SELECTED SOLUTIONS FROM THE HOMEWORK

ANDREW J. BLUMBERG

1. Solutions

(2.2, 12) Prove that the following homogeneous system has a nontrivial solution if and only if ad - bc = 0:

$$ax_1 + bx_2 = 0$$
$$cx_1 + dx_2 = 0.$$

Proof. Suppose that a=0. Then the first equation becomes $bx_2=0$, which implies that $x_2=0$. The second equation then becomes $cx_1=0$, which implies that $x_1=0$. Now consider the case in which $a\neq 0$. Dividing by a, the first row of the associated matrix becomes $[1,\frac{b}{a}]$. Next, we can remove the c in the first column by subtracting c times the first row from the second, which leaves $[0,d-\frac{bc}{a}]$. Clearly, $d-\frac{bc}{a}=0$ is equivalent to ad-bc=0.

- (2.2, 13) Suppose that Ax = 0 is a homogeneous system of n equations in n variables.
 - (a) If the system $A^2x = 0$ has a nontrivial solution, show that Ax = 0 also has a nontrivial solution.
 - (b) Generalize the result of part (a) to show that if the system $A^n x = 0$ has a nontrivial solution for some positive integer n, then Ax = 0.

Proof. Assume that Ax = 0 has only the trivial solution. For any vector z, if $A^2z = 0$, then A(Az) = 0. Thus, Az = 0, and so z = 0. Now we consider the general case. Assume that the result is true for $n \le m$. So now we want to show that $A^{m+1}x = 0$ has only the trivial solution if Ax = 0 has only the trivial solution. For any vector z, if $A^{m+1}z = A(A^mz) = 0$, we know that $A^mz = 0$, which by the induction hypothesis implies that z = 0.

- (2.4, 9) (a) Give an example to show that A+B can be singular if A and B are both nonsingular.
 - (b) Give an example to show that A+B can be nonsingular if A and B are both singular.
 - (c) Give an example to show that even when A, B, and A+B are all nonsingular, $(A+B)^{-1}$ is not necessarily equal to $A^{-1}+B^{-1}$.

Proof. For the first one, consider the matrices

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

1

For the second, take A and -A for any singular matrix A. For the last, consider A = B = I.

Date: March 9, 2015.

(2.4, 13) Let A be a symmetric nonsingular matrix. Prove that A^{-1} is symmetric.

Proof. We know that $A^T = A$ and A^{-1} exists. Applying the transpose to the equation $AA^{-1} = I$, we find that $(A^{-1})^TA^T = I$. Since $A^T = A$, we have $(A^{-1})^TA = I$, and now multiplying by A^{-1} on the right, we find that $(A^{-1})^T = A^{-1}$.

 $E ext{-}mail\ address: blumberg@math.utexas.edu}$