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Many of the most important problems in mathemat-
ics concern classification. One has a class of math-
ematical objects and a notion of when two objects
should count as equivalent. It may well be that two
equivalent objects look superficially very different, so
one wishes to describe them in such a way that equiv-
alent objects have the same description and inequiva-
lent objects have different descriptions.

Moduli spaces can be thought of as geometric solu-
tions to geometric classification problems. In this arti-
cle we shall illustrate some of the key features of mod-
uli spaces, with an emphasis on the moduli spaces
of Riemann surfaces. (Readers unfamiliar with Rie-
mann surfaces may find it helpful to begin by reading
about them in Part III.) In broad terms, a moduli
problem consists of three ingredients.

Objects: which geometric objects would we like to
describe, or parametrize?

Equivalences: when do we identify two of our
objects as being isomorphic, or “the same”?

Families: how do we allow our objects to vary, or
modulate?

In this article we will discuss what these ingredients
signify, as well as what it means to solve a moduli
problem, and we will give some indications as to why
this might be a good thing to do.

Moduli spaces arise throughout algebraic geom-

etry, differential geometry and algebraic

topology. (Moduli spaces in topology are often
referred to as classifying spaces.) The basic idea is to
give a geometric structure to the totality of the objects
we are trying to classify. If we can understand this geo-
metric structure, then we obtain powerful insights into
the geometry of the objects themselves. Furthermore,
moduli spaces themselves are rich geometric objects in
their own right. They are “meaningful” spaces, in that
any statement about their geometry has a “modular”
interpretation, in terms of the original classification
problem. As a result, when one investigates them one
can often reach much further than one can with other

spaces. Moduli spaces such as the moduli of elliptic

curves (which we discuss below) play a central role
in a variety of areas that have no immediate link to
the geometry being classified, in particular in alge-

braic number theory and algebraic topology.
Moreover, the study of moduli spaces has benefited
tremendously in recent years from interactions with
physics (in particular with string theory). These inter-
actions have led to a variety of new questions and new
techniques.

1 Warmup: The Moduli Space of Lines in
the Plane

Let us begin with a problem that looks rather simple,
but that nevertheless illustrates many of the impor-
tant ideas of moduli spaces.

Problem. Describe the collection of all lines in the
real plane R

2 that pass through the origin.

To save writing, we are using the word “line” to mean
“line that passes through the origin.” This classifica-
tion problem is easily solved by assigning to each line
L an essential parameter, or modulus, a quantity which
we can calculate for each line and which will help us
tell different lines apart. All we have to do is take
standard Cartesian coordinates x, y on the plane and
measure the angle θ(L) between the line L and the x-
axis, taken in counterclockwise fashion. We find that
the possible values of θ are those for which 0 � θ < π,
and that for every such θ there is exactly one line
L that makes an angle of θ with the x-axis. So as a
set, we have a complete solution to our classification
problem: the set of lines L, known as RP

1—the real
projective line—is in one-to-one correspondence with
the half-open interval [0, π).

However, we are seeking a geometric solution to the
classification problem. What does this entail? We have
a natural notion of when two lines are near each other,
which our solution should capture—in other words,
the collection of lines has a natural topology. So
far, our solution does not reflect the fact that lines
L for which the angle θ(L) is close to π are almost
horizontal: they are therefore close to the x-axis (for
which θ = 0) and to the lines L with θ(L) close to
zero. We need to find some way of “wrapping round”
the interval [0, π) so that π becomes close to 0.
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One way to do this is to take not the half-open inter-
val [0, π) but the closed interval [0, π], and then to
“identify” the points 0 and π. (This idea can easily be
made formal by defining an appropriate equivalence

relation.) If π and 0 are regarded as the same, then
numbers close to π are close to numbers close to 0.
This is a way of saying that if you attach the two ends
of a line segment together, then, topologically speak-
ing, you obtain a circle.

A more natural way of achieving the same end is
suggested by the following geometric construction of
RP

1. Consider the unit circle S1 ⊂ R
2. To each point

s ∈ S1, there is an obvious way of assigning a line
L(s): take the line that passes through s and the ori-
gin. Thus, we have a family of lines parametrized by
S1, that is, a map (or function) s �→ L(s) that takes
points in S1 to lines in our set RP

1. What is important
about this is that we already know what it means for
two points in S1 to be close to each other, and the
map s �→ L(s) is continuous. However, this map is
a two-to-one function rather than a bijection, since s

and −s always give the same line. To remedy this, we
can identify each s in the circle S1 with its antipo-
dal point −s. We then have a one-to-one correspon-
dence between RP

1 and the resulting quotient space
(which again is topologically a circle), and this corre-
spondence is continuous in both directions.

The key feature of the space RP
1, considered as the

moduli space of lines in the plane, is that it captures
the ways in which lines can modulate, or vary contin-
uously in families. But when do families of lines arise?
A good example is provided by the following construc-
tion. Whenever we have a continuous curve C ⊂ R

2 \0
in the plane, we can assign to each point c in C the
line L(c) that passes through 0 and c. This gives us a
family of lines parametrized by C. Moreover, the func-
tion that takes c to L(c) is a continuous function from
C to RP

1—so the parametrization is a continuous one.
Suppose, for example, that C is a copy of R real-

ized as the set of points (x, 1) at height 1. Then the
map from C to RP

1 gives an isomorphism between R

and the set {L : θ(L) �= 0}, which is the subset of
RP

1 consisting of all lines apart from the x-axis. Put
more abstractly, we have an intuitive notion of what
it means for a collection of lines through the origin
to depend continuously on some parameters, and this
notion is captured precisely by the geometry of RP

1:

for instance, if someone tells me they have a contin-
uous 37-parameter family of lines in R

2, this is the
same as saying that they have a continuous map from
R

37 to RP
1, which sends a point v ∈ R

37 to a line
L(v) ∈ RP

1. (More concretely, we could say that the
real function v �→ θ(L(v)) on R

37 is continuous away
from the locus where θ is close to π. Near this locus
we could use instead the function φ that measures the
angle from the y-axis.)

1.1 Other Families

The idea of families of lines leads to various other geo-
metric structures on the space RP

1, and not just its
topological structure. For example, we have the notion
of a differentiable family of lines in the plane, which
is a family of lines for which the angles vary differen-
tiably. (The same ideas apply if we replace “differen-
tiable” by “measurable,” “C∞,” “real analytic,” etc.)
To parametrize such a family appropriately, we would
like RP

1 to be a differentiable manifold, so that we
can calculate derivatives of functions on it. Such a
structure on RP

1 can be specified by using the angle
functions θ and φ defined in the previous section. The
function θ gives us a coordinate for lines that are not
too close to the x-axis, and φ gives us a coordinate for
lines that are not too close to the y-axis. We can cal-
culate derivatives of functions on RP

1 by writing them
in terms of these coordinates. One can justify this dif-
ferentiable structure on RP

1 by checking that for any
differentiable curve C ⊂ R

2 \ 0 the map c �→ L(c)
comes out as differentiable. This means that if L(c) is
not close to the x-axis, then the function x �→ θ(L(x))
is differentiable at x = c, and similarly for φ and the
y-axis. The functions x �→ θ(L(x)) and �→ φ(L(x)) are
called pullbacks, because they are the result of convert-
ing, or “pulling back,” θ and φ from functions defined
on RP

1 to functions defined on C.
We now can state the fundamental property of RP

1

as a differentiable space.

A differentiable family of lines in R
2 parametrized by a

differentiable manifold X is the same thing as a func-
tion from X to RP

1, taking a point x to a line L(x),
such that the pullbacks x �→ θ(L(x)) and x �→ φ(L(x))
of the functions θ, φ are differentiable functions.

We say that RP
1 (with its differentiable structure) is

the moduli space of (differentiably varying families of)
lines in R

2. This means that RP
1 carries the universal
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differentiable family of lines. From the very definition,
we have assigned to each point of RP

1 a line in R
2,

and these lines vary differentiably as we vary the point.
The above assertion says that any differentiable family
of lines, parametrized by a space X, is described by
giving a map f : X → RP

1 and assigning to x ∈ X

the line L(f(x)).

1.2 Reformulation: Line Bundles

It is interesting to reformulate the notion of a (contin-
uous or differentiable) family of lines as follows. Let
X be a space and let x �→ L(x) be an assignment of
lines to points in X. For each point x ∈ X, we place
a copy of R

2 at x; in other words, we consider the
Cartesian product X × R

2. We may now visualize the
line L(x) as living in the copy of R

2 that lies over
x. This gives us a continuously varying collection of
lines L(x) parametrized by x ∈ X, otherwise known
as a line bundle over X. Moreover, this line bundle
is embedded in the “trivial” vector bundle X × R

2,
which is the constant assignment that takes each x to
the plane R

2. In the case when X is RP
1 itself, we have

a “tautological” line bundle: to each point s ∈ RP
1,

which we can think of as a line Ls in R
2, it assigns

that very same line Ls.

Proposition. For any topological space X there is a
natural bijection between the following two sets:

(i) the set of continuous functions f : X → RP
1;

and
(ii) the set of line bundles on X that are contained

in the trivial vector bundle X × R
2.

This bijection sends a function f to the correspond-
ing pullback of the tautological line bundle on RP

1.
That is, the function f is mapped to the line bundle
x �→ Lf(x). (This is a pullback, because it converts L

from a function defined on RP
1 to a function defined

on X.)

Thus, the space RP
1 carries the universal line bun-

dle that sits in the trivial R
2 bundle—any time we

have a line bundle sitting in the trivial R
2 bundle, we

can obtain it by pulling back the universal (tautologi-
cal) example on RP

1. (Vector bundles are discussed
in more detail in Part III.)

1.3 Invariants of Families

Associated with any continuous function f from the
circle S1 to itself is an integer known as its degree.
Roughly speaking, the degree of f is the number of
times f(x) goes round the circle when x goes round
once. (If it goes backwards n times, then we say that
the degree is −n.) Another way to think of the degree
is as the number of times a typical point in S1 is passed
by f(x) as x goes round the circle, where we count this
as +1 if it is passed in the counterclockwise direction
and −1 if it is passed in the clockwise direction.

Earlier, we showed that the circle S1, which we
obtained by identifying the end points of the closed
interval [0, π], could be used to parametrize the mod-
uli space RP

1 of lines. Combining this with the notion
of degree, we can draw some interesting conclusions. In
particular, we can define its so-called “winding num-
ber.” Suppose that we are given a continuous function
γ from the circle S1 into the plane R

2 and suppose that
it avoids 0. The image of this map will be a closed loop
C (which may cross itself). This defines for us a map
from S1 to itself: first do γ to obtain a point c in C,
then work out L(c), which belongs to RP

1, and finally
use the parametrization of RP

1 to associate with L(c)
a point in S1 again. The degree of the resulting com-
posite map will be twice the number of times that γ,
and hence C, winds around 0, so half this number is
defined to be the winding number of γ.

More generally, given a family of lines in R
2

parametrized by some space X, we would like to mea-
sure the “manner in which X winds around the circle.”
To be precise, given a function φ from X to RP

1, which
defines the parametrized family of lines, we would like
to be able to say, for any map f : S1 → X, what
the winding number is of the composition φf , which
takes a point x in S1 to its image f(x) in X and from
there to the corresponding line φ(f(x)) in the fam-
ily. Thus, the map φ gives us a way of assigning to
each function f : S1 → X an integer, the winding
number of φf . The way this assignment works does
not change if φ is continuously deformed: that is, it
is a topological invariant of φ. What it does depend
on is the class that φ belongs to in the first cohom-

ology group of X, H1(X, Z). Equivalently, to any
line bundle on a space X which is contained in the
trivial R

2-bundle, we have associated a cohomology
class, known as the Euler class of the bundle. This
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is the first example of a characteristic class for vec-
tor bundles. It demonstrates that if we understand
the topology of moduli spaces of classes of geometric
objects, then we can define topological invariants for
families of those objects.

2 The Moduli of Curves and Teichmüller
Spaces

We now turn our attention to perhaps the most
famous examples of moduli spaces, the moduli spaces
of curves, and their first cousins, the Teichmüller
spaces. These moduli spaces are the geometric solution
to the problem of classification of compact Riemann
surfaces, and can be thought of as the “higher theory”
of Riemann surfaces. The moduli spaces are “mean-
ingful spaces,” in that each of their points stands for
a Riemann surface. As a result, any statement about
their geometry tells us something about the geometry
of Riemann surfaces.

We turn first to the objects. Recall that a Riemann
surface is a topological surface X (connected and ori-
ented) to which a complex structure has been given.
Complex structures can be described in many ways,
and they enable us to do complex analysis, geom-
etry, and algebra on the surface X. In particular, they
enable us to define holomorphic (complex-analytic)
and meromorphic functions on open subsets of X.
To be precise, X is a two-dimensional manifold, but
the charts are thought of as open subsets of C rather
than of R, and the maps that glue them together
are required to be holomorphic. An equivalent notion
is that of a conformal structure on X, which is the
structure needed to make it possible to define angles
between curves in X. Yet another important equiva-
lent notion is that of algebraic structure on X, mak-
ing X into a complex-algebraic curve (leading to the
persistent confusion in terminology: a Riemann sur-
face is two dimensional, and therefore a surface, from
the point of view of topology or the real numbers,
but one dimensional, and therefore a curve, from the
point of view of complex analysis and algebra). An
algebraic structure is what allows us to speak of poly-
nomial, rational, or algebraic functions on X, and is
usually specified by realizing X as the set of solutions
to polynomial equations in complex projective space
CP

2 (or CP
n).

In order to speak of a classification problem, let
alone a moduli space, for Riemann surfaces we must
next specify when we regard two Riemann surfaces
as equivalent. (We postpone the discussion of the
final ingredient, the notion of families of Riemann
surfaces, to Section 2.2.) To do this, we must give
a notion of isomorphism between Riemann surfaces:
when should two Riemann surfaces X and Y be iden-
tified, or thought of as giving two equivalent realiza-
tions of the same underlying object of our classifica-
tion? This issue was hidden in our toy example of
classifying lines in the plane: there we simply iden-
tified two lines if and only if they were equal as lines
in the plane. This naive option is not available to us
with the more abstractly defined Riemann surfaces.
If we considered Riemann surfaces realized concretely
as subsets of some larger space—for example, as solu-
tion sets to algebraic equations in complex projective
space—we could similarly choose to identify surfaces
only if they were equal as subsets. However, this is
too fine a classification for most applications—what
we care about is the intrinsic geometry of Riemann
surfaces, and not incidental features that result from
the particular way we choose to realize them.

At the other extreme, we might choose to ignore
the extra geometric structure that makes a surface
into a Riemann surface. That is, we could identify
two Riemann surfaces X and Y if they are topologi-
cally equivalent, or homeomorphic (the “coffee mug is
a doughnut” perspective). The classification of com-
pact Riemann surfaces up to topological equivalence
is captured by a single positive integer, the genus g

(“number of holes”) of the surface. Any surface of
genus zero is homeomorphic to the Riemann sphere
CP

1 � S2, any surface of genus one is homeomorphic
to a torus S1×S1, and so on. Thus, in this case there is
no issue of “modulation”—the classification is solved
by giving a list of possible values of a single discrete
invariant.

However, if we are interested in Riemann surfaces
as Riemann surfaces rather than simply as topological
manifolds, then this classification is too crude: it com-
pletely ignores the complex structure. We would now
like to refine our classification to remedy this defect.
To this end, we say that two Riemann surfaces X and
Y are (conformally, or holomorphically) equivalent if
there is a topological equivalence between them that
preserves the geometry, i.e., a homeomorphism that
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preserves the angles between curves, or takes holo-
morphic functions to holomorphic functions, or takes
rational functions to rational functions. (These con-
ditions are all equivalent.) Note that we still have at
our disposal our discrete invariant—the genus of a sur-
face. However, as we shall see, this invariant is not fine
enough to distinguish between all inequivalent Rie-
mann surfaces. In fact, it is possible to have families of
inequivalent Riemann surfaces that are parametrized
by continuous parameters (but we cannot make proper
sense of this idea until we have said precisely what is
meant by a family of Riemann surfaces). Thus, the
next step is to fix our discrete invariant and to try to
classify all the different isomorphism classes or Rie-
mann surfaces with the same genus by assembling
them in a natural geometric fashion.

An important step towards this classification is the
uniformization theorem. This states that any simply

connected Riemann surface is holomorphically iso-
morphic to one of the following three: the Riemann
sphere CP

1, the complex plane C, or the upper half-
plane H (equivalently, the unit disc D). Since the uni-

versal covering space of any Riemann surface is
a simply connected Riemann surface, the uniformiza-
tion theorem provides an approach to classifying arbi-
trary Riemann surfaces. For instance, any compact

Riemann surface of genus zero is simply connected,
and in fact homeomorphic to the Riemann sphere, so
the uniformization theorem already solves our classifi-
cation problem in genus zero: up to equivalence, CP

1

is the only Riemann surface of genus zero, and so in
this case the topological and conformal classifications
agree.

2.1 Moduli of Elliptic Curves

Next, we consider Riemann surfaces whose universal
cover is C, which is the same as saying that they are
quotients of C. For example, we can look at a quotient
of C by Z, which means that we regard two complex
numbers z and w as equivalent if z − w is an integer.
This has the effect of “wrapping C round” into a cylin-
der. Cylinders are not compact, but to get a compact
surface we could take a quotient by Z

2 instead: that
is, we could regard z and w as equivalent if their dif-
ference is of the form a + bi, where a and b are both
integers. Now C is wrapped round in two directions
and the result is a torus with a complex (or, equiv-
alently, conformal or algebraic) structure. This is a

compact Riemann surface of genus one. More gener-
ally, we can replace Z

2 by any lattice L, regarding z

and w as equivalent if z − w belongs to L. (A lattice
L in C is an additive subgroup of C with two proper-
ties. First, it is not contained in any line. Second, it is
discrete, which means that there is a constant d > 0
such that the distance between any two points in L is
at least d. Lattices are also discussed in Section ?? of
The General Goals of Mathematical Research

in Part I. A basis for a lattice L is a pair of complex
numbers u and v belonging to L such that every z in
L can be written in the form au + bv with a and b

integers. Such a basis will not be unique: for example,
if L = Z ⊕ Z, then the obvious basis is u = 1 and
v = i, but u = 1 and v = 1 + i would do just as well.)
If we take a quotient of C by a lattice, then we again
obtain a torus with complex structure. It turns out
that any compact Riemann surface of genus one can
be produced in this way.

From a topological point of view, any two tori are
the same, but once we consider the complex structure
we start to find that different choices of lattice may
lead to different Riemann surfaces. Certain changes to
L do not have an effect: for example, if we multiply
a lattice L by some nonzero complex number λ, then
the quotient surface C/L will not be affected. That is,
C/L is naturally isomorphic to C/λL. Therefore, we
need only worry about the difference between lattices
when one is not a multiple of the other. Geometrically,
this says that one cannot be obtained from the other
by a combination of rotation and dilation.

Notice that by taking the quotient C/L we obtain
not just a “naked” Riemann surface, but one equipped
with an “origin”—a distinguished point e ∈ E, which
is the image of the origin 0 ∈ C—in other words, an
elliptic curve:

Definition. An elliptic curve (over C) is a Riemann
surface E of genus one, equipped with a marked point
e ∈ E. Elliptic curves, up to isomorphism, are in bijec-
tion with lattices L ⊂ C up to rotation.

Remark. In fact, since L ⊂ C is a subgroup of the
Abelian group C, the elliptic curve E = C/L is nat-
urally an Abelian group, with e as its identity ele-
ment. This is an important motivation for keeping e

as part of the data that defines an elliptic curve. A
more subtle reason for remembering the location of e

when we speak of E is that it helps us to define E more
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uniquely. This is useful, because any surface E of genus
one has lots of symmetries, or automorphisms: there is
always a holomorphic automorphism of E taking any
point x to any other given point y. (If we think of E as
a group, these are achieved by translations.) Thus, if
someone hands us another genus-one surface E′, there
may be no way to identify E and E′, or there may be
infinitely many ways: we can always compose a given
isomorphism between them with a self-symmetry of E.
As we will discuss later, automorphisms haunt almost
every moduli problem, and are crucial when we con-
sider the behavior of families. It is usually convenient
to “rigidify” the situation somewhat, so that the pos-
sible isomorphisms between different objects are less
“floppy” and more uniquely determined. In the case
of elliptic curves, distinguishing the point e achieves
this by reducing the symmetry of E. Once we do that,
there is usually at most one way to identify two elliptic
curves (one way, that is, that takes origin to origin).

We see that Riemann surfaces of genus one (with
the choice of a marked point) can be described by con-
crete “linear algebra data”: a lattice L ⊂ C, or rather
the equivalence class consisting of all nonzero scalar
multiples λL of L. This is the ideal setting to study
a classification, or moduli, problem. The next step is
to find an explicit parametrization of the collection
of all lattices, up to multiplication, and to decide in
what sense we have obtained a geometric solution to
the classification problem.

In order to parametrize the collection of lattices, we
follow a procedure used for all moduli problems: first
parametrize lattices together with the choice of some
additional structure, and then see what happens when
we forget this choice. For every lattice L we choose a
basis ω1, ω2 ∈ L: that is, we represent L as the set
of all integer combinations aω1 + bω2. We do this in
an oriented fashion: we require that the fundamental
parallelogram spanned by ω1 and ω2 is positively ori-
ented. (That is, the numbers 0, ω1, ω1+ω2, and ω2 list
the vertices of the parallelogram in an counterclock-
wise order. From the geometric point of view of the
elliptic curve E, L is the fundamental group of E,
and the orientation condition says that we generate L

by two loops, or “meridians,” A = ω1, B = ω2, which
are oriented, in that their oriented intersection num-
ber A∩B is equal to +1 rather than −1.) Since we are
interested in lattices only up to multiplication, we can

multiply L by a complex number so as to turn ω1 into
1 and hence ω2 into ω = ω2/ω1. The orientation condi-
tion now says that ω is in the upper half-plane H, i.e.,
its imaginary part is positive, Im ω > 0. Conversely,
any complex number ω ∈ H in the upper half-plane
determines a unique oriented lattice L = Z1 ⊕ Zω—
that is, the set of all integer combinations a + bω of 1
and ω—and no two of these lattices are related by a
rotation.

What does this tell us about elliptic curves? We saw
earlier that an elliptic curve is defined by a lattice L

and an identity e. Now we have seen that if we give L

some extra structure, namely an oriented basis, then
we can parametrize it by a complex number ω ∈ H.
This makes precise for us the “additional structure”
that we want to place on elliptic curves. We say that a
marked elliptic curve is an elliptic curve E, e together
with the choice of an oriented basis ω1, ω2 for the asso-
ciated lattice (fundamental group) L of E. The point
is that any lattice has infinitely many different bases,
which lead to many automorphisms of E. By “mark-
ing” one of these bases, we stop them being automor-
phisms.

2.2 Families and Teichmüller Space

With our new definition, we can summarize the earlier
discussion by saying that marked elliptic curves are in
bijection with points ω ∈ H of the upper half-plane.
The upper half-plane is, however, much more than just
a set of points: it carries a host of geometric structures,
in particular a topology and a complex structure. In
what sense do these structures reflect geometric prop-
erties of marked elliptic curves? In other words, in
what sense is the complex manifold H, known in this
context as the Teichmüller space T1,1 of genus-one
Riemann surfaces with one marked point, a geometric
solution to the problem of classifying marked elliptic
curves?

In order to answer this question, we need the notion
of a continuous family of Riemann surfaces, and also
the notion of a complex-analytic family. A continuous
family of Riemann surfaces parametrized by a topo-
logical space S—for example, by the circle S1—is the
assignment of a Riemann surface Xs to every point s

of S, which “varies continuously.” In our example of
the moduli of lines in the plane, a continuous family of
lines was characterized by the property that the angles
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between the lines and the x- or y-axes defined continu-
ous functions of the parameters. Geometrically defined
collections of lines, such as those produced by a curve
C in the plane, then gave rise to continuous families.
More abstractly, a continuous family of lines defined a
line bundle over the parameter space. A good criterion
for a family of Riemann surfaces is likewise that any
“reasonably defined” geometric quantity that we can
calculate for every Riemann surface should vary con-
tinuously in the family. For example, a classical con-
struction of Riemann surfaces of genus g comes from
taking 4g-gons and gluing opposite sides together. The
resulting Riemann surface is fully determined by the
edge-lengths and angles of the polygon. Therefore, a
continuous family of Riemann surfaces described in
this fashion should be precisely a family such that the
edge-lengths and angles give continuous functions of
the parameter set.

In more abstract topological terms, if we have a col-
lection {Xs, s ∈ S} of Riemann surfaces depending on
points in a space S and we wish to make it into a con-
tinuous family, then we should give the union

⋃
s∈S Xs

itself the structure of a topological space X , which
should simultaneously extend the topology on each
individual Xs. The result is called a Riemann surface
bundle. Associated with X is the map that takes each
point x to the particular s for which x belongs to Xs.
We should demand that this map is continuous, and
perhaps more (it could be a fibration, or fiber bundle).
This definition has the advantage of great flexibility.
For example, if S is a complex manifold, then in just
the same way we can speak of a complex-analytic fam-
ily of Riemann surfaces {Xs, s ∈ S} parametrized by
S: now we ask for the union of the Xs to carry not just
a topology but a complex structure (i.e., it should form
a complex manifold), extending the complex struc-
ture on the fibers and mapping holomorphically to
the parameter set. The same holds with “complex-
analytic” replaced by “algebraic.” These abstract def-
initions have the property that if our Riemann surfaces
are described in a concrete way—cut out by equa-
tions, glued from coordinate patches, etc.—then the
coefficients of our equations or gluing data will vary
as complex-analytic functions in our family precisely
when the family is complex analytic (and likewise for
continuous or algebraic families).

As a reality check, note that a (continuous, analytic,
or other) family of Riemann surfaces parametrized by

a single point s = S is indeed just a single Riemann
surface Xs. Just as in this simple case we wish to
consider Riemann surfaces only up to equivalence, so
there is a notion of equivalence or isomorphism of two
analytic families {Xs} and {X ′

s} parametrized by the
same space S. We simply regard the families as equiva-
lent if the surfaces Xs and X ′

s are isomorphic for every
s, and if the isomorphism depends analytically on s.

Armed with the notion of family, we can now formu-
late the characteristic property that the upper half-
plane possesses when we think of it as the moduli
space of marked elliptic curves. We define a contin-
uous or analytic family of marked elliptic curves to
be a family where the underlying genus-one surfaces
vary continuously or analytically, while the choice of
basepoint es ∈ Es and the basis of the lattice Ls vary
continuously.

The upper half-plane H plays a role for marked ellip-
tic curves that is similar to the role played by RP

1 for
lines in the plane. The following theorem makes this
statement precise.

Theorem. For any topological space S, there is a one-
to-one correspondence between continuous maps from
S to H and isomorphism classes of continuous families
of marked elliptic curves parametrized by S. Similarly,
there is a one-to-one correspondence between analytic
maps from any complex manifold S to H and isomor-
phism classes of analytic families of marked elliptic
curves parametrized by S.

If we apply the theorem in the case where S is a sin-
gle point, it simply tells us that the points of H are in
bijection with the isomorphism classes of marked ellip-
tic curves, as we already knew. However, it contains
more information: it says that H, with its topology and
complex structure, embodies the structure of marked
elliptic curves and the ways in which they can modu-
late. At the other extreme, we could take S = H itself,
mapping S to H by the identity map. This expresses
the fact that H itself carries a family of marked elliptic
curves, i.e., the collection of Riemann surfaces defined
by ω ∈ H fit together into a complex manifold fibering
over H with elliptic curve fibers. This family is called
the universal family, since by the theorem any family
is “deduced” (or pulled back) from this one universal
example.
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2.3 From Teichmüller Space to Moduli
Space

We have arrived at a complete and satisfying picture
for the classification of elliptic curves when we choose
in addition a marking (that is, an oriented basis of
the associated lattice L = π1(E)). What can we say
about elliptic curves themselves, without the choice of
marking? We somehow need to “forget” the marking,
by regarding two points of H as equivalent if they cor-
respond to two different markings of the same elliptic
curve.

Now, given any two bases of the group (or lattice)
Z ⊕ Z, there is an invertible 2 × 2 matrix with integer
entries that takes one basis to the other. If the two
bases are oriented, then this matrix will have determi-
nant 1, which means that it is an element

A =

(
a b

c d

)
∈ SL2 Z

of the group of invertible unimodular matrices over Z.
Similarly, given any two oriented bases (ω1, ω2) and
(ω′

1, ω
′
2) of a lattice L, which can be thought of as

oriented identifications of L with Z ⊕ Z, there is a
matrix A ∈ SL2 Z such that ω′

1 = aω1 + bω2 and ω′
2 =

cω1 + dω2. If we now consider the normalized bases
(1, ω) and (1, ω′), where ω = ω1/ω2 and ω′ = ω′

1/ω′
2,

then we obtain a transformation of the upper half-
plane. It is given by the formula

ω′ =
aω + b

cω + d
.

That is, the group SL2 Z is acting on the upper half-
plane by linear fractional (or Möbius) transformations
with integer coefficients, and two points in the upper
half-plane correspond to the same elliptic curve if one
can be turned into the other by means of such a trans-
formation. If this is the case, then we should regard
the two points as equivalent: that is how we formalize
the idea of “forgetting” the marking. Note also that
the scalar matrix − Id in SL2 Z, which negates both ω1

and ω2, acts trivially on the upper half-plane, so that
we in fact get an action of PSL2 Z = SL2 Z/{± Id} on
H.

So we come to the conclusion that elliptic curves
(up to isomorphism) are in bijection with orbits of
PSL2 Z on the upper half-plane, or equivalently with
points of the quotient space H/ PSL2 Z. This quotient
space has a natural quotient topology, and in fact can

be given a complex-analytic structure, which, it turns
out, identifies it with the complex plane C itself. To see
this one uses the classical modular function j(z),
a complex-analytic function on H which is invariant
under the modular group PSL2 Z and which therefore
defines a natural coordinate H/ PSL2 Z → C.

It appears that we have solved the moduli problem
for elliptic curves: we have a topological, and even
complex-analytic, space M1,1 = H/ PSL2 Z whose
points are in one-to-one correspondence with isomor-
phism classes of elliptic curves. This already qualifies
M1,1 as the coarse moduli space for elliptic curves,
which means it is as good a moduli space as we can
hope for. However, M1,1 fails an important test for
a moduli space that T1,1 passed (as we saw in Sec-
tion 2.2): it is not true, even for the circle S = S1,
that every continuous family of elliptic curves over S

corresponds to a map from S to M1,1.
The reason for this failure is the problem of auto-

morphisms. These are equivalences from E to itself,
that is, complex-analytic maps from E to E that pre-
serve the basepoint e. Equivalently, they are given by
complex-analytic self-maps of C that preserve 0 and
the lattice L. Such a map must be a rotation: that is,
multiplication by some complex number λ of modu-
lus 1. It is easy to check that for most lattices L in
the plane, the only rotation that sends L to itself is
multiplication by λ = −1. Note that this is the same
−1 that we quotiented out by to pass from SL2 Z to
PSL2 Z. However, there are two special lattices that
have greater symmetry. These are the square lattice
L = Z · 1 ⊕ Z · i, corresponding to the fourth root of
unity i, and the hexagonal lattice L = Z · 1 ⊕ Z · e2πi/6,
corresponding to a sixth root of unity. (Note that
the hexagonal lattice is also represented by the point
ω = e2πi/3.) The square lattice, which corresponds to
the elliptic curve formed by gluing the opposite sides
of a square, has as its symmetries the group Z/4Z of
rotational symmetries of the square. The hexagonal
lattice, which corresponds to the elliptic curve formed
by gluing the opposite sides of a regular hexagon, has
as its symmetries the group Z/6Z of rotational sym-
metries of a hexagon.

We see that the number of automorphisms of an
elliptic curve jumps discontinuously at the special
points ω = i and ω = e2πi/6. This already suggests
that something might be wrong with M1,1 as a mod-
uli space. Note that we avoided this problem with
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the moduli T1,1 of marked elliptic curves, since there
are no automorphisms of an elliptic curve that also
preserve the marking. Another place we might have
observed this problem with M1,1 is when we passed
to the quotient H/ PSL2 Z. We avoided the automor-
phism λ = −1 by quotienting by PSL2 Z rather than
SL2 Z. However, the two special points i and e2πi/6

are preserved by integer Möbius transformations of H

other than the identity, and they are the only points
with that property. This means that the quotient
H/ PSL2 Z naturally comes with conical singularities
at the points corresponding to these two orbits: one
looks like a cone with angle π, and the other like a cone
with angle 2

3π. (To see why this is plausible, imag-
ine the following simpler instance of the same phe-
nomenon. If for every complex number z you identify
z with −z, then the result is to wrap the complex plane
round into a cone with a singularity at 0. The reason
0 is singled out is that it is preserved by the transfor-
mation z �→ −z. Here the angle would be π because
the identification of points is two-to-one away from
the singularity and π is half of 2π.) It is possible to
massage these singularities away using the j-function,
but they are indicating a basic difficulty.

So why do automorphisms form an obstacle to the
existence of “good” moduli spaces? We can demon-
strate the difficulty by considering an interesting con-
tinuous family of marked elliptic curves parametrized
by the circle S = S1. Let E(i) be the “square” elliptic
curve that we considered earlier, based on the lattice
of integer combinations of 1 and i. Next, for every t

between 0 and 1, let Et be a copy of E(i). Thus, we
have taken the constant, or “trivial,” family of elliptic
curves over the closed unit interval [0, 1], where every
curve in the family is E(i). Now we identify the ellip-
tic curves at the two ends of this family, not in the
obvious way, but by using the automorphism given by
a 90◦ rotation, or multiplication by i. This means that
we are looking at the family of elliptic curves over the
circle where each member of the family is a copy of
the elliptic curve E(i), but these copies twist by 90◦

as we go around the circle.
It is easy to see that there is no way to capture this

family of elliptic curves by means of a map from S1 to
the space M1,1. Since all of the members of the family
are isomorphic, each point of the circle should map to
the same point in M1,1 (the equivalence class of i in
H). But the constant map S1 → {i} ∈ M1,1 classifies

the trivial family S1×Ei of elliptic curves over S1, that
is, the family where every curve is equal to E(i) but
the curves do not twist as we go around! Thus, there
are more families of elliptic curves than there are maps
to M1,1—the quotient space H/ PSL2 Z cannot handle
the complications caused by automorphisms. A vari-
ant of this construction applies to complex-analytic
families with S1 replaced by C

×. This is a very general
phenomenon in moduli problems: whenever objects
have nontrivial automorphisms, we can imitate the
construction above to get nontrivial families over an
interesting parameter set, all of whose members are
the same. As a result, they cannot be classified by a
map to the set of all isomorphism classes.

What do we do about this problem? One approach
is to resign ourselves to having coarse moduli spaces,
which have the right points and right geometry but do
not quite classify arbitrary families. Another approach
is the one that leads to T1,1: we can fix markings of
one kind or another, which “kill” all automorphisms.
In other words, we choose enough extra structure on
our objects so that there do not remain any (nontriv-
ial) automorphisms that preserve all this decoration.
In fact, one can be far more economical than picking
a basis of the lattice L and obtaining the infinite cov-
ering T1,1 of M1,1: one can fix a basis of L only up to
some congruence (for example, of L/2L). Finally, we
can simply learn to come to terms with the automor-
phisms, keeping them as part of the data, resulting
in “spaces” where points have internal symmetries.
This is the notion of an orbifold, or stack, which
is flexible enough to deal with essentially all moduli
problems.

3 Higher-Genus Moduli Spaces and
Teichmüller Spaces

We would now like to generalize as much as possi-
ble of the picture of elliptic curves and their mod-
uli to higher-genus Riemann surfaces. For each g we
would like to define a space Mg, called the mod-
uli space of curves of genus g, that classifies com-
pact Riemann surfaces of genus g and tells us how
they modulate. Thus, the points of Mg should cor-
respond to our objects, compact Riemann surfaces of
genus g, or, to be more accurate, equivalence classes
of such surfaces, where two surfaces are considered
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to be equivalent if there is a complex-analytic iso-
morphism between them. In addition, we would like
Mg to do the best it can to embody the structure
of continuous families of genus-g surfaces. Likewise,
there are spaces Mg,n parametrizing “n-punctured”
Riemann surfaces of genus g. This means we consider
not “bare” Riemann surfaces, but Riemann surfaces
together with a “decoration” or “marking” by n dis-
tinct labeled points (punctures). Two of these are con-
sidered to be equivalent if there is a complex-analytic
isomorphism between them that takes punctures to
punctures and preserves labels. Since there are Rie-
mann surfaces with automorphisms, we do not expect
Mg to be able to classify all families of Riemann sur-
faces: that is, we will expect examples similar to the
twisted square-lattice construction discussed earlier.
However, if we consider Riemann surfaces with enough
extra markings, then we will be able to obtain a mod-
uli space in the strongest sense. One way to choose
such markings is to consider Mg,n with n large enough
(for fixed g). Another approach will be to mark gen-
erators of the fundamental group, leading to the
Teichmüller spaces Tg and Tg,n. We now outline this
process.

To construct the space Mg, we return to the uni-
formization theorem. Any compact surface X of genus
g > 1 has as its universal cover the upper half-plane H,
so it is represented as a quotient X = H/Γ , where Γ

is a representation of the fundamental group of X as a
subgroup of conformal self-maps of H. The group of all
conformal automorphisms of H is PSL2 R, the group
of linear fractional transformations with real coeffi-
cients. The fundamental groups of all compact genus-
g Riemann surfaces are isomorphic to a fixed abstract
group Γg, with 2g generators Ai, Bi (i = 1, . . . , g)
and one relation: that the product of all commutators
AiBiA

−1
i B−1

i is the identity. A subgroup Γ ⊂ PSL2 R

that acts on H in such a way that the quotient H/Γ

is a Riemann surface (technically, the action should
have no fixed points and should be properly discon-
tinuous) is known as a Fuchsian group. Thus, the
analog of the representation of elliptic curves by lat-
tices L � Z ⊕ Z in the plane is the representation of
higher-genus Riemann surfaces as H/Γ , where Γ is a
Fuchsian group.

The Teichmüller space Tg of genus-g Riemann sur-
faces is the space that solves the moduli problem
for genus-g surfaces, when they come with a mark-

ing of their fundamental group. This means that our
objects are genus-g surfaces X plus a set of generators
Ai, Bi of π1(X), which give an isomorphism between
π1(X) and Γg, up to conjugation.1 Our equivalences
are complex-analytic maps that preserve the mark-
ings. Finally, our continuous (respectively, complex-
analytic) families are continuous (complex-analytic)
families of Riemann surfaces with continuously vary-
ing markings of the fundamental group. In other
words, we are asserting the existence of a topological
space/complex manifold Tg, with a complex-analytic
family of marked Riemann surfaces over it, and the
following strong property.

The characteristic property of Tg. For any topo-
logical space (respectively, complex manifold) S, there
is a bijection between continuous maps (respectively,
holomorphic maps) S → Tg and isomorphism classes
of continuous (respectively, complex-analytic) families
of marked genus-g surfaces parametrized by S.

3.1 Digression: “Abstract Nonsense”

It is interesting to note that, while we have yet to see
why such a space exists, it follows from general, non-
geometric principles—category theory or “abstract
nonsense”—that it is completely and uniquely deter-
mined, both as a topological space and as a com-
plex manifold, by this characteristic property. In a
very abstract way, every topological space M can be
uniquely reconstructed from its set of points, the set
of paths between these points, the set of surfaces span-
ning these paths, and so on. To put it differently, we
can think of M as a “machine” that assigns to any
topological space S the set of continuous maps from S

to M . This machine is known as the “functor of points
of M .” Similarly, a complex manifold M provides a
machine that assigns to any other complex manifold S

the set of complex-analytic maps from S to M . A curi-
ous discovery of category theory (the Yoneda lemma)
is that for very general reasons (having nothing to do
with geometry), these machines (or functors) uniquely
determine M as a space, or a complex manifold.

1. Note that while the fundamental group of X depends on the
choice of a basepoint, π1(X, x) and π1(X, y) may be identified by
choosing a path from x to y, and the different choices are related
by conjugation by a loop. Thus, if we are willing to identify sets of
generators Ai, Bi when they differ only by a conjugation, then we
can ignore the choice of a basepoint.
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Any moduli problem in the sense we have described
(giving objects, equivalences, and families) also gives
such a machine, where to S we assign the set of all
families over S, up to isomorphism. So just by set-
ting up the moduli problem we have already uniquely
determined the topology and complex structure on
Teichmüller space. The interesting part then is to
know whether or not there actually exists a space giv-
ing rise to the same machine we have constructed,
whether we can construct it explicitly, and whether we
can use its geometry to learn interesting facts about
Riemann surfaces.

3.2 Moduli Spaces and Representations

Coming back to earth, we discover that we have a
fairly concrete model of Teichmüller space at our dis-
posal. Once we have fixed the marking π1(X) � Γg,
we are simply looking at all ways to represent Γg as
a Fuchsian subgroup of PSL2 R. Ignoring the Fuch-
sian condition for a moment, this means finding 2g

real matrices (up to ± Id) Ai, Bi ∈ PSL2 R satisfying
the commutator relation of Γg. This gives an explicit
set of (algebraic!) equations for the entries of the 2g

matrices, which determine the space of all represen-
tations Γg → PSL2 R. We must now quotient out by
the action of PSL2 R that simultaneously conjugates
all 2g matrices to obtain the representation variety
Rep(Γg, PSL2 R). This is analogous to considering lat-
tices in C up to rotation, and is motivated by the fact
that the quotients of H by two conjugate subgroups of
PSL2 R will be isomorphic.

Once we have described the space of all represen-
tations of Γg into PSL2 R, we can then single out
Teichmüller space as the subset of the representation
variety that consists of Fuchsian representations of Γg

into PSL2 R. Luckily this subset is open in the repre-
sentation variety, which gives a nice realization of Tg

as a topological space—in fact, Tg is homeomorphic
to R

6g−6. (This can be seen very explicitly in terms of
the Fenchel–Nielsen coordinates, which parametrize a
surface in Tg via a cut-and-paste procedure involving
3g − 3 lengths and 3g − 3 angles.) We may now try to
“forget” the marking π1(X) ∼= Γg, to obtain the mod-
uli space Mg of unmarked Riemann surfaces. In other
words, we would like to take Tg and identify any two
points that represent the same underlying Riemann
surface with different markings. This identification is

achieved by the action of a group, the genus-g mapping
class group MCGg or Teichmüller modular group, on
Tg, which generalizes the modular group PSL2 Z that
acts on H = T1,1. (The mapping class group is defined
as the group of all self-diffeomorphisms of a genus-g
surface—remember that all such surfaces are topolog-
ically the same—modulo those diffeomorphisms that
act trivially on the fundamental group.) As in the
case of elliptic curves, Riemann surfaces with auto-
morphisms correspond to points in Tg fixed by some
subgroup of MCGg, and give rise to singular points in
the quotient Mg = Tg/ MCGg.

Representation varieties, or moduli spaces of rep-
resentations, are an important and concrete class of
moduli spaces that arise throughout geometry, topol-
ogy, and number theory. Given any (discrete) group
Γ , we ask (for example) for a space that parametrizes
homomorphisms of Γ into the group of n × n matrices.
The notion of equivalence is given by conjugation by
GLn, and that of families by continuous (or analytic,
or algebraic, etc.) families of matrices. This problem
is interesting even when the group Γ is Z. Then we
are simply considering invertible n × n matrices (the
image of 1 ∈ Z) up to conjugacy. It turns out that
there is no moduli space for this problem, even in the
coarse sense, unless we consider only “nice enough”
matrices: for example, matrices that consist of only a
single Jordan block. This is a good example of a ubiq-
uitous phenomenon in moduli problems: one is often
forced to throw out some “bad” (unstable) objects in
order to have any chance of obtaining a moduli space.
(See the paper by Mumford and Suominen (1972) for
a detailed discussion.)

3.3 Moduli Spaces and Jacobians

The upper half-plane H = T1,1, together with the
action of PSL2 Z, gives an appealingly complete pic-
ture of the moduli problem for elliptic curves and its
geometry. The same cannot be said, unfortunately, for
the picture of Tg as an open subset of the representa-
tion variety. In particular, the representation variety
does not even carry a natural complex structure, so
we cannot see from this description the geometry of
Tg as a complex manifold. This failure reflects some
of the ways in which the study of moduli spaces is
more complicated for genus greater than one. In par-
ticular, the moduli spaces of higher-genus surfaces are
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not described purely by linear algebra plus data about
orientation, as is the case in genus one.

Part of the blame for this complexity lies with the
fact that the fundamental group Γg � π1(X) (g > 1)
is no longer Abelian, and in particular it is no longer
equal to the first homology group H1(X, Z). A related
problem is that X is no longer a group. A beauti-
ful solution to this problem is given by the construc-
tion of the Jacobian Jac(X), which shares with ellip-
tic curves the properties of being a torus (homeomor-
phic to (S1)2g), an Abelian group, and a complex
(in fact complex-algebraic) manifold. (The Jacobian
of an elliptic curve is the elliptic curve itself.) The
Jacobian captures the “Abelian” or “linear” aspects
of the geometry of X. There is a moduli space Ag

for such complex-algebraic tori (known as Abelian
varieties), which does share all of the nice proper-
ties and linear algebraic description of the moduli
of elliptic curves M1,1 = A1. The good news—the
Torelli theorem—is that by assigning to each Riemann
surface X its Jacobian we embed Mg as a closed,
complex-analytic subset of Ag. The interesting news—
the Schottky problem—is that the image is quite com-
plicated to characterize intrinsically. In fact, solutions
to this problem have come from as far afield as the
study of nonlinear partial differential equations!

3.4 Further Directions

In this section we give hints at some interesting ques-
tions about, and applications of, moduli spaces.

Deformations and degenerations. Two of the
main topics in moduli spaces ask which objects are
very near to a given one, and what lies very far
away. Deformation theory is the calculus of mod-
uli spaces: it describes their infinitesimal structure.
In other words, given an object, deformation theory
is concerned with describing all its small perturba-
tions (see Mazur (2004) for a beautiful discussion of
this). At the other extreme, we can ask what happens
when our objects degenerate? Most moduli spaces, for
example the moduli of curves, are not compact, so
there are families “going off to infinity.” It is impor-
tant to find “meaningful” compactifications of moduli
spaces, which classify the possible degenerations of our
objects. Another advantage of compactifying moduli
spaces is that we can then calculate integrals over the
completed space. This is crucial for the next item.

Invariants from moduli spaces. An important
application of moduli spaces in geometry and topology
is inspired by quantum field theory, where a particle,
rather than follow the “best” classical path between
two points, follows all paths with varying probabilities.
Classically, one calculates many topological invariants
by picking a geometric structure (such as a metric) on
a space, calculating some quantity using this struc-
ture, and finally proving that the result of the calcu-
lation did not depend on the structure we chose. The
new alternative is to look at all such geometric struc-
tures, and integrate some quantity over the space of all
choices. The result, if we can show convergence, will
manifestly not depend on any choices. String theory
has given rise to many important applications of this
idea, in particular by giving a rich structure to the
collection of integrals obtained in this way. Donaldson
and Seiberg–Witten theories use this philosophy to
give topological invariants of four-manifolds. Gromov–
Witten theory applies it to the topology of symplec-
tic manifolds, and to counting problems in algebraic
geometry, such as, How many rational plane curves of
degree 5 pass through 14 points in general position?
(Answer: 87304.)

Modular forms. One of the most profound ideas in
mathematics, the Langlands program, relates num-
ber theory to function theory (harmonic analysis) on
very special moduli spaces, generalizing the moduli
space of elliptic curves. These moduli spaces (Shimura
varieties) are expressible as quotients of symmetric
spaces (such as H) by arithmetic groups (such as
PSL2 Z). Modular and automorphic forms are
special functions on these moduli spaces, described by
their interaction with the large symmetry groups of
the spaces. This is an extremely exciting and active
area of mathematics, which counts among its recent
triumphs the proof of Fermat’s last theorem and the
Shimura–Taniyama–Weil conjecture (Wiles, Taylor–
Wiles, Breuil–Conrad–Diamond–Taylor).

Further Reading

For further reading, historical accounts and bibliogra-
phies on moduli spaces, the following articles are
highly recommended.

A beautiful and accessible overview of moduli
spaces, with an emphasis on the notion of deforma-
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tions, is given by Mazur (2004). The articles by Hain
(2000) and Looijenga (2000) give excellent introduc-
tions to the study of the moduli spaces of curves, per-
haps the oldest and most important of all moduli prob-
lems. The article by Mumford and Suominen (1972)
introduces the key ideas underlying the study of mod-
uli spaces in algebraic geometry.
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