Bun}_B(S) = \{ F \in \text{Bun}_B \quad \text{rational sector of } (G/B) \}

\text{rational sector = sector on } X \times S \to X \quad \text{D finite } S

\text{eg } F = \text{triv} \Rightarrow \text{all rational sectors to } G/B

\text{any } \text{Bun}_B(F) \text{ becomes trivial on an empty open subset, so just get rational maps to } G/B

\text{study topological object } \text{Rat}(X, Y) \text{ of variety } X \to Y$
\[\text{Rat}_{x \to y}(S) = \text{set of rational maps } X \times S \to Y \]
\[= \lim_{D \to X \times S} \text{Map}(X \times S - D \to Y) \]
\[\text{in } \mathcal{S} \quad \text{(require } D \text{ have zero dimension)} \]

Suppose \(\mathbb{G} = C \)
\[S/C = S - \text{point} \quad \text{of } \text{Rat}_{x \to y} \text{ defining map } \]
\[q_x : S(C) \to \text{Rat}_{x \to y}(C) \]

We will call such \(q_x \) to be continuous.
At strongest topology s.t. all \(q_x \) are continuous.

\text{Example: } \text{Rat}(\mathbb{P}^1, \mathbb{P}^1) : \text{next mainly} \]
\[\text{rational maps from } \mathbb{P}^1 \text{ to } \mathbb{P}^1 \text{ are regular} \]
\[= \text{locus of regular maps, split as disjoint union of maps of fixed degree} \]
\[\text{Here we'll only get attention by degree} \]

\[\text{Rat}_{\leq 1}(\mathbb{P}^1, \mathbb{P}^1) : \mathbb{Z} \to \frac{a z - b}{c z + d} \]
\[\leftrightarrow \text{not fix } (a, b) \text{ up to rescale, norm} \]
\[\Rightarrow (a : b : c : d) \in \mathbb{P}^3 \quad \text{If not fix is degenerate} \]
\[\text{ad } = a c + b d \text{ get degree } O \text{ map} \]
\[\text{quadratic in } \mathbb{P}^3 \quad \text{O}(\mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3) \]
\[\text{ad } = (a : b : c : d) \mapsto \left\{ \frac{a}{c} = \frac{b}{d} \right\} \mathbb{P}^1 \]
\[\text{So projection on this } \mathbb{P}^1 \text{ is just the map we want} \]

\[\text{Rat}_{\leq 1} = \text{take } \mathbb{P}^3, \text{ contract quadratic } \]
\[\text{to } \mathbb{P}^1 \text{ under map } \frac{a}{c} = \frac{b}{d} \]
\[\text{forbidden in algebraic geometry, but} \]
\[\text{fine as topological space.} \]
equivalence relation on \(B_{\text{inB}} \) which is (1) proper (two projects are proper) (2) rest is discrete (in P)

\[\text{e.g. G(3)}: \text{rl 2 realize} \quad L, A_1, A_2 \subseteq L \quad \text{s.t.} \quad A_1 \cap A_2 = \emptyset \]

\(B \) cop P \(\rightarrow P \) is idm of two

- a row polynomial of degree (e.g.) P
- \(\text{to a} \) subgraph in projective space for equivalent points \(\text{pf} = 9g \).

Please states etc. to define on algebraic variety with proper equivalence relation — 5th degree of states, with Verider qualities etc.
- states of states, upstairs with descent data
- two notions of equivalence ! & x

\[R \subseteq X \times X \text{ proper equivalence relation, } R \xrightarrow{P} X \xrightarrow{\Pi} X/R \]

Define \(T(X,F) \) on \(X \) with \(\exists \)

\[\left(P^* F \xrightarrow{\ast} P^* F \right) \]

Problem: define what is \(\Pi^* F \)?

\(\ast \) descent data on \(\Pi^* F \).

Suppose \(X/R \) exists in usual sense — use proper base change

\[R \xrightarrow{P} X \xrightarrow{\Pi} X/R \]

Cotpole \(P^* \Pi^* F \) by \(\ast \)

\[\text{Adjustment: } T(X, \Pi^* F) = \Pi^* F \]

\[E = \text{ker} (\Pi^* F) \]

Suppose \(X/R \) exists, how \(\Pi^* F = F \). Now

\[\Pi^* \text{ write empirical scheme } \Rightarrow \text{ use proper base change} \]
for $F \rightarrow H_\mathbb{Q}^F \rightarrow \cdots$

\Rightarrow make F in terms of direct images of \mathbb{Q}

given in terms of F

want to describe $H_\mathbb{Q}^F$ from F & descent data

in case everything exists.

resolve F using F's, but by base change.

however pullback of \mathbb{Q}-sheaves
do not exist still have \mathbb{Q}-cycles on the tower

want a simplicial set

Generic Example:

- take "iteration pullback" of perverse sheaf on Bun_G to Bun_P, & pushforward to Bun_G

- consider pushforward to Bun_G before Bun_B

- "Normal theory": fibers of $\text{Bun}_B \rightarrow \text{Bun}_G$

are contractible

Another potential application:

$C = \mathbb{C}P^1$:

$\text{Bun}_B \rightarrow \text{Bun}_G = \mathbb{C} \rightarrow \mathbb{C}^1$

rank 2 + fixed rank 1 singularity

can construct complex on Bun_G assoc to inv loc syst now need to descend it to Bun_G.

Use fact that fibers are projective space hypersurfaces.

can push both stack on Bun_G will to $\mathbb{C}P^1$.

or (I need positivity to descend

descent for complexes more complicated

- need contractibility
If don't impose irreducible local systems would probably get nonprocesse complexes; would be nice to have something with contractible fibers over B that related to B...

General contractibility statement: \[\text{[Contractibility]} \Rightarrow \text{Y vanish} \]

- Cohomology with trivial coefficients, vanishes
- Both make sense in this general context.

Let \(X \) = irreducible variety (e.g., curve), \(E = k(V) \)
\(Y \) = scheme of finite type / \(E \)

\[\Rightarrow \text{associate fiber space (factors)} \]
\[Y_E : k \text{-} \text{sections} \rightarrow \text{sets} \]
- "kernel" to choose a model for \(Y \)

As generic fiber of \(Y \rightarrow X \) scheme of finite type

\[Y_E(S) = \text{family of reduced sections of } Y \rightarrow X \]
\[= \lim_{D \text{ proper of } X} \text{Max } ((X \times S) \setminus D, Y) \]

- Independent of model \(Y \).

To be checked: Suppose \(Y \) is irreducible \& \(V \in \mathbb{V} \)
\[\exists \ U \subset Y \ \text{Zariski open isomorphic to an open subset of } \mathbb{A}^n \]
\[\text{Then } E \text{ is contractible.} \]
\[\lim_{U \text{ closed of } Y} \lim_{U \text{ closed of } Y} \text{ is zero.} \]

(\dagger): If \(Y = U \cap V; \Rightarrow Y_E = (U \cap V)_E \) hopefully still goes!

- Case with spaces of reduced ryzk to affine schemes

\(U \subset \mathbb{A}^n \) properly \(\Rightarrow \) claim \(U_E \) is contractible.
3. Microlocalization

DeRham setting: E-modules

Parallel picture for perverse sheaves (Kashiwara ... not suitable to complex algebraic context ... requires reconstructable sheaves)

& modified by MacPherson-Vilonen-S.Gelfand]

$T^*M \to 0$

$\Pi_{\geq t}$

$P(TM)$

M smooth algebraic variety: $P(TM) := (T^*M \to 0) / G_m$

Contact variety, with sheaf of associative filtrable algebras E, complet \mathbb{R}-wrt filtration $\text{gr } E = T^*C$

T^*C is \mathbb{Z}-graded, with Poisson bracket of degree -1

Define E: sections over open affine subset (issue M affine — construct local $M \times \mathbb{R} \times P(-)$ pair)

P genus F on T^*M, look of complement $\{ F = 0 \}$

$\Gamma_0(C, E) = \text{completion wrt filtration}$

$(\mathcal{D}_M, \text{invert all derivatives wrt } C)$

Suppose were model differential $F \Rightarrow$

invert (in complete) operator of form $F + G$ where G is of lower degree

Equivalent loc. locally: write differential via symbols

$\Sigma a_{\alpha}(x) (\partial^\alpha x) \mapsto \Sigma a_{\alpha}(x) \xi^\alpha$

Symbol of a product expressed via symbol of factors via formula which notes sense for symbols more general for than polynomials! $F(x, \xi)$ infinite sums of long functions $x, \xi \Rightarrow$ explicit control...

Let $P: P(TM) \to M$ natural map $P^*D \to C$
\(N \text{ Dm-mod-le} \Rightarrow \Sigma \text{Dm} \quad \overset{\rho}{\rightarrow} \quad \rho^*N \text{ microlocal of } N. \)

Would like to apply to \(M = \text{Bun}_X \text{ --- k.C.} \)

What at smooth variety be a group...

Assume we can take notion of \(E \)-module on \(\text{Bun}_X \).

\[T^*\text{Bun}_G = \{ (F, \eta) : F G \text{-bundles } \alpha X \eta \in H^0(C, \text{Log}_{\alpha} \otimes \omega_G) \} \]

Def \(\eta \) is weakly generic if \(\eta(x) \) is regular for \(x \in X \) generic (regular Hitchin invariant)

Problem: Can a local \(E \)-system \(p \) on \(X \) compare/identify/construct

the restriction of the micro/localize of \(p \) to \(T^*_p(\text{Bun}_G) \) weakly generic

Hecke correspondence on \(T^*_\text{Bun}_G \) preserve Hitchin fibration & more; if \((F, \eta) \)

corresponds to \((F', \eta') \) \(\mapsto F \mapsto \) identical generically & \(\eta, \eta' \) agree there.

\(X \mapsto Y \text{ map of smooth varieties } \Rightarrow \)

Lagrange in \(T^*X \times T^*Y \).

Correspondence \(Z \leq X \times Y \Rightarrow \text{Corr of } Z \leq T^*(X \times Y) \)

\(\Rightarrow \text{Lagrange correspondence between } \)

So for Hecke correspondence, if \((F, \eta) \), \((F', \eta') \)

\(\mapsto \text{generically } \eta \leftarrow \eta' \)

So if one is generic so is

So on consider Hecke correspondences restricted to generic

Hitchin operators provide for.
Theorem. \(\text{Sing Supp} \left(\mathcal{F} \right) \subseteq \text{zero fiber of } \mathcal{H} \). Fiber of \(\mathcal{H} \) is nilpotent with unique fixed point.

Let \(\mathcal{H} \) be a fiber bundle with fiber \(\mathcal{F} \). The fiber of \(\mathcal{H} \) is nilpotent with a unique fixed point.

If \(\mathcal{H} \) is well-behaved, then for \(\mathcal{G} \) (or \(\mathcal{G}_n \))

For \(\mathcal{H} \) on \(\mathcal{O} \), this property is clear by definition.

Zero fiber: \(\mathcal{H} \) is not nilpotent everywhere.

(at least set theoretically -- carefully with multivalues)

Global nilpotent core

We're looking only at \(\mathcal{H} \) which is regular nilpotent generically.

"Kashiwara" \(L \in \mathfrak{P}(\mathcal{M}) \) Legendrian & smooth

\{ Describe \(\mathcal{E}\)-moduli set -moderately separated \}

\(\text{on } \mathcal{L} \)

| local system on \(\mathcal{L} \) |

Careful: need to replace \(\mathcal{E}\)-moduli by twisted \(\mathcal{E}\)-moduli & correspondingly change \(\mathcal{E} \).

Similarly should consider \(\mathcal{E}\)-moduli-twisted local systems.

So we're in generic part of global nilpotent core, describe Hecke \(\mathcal{E}\)-moduli as local systems on smooth Legendrian -- restrict to smooth local systems.

Conjectural (partial) answer for \(G = GL_2 \):

Higgs bundle: \((L \text{ rank } 2, \eta : L \to L \otimes \mathcal{O}_X) \)

nilpotent: \(\eta^2 = 0 \), \(\eta \) is not identically zero

What is \((L, \eta) \) a smooth point of the nilpotent core? (as reduced scheme)
Assume: if all the zeros of \(\eta \) are simple.
Number of zeros can be arbitrary \& labels
the irreducible component for which \((L, \eta)\)
is generic. --- oo many components
(can guess correct \(g \) & \(b \)).

Suppose \(\eta \) has \(k \) simple zeros.

Conjecture: Fiber of \(\eta \) over \(\text{local system at } (L, \eta) \)
(generating \(\eta \)) of microlocalization \& \(\eta \) is

\[\beta \otimes \ldots \beta \]

Conjecture: \(\beta \) irreducible component of Langlands functor
achieves as Radon transform (Freeness for homogeneous
functors).

Contact: complex on \(\beta \) should be effective relative
or \(\alpha \) dual to \(\text{Ext} (L, \eta) \) on \(\alpha \) dual of \(\beta \)-module.
Apply Radon to \(\text{Sp} \beta \) get more
sheaves on \(\beta \).

Radon transform on singular supports:
\[\text{Radon}(T \beta) = \{ x \in \beta \mid \beta \text{ is hyperplane}\} \]
Self-dual variety --- see for \(\beta \) (dual \(\beta \)-module);
So \(\beta = \text{Radon}(T \beta) \)

2. Radon \((SSupp(N)) \rightarrow SSupp(\text{Radon}(N)) \)

Under this identification
So Lasser calculates \(SSupp \) of \(\text{Radon}(N) \) using this construction:

In fact, all microlocal/\(\text{Ext} \) below cell under
Radon \(\Rightarrow \) can compute microlocalization of
the Langlands kernels.
η \rightarrow \text{nilpotent} \Rightarrow \text{flag of } F \text{ generically} \\
\Rightarrow \text{flag } \eta \text{ exists}, presented by \eta \in \Gamma (\tau, \eta) \approx \mathbb{C}^{\tau} \\
\eta \text{ has canonical filtration (central series)} \\
\text{gr } \eta \in \mathfrak{g} = \mathfrak{h} / [\mathfrak{h}, \mathfrak{h}] = \mathbb{C}^{\tau} \\
\oplus \mathbb{C} v \text{ vertex of Dynkin diagram} \\
\text{So get invariant of } \eta \text{ when one vertex of Dynkin diagram is deleted labeled by such } v \\
\text{So can formulate generalization of G2 to, say, } \text{to all } G \\
\text{despite lack of direct (natural) } \\
\text{lie in context.} \\
\text{Nice feature of this picture: answer is local, involves only points where } \eta \text{ not regular} \\
\text{might expect such factorization can outside of smooth case, factorization for maps from curve to nilpotent cone, labeled by fundamental weights?} \\
\text{but acts come up naturally for other groups in context of this scheme on } \mathcal{S} \\
\text{supp from local systems?} \\
\text{Answer seemingly independent of choice, such as passage to } \mathbb{P} \\
G_2: \text{fiber of flag locus through generic points has rank } 2. \ \text{Can attempt to write as torsor product of } 35 - 3 = 2 \text{dim vector spaces.} \\
\text{but this is only } 0 \text{ section! No genuine part of nilpotent cone!} \\
\text{Claim is that this picture literally holds} \\
\text{on generic part of nilpotent cone!} \\
\text{Should be related to Whitham flows.} \\
\text{classical catastrophe forms for } G_2 \text{ have multiplicities one.} \\
\text{No such for general } G \text{ in classical catastrophe theory.}
So this suggests a weakly generic locus has some multiplicity are results...

What's the relation to Whittaker series?

Conjecture: generic series on Bun_G with

Whittaker coeff. $= 0$ — does it correlate

with D-twists close singular support misses

weakly generic locus?

4.

Motivic Beilinson

\[
\{\text{Triangulated category of motives}\} \to \{\text{Derived category of Gal E/k - motives}\}
\]

p on normal local system on X, rank n

\[\Rightarrow p \text{ on } Bun_G(n) \]

$F \in Bun_G(n) \Rightarrow (\mathcal{L} p)_F \in \{\text{Derived category of Gal E/k - motives}\}$

(C) If p is “motivic” can we define

\[(\mathcal{L} p)_F \in \{\text{Triangulated category of motives}\} \]

— motivic automorphic reps?

Example of motivic local system: Take mod-k

ell-adic variety over base, almost regular

of good reduction.

More correctly: look at p of Artin type

(finite image representations)

Simplest case: $n = 2$, F rank 2 with half-dual,

Define complex of Galois modules: first

choose sufficiently regular rank 1 subsheaf A

of F \[\Rightarrow \text{Artin algebra of motives, clearly of motives above} \]

\[(\mathcal{L} p)_F \to A \text{ of motives} \]

— need to show independent of choice, for different A. Need issue of complement, maybe some relies.
or complexes defined using standard factors from p so are motive but agonize to show independent of x is not motive in acting uses fact not local systems on P^n/k is constant need motive version of this (basic case P') is any motive local system on P' constant?

Below: Any \mathbb{P}^1 thus a constant local system is constant

For central varieties

case of P': central bundle \Rightarrow Morse Atkin is a moving flag if 2 complex conjugate give full space \Rightarrow rep $P' \rightarrow$ upper half plane ... which must be constant.

$(\mathbb{P})_{/P}$ stacks \(X \xrightarrow{\pi} X \rightarrow P \in C \rightarrow \tilde{C} \)

\(Y_{/P} \) a variety with action of $S_n \times G^n$ (symmetric product of X)

$(\mathbb{P})_{/P} = R^\infty(\mathbb{P}_{/P} \rightarrow \tilde{C})$ - isotype quotient

where p gives rise to $\rho^{(i)} = p \otimes \ldots \otimes p$ rep of $S_n \times G^n$

Motive over \mathbb{A} replace $R^\infty(\cdot \rightarrow \tilde{C})$

by motive of the variety - object of additive category G acts on $Y \Rightarrow$ acts on it; motives get direct sums/molds corresponding to isotypic components. So we have motives associated to J/A

... to show independence of A use description of local systems on P^n, doesn't help us noticeably

Classical version of Atkin's heur: Atkin's formula

for Atkin rep, long as that (polynomial not Laurent polynomial)

(Atkin's conjecture)
Interpretation of Motivic Artin conjecture:
show certain cycle actually reduces to zero for
motivic reasons

\[\text{Motivic Deligne Theorem?} \]

Artin lift to a function field is holographic

Deligne's Theorem: For \(n \geq d(2g-2) \), \(R\mathcal{T}_X(\overline{\mathbb{Q}}) \) vanishes.

Artin lift to a function field is holographic (polyhedral)
almost all coefficients zero,
all coefficients greater than \(c(2g-2) \) are zero.

Deligne shows most coefficients are zero.

\[\text{Deligne: } \mathbb{A} \in \mathbb{P} \overset{\text{Pic}^n X}{\rightarrow} \mathbb{P}^n \]

\[\text{Fiber } (R\mathcal{T}_X(\overline{\mathbb{Q}}))_x = R\mathcal{H}^n(\text{fiber}_{x(\overline{\mathbb{Q}})}, \mathbb{P}^n_{\overline{\mathbb{Q}}}) \]

\[\text{\Rightarrow reformulate on level of fibers: } \mathbb{P} \overset{\text{Pic}^n X}{\rightarrow} X \]

From finite etale cover \(\pi : \tilde{X} \rightarrow X \)
\[\text{Pic}^n(\tilde{X}) \overset{\pi^*}{\rightarrow} \text{Pic}^n(X) \]

\[\text{\Rightarrow smooth for sufficiently generic } \alpha \text{ (in case } 0 \text{ for general reasons, here for all characteristic)} \]

\[(R\mathcal{T}_X(\overline{\mathbb{Q}}))_\alpha = H^n(\tilde{X}(\overline{\mathbb{Q}}), \mathcal{O}_\tilde{X}) \]

\(\sigma \)-isotropic condition

\[\text{Deligne ... this } \sigma \text{-isotypic case is zero.} \]
What is motivic version? to bip o of $\text{Sp} \times C^\times$ there corresponds an element in the

\begin{align*}
\text{group algebra} \quad & G \in \mathcal{E} \quad [H=\text{Sp} \times C^\times] \\
\text{Assume} \quad & (\mathcal{X}^\times)^\text{smooth}
\end{align*}

Deligne ι_o acts trivially on $H^\ast(\mathcal{X}^\times, \mathbb{Q}_\ell)$

- each element in group algebra gives cycle in $Y \times Y$
- where group G acts on variety Y
- so ι_o gives cycle $\iota_o \in \mathcal{X}^\times \times \mathcal{X}^\times$.

Deligne's theorem says ι_o is homologically equivalent to zero.

Q: Is ι_o rationally equivalent to zero?

- would imply acts trivially on motives...
- should follow from standard conjectures, but not clear generally!

Q: If Voevodsky motive has motivic realization H then motive should be zero?

- - follows from some general conjectures
- - implies above.