SOLUTIONS TO PRACTICE EXAM #1 FOR THIRD MIDTERM EXAM

ANDREW J. BLUMBERG

1. Notes

This practice exam has more problems than the real exam will. To make most effective use of this document, take the exam under conditions simulating the real exam — no book, no calculator.

- (1) Short answer questions:
 - (a) Why doesn't L'Hopital's rule imply that

$$\lim_{x \to 0} \frac{x+3}{x^2+3x+1} = \lim_{x \to 0} \frac{1}{2x+3} = \frac{1}{3}?$$

Proof. This limit is not in the admissible form for L'Hopital's rule; on the contrary, evaluating at x = 0 we get $\frac{3}{1} = 3$.

(b) Please state the mean value theorem.

Proof. The mean value theorem says that if f is continuous on [a, b] and differentiable on (a, b), then there exists $c \in [a, b]$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

(c) We developed the theory of integration using rectangles. Why didn't we use circles instead?

Proof. Circles are much harder to work with; it isn't at all clear how to concisely describe an efficient tiling of a region with circles. \Box

(2) Sketch the curve $\ln(x^2 - 3x + 2)$ using derivative information.

Proof. Omitted. \Box

- (3) Compute the following limits:
 - (a) $\lim_{x\to\infty} x \sin(\frac{1}{x})$.

Proof. Rewriting, we get

$$\lim_{x \to \infty} \frac{\sin(\frac{1}{x})}{\frac{1}{x}}.$$

This is in the form $\frac{0}{0}$, so L'Hopital's rule applies. Differentiating, we find that the limit can be computed as

$$\lim_{x\to\infty}\frac{\cos(\frac{1}{x})-x^{-2}}{-x^{-2}}=\lim_{x\to\infty}\cos(\frac{1}{x}).$$

1

Evaluating, this is 1.

Date: November 8, 2011.

(b) $\lim_{x\to 0} \frac{x^2+2x+1}{3x^2-4x+5}$

Proof. Both the numerator and the denominator are continuous, so evaluating at x=0 gives us $\frac{1}{5}$.

(c) $\lim_{x\to\infty} \frac{\ln(\sqrt{x})}{x^2}$.

Proof. As $x\to\infty$, this is of the form $\frac{\infty}{\infty}$, so we can apply L'Hopital's rule. Differentiating, we get

$$\lim_{x \to \infty} \frac{x^{-\frac{1}{2}} \frac{1}{2} x^{-\frac{1}{2}}}{2x} = \lim_{x \to \infty} \frac{1}{4x^2} = 0.$$

- (4) Find the following derivatives.
 - (a) $f(x) = \int_3^{x^2} \ln y \, dy$.

 ${\it Proof.}$ Using the fundamental theorem of calculus and the chain rule, we have

$$f'(x) = (2x)\ln(x^2).$$

(b) $f(x) = \int_5^{\ln(x^2 + x + 1)} e^z dz$.

Proof. Similarly, we have

$$f'(x) = \frac{2x+1}{x^2+x+1}e^{\ln(x^2+x+1)} = (2x+1).$$

(5) A rope which is 20 feet long is cut into two pieces; one piece is used to make a circle, and one piece is used to make a square. How should the rope be cut in order to maximize the area enclosed? To minimize the area enclosed?

Proof. We cut the rope into pieces of length c and 20 - c. The radius of the circle is given by solving the equation $c = 2\pi r$ for r, and the area of the square is $(\frac{20-c}{4})^2$. Assembling, the function for the area is then

$$A(r) = \pi \left(\frac{c}{2\pi}\right)^2 + \frac{(20-c)^2}{16} = \frac{c^2}{4\pi} + \frac{(20-c)^2}{16}$$
$$= \frac{4c^2}{16\pi} + \frac{\pi(400 - 40c + c^2)}{16\pi} = \frac{(4+\pi)c^2 - 40\pi c + 400\pi}{16}.$$

Differentiating, we find

$$A'(r) = \frac{(8+2\pi)c - 40\pi}{16}.$$

Solving for the critical points, we get

$$(8+2\pi)c = 40\pi,$$

which implies $c=\frac{40\pi}{8+2\pi}$. The second derivative test tells us that this is a minimum. To maximize, we look at the endpoints of [0,20] — $A(0)=\frac{200}{8}=25$, and $A(20)=\frac{400-400+200}{8}=25$. Thus, the maximum is achieved at either endpoint.

- (6) For the function $f(x) = e^{-x^2}$,
 - (a) Approximate the definite integral $\int_{-1}^{4} f(x)dx$ using a Riemann sum with 5 intervals and using the lefthand side of the rectangle.

Proof. Dividing the interval [-1,4] into 5 pieces, we have endpoints -1,0,1,2,3,4, and each piece has width 1. Therefore, the desired Riemann sum is computed as

$$(1)(e^{0^2}) + (1)(e^{1^2}) + (1)(e^{2^2}) + (1)(e^{3^2}) + (1)(e^{4^2}).$$

(b) Approximate the definite integral $\int_{-1}^{4} f(x)dx$ using a Riemann sum with 5 intervals and using the midpoint of the rectangle.

Proof. Similarly, we have

$$(1)(e^{(\frac{1}{2})^2}) + (1)(e^{(\frac{3}{2})^2}) + (1)(e^{(\frac{5}{2})^2}) + (1)(e^{(\frac{7}{2})^2}) + (1)(e^{(\frac{9}{2})^2}).$$

(c) Write the definite integral as a limit expression.

Proof. The definite integral can be computed as

$$\lim_{n \to \infty} \sum_{i=0}^{n} \frac{5}{n} \left(e^{-(-1 + \frac{5i}{n})} \right).$$

(d) Can you use substitution to find an antiderivative for this function?

Proof. No, this integral can't be evaluated using substitution (you can try all the possibilities!). \Box

- (7) Compute the following definite integrals:
 - (a) $\int_{-3}^{3} x \sqrt{x-1} dx$.

Proof. Substitute u = x - 1. Then we find that we are computing the definite integral

$$\int_{-4}^{2} (u+1)\sqrt{u}du = \int_{-4}^{2} u^{\frac{3}{2}} + u^{\frac{1}{2}}du.$$

(Notice we have transformed the limits.) Evaluating, an antiderivative is

$$\frac{2}{5}u^{\frac{5}{2}} + \frac{2}{3}u^{\frac{3}{2}}$$

and so the fundamental theorem of calculus tells us that we have

$$(\frac{2}{5}2^{\frac{5}{2}} + \frac{2}{3}2^{\frac{3}{2}}) - (\frac{2}{5}(-4)^{\frac{5}{2}} + \frac{2}{3}(-4)^{\frac{3}{2}}).$$

(b) $\int_0^{10} \frac{e^{\frac{1}{x}}}{x^2} dx$.

Proof. Here, we substitute $u = \frac{1}{x}$. Then $du = -\frac{1}{x^2}dx$, so the integral transforms to

$$\int -e^u du$$
.

Notice that I've left off the limits, because there's an issue with u at x = 0. An antiderivative is given by $-e^u$, and to study the definite integral we could investigate

$$\lim_{u \to \infty} \int_{\infty}^{\frac{1}{10}} -e^u du.$$

We'll return to these sorts of calculations, but for now if you got this far or noted the issue, you did this correctly. \Box

(c) $\int_{-5}^{0} (x \sin(3x^2 + 4) + 2^x) dx$.

Proof. Splitting this into pieces, we have

$$\int_{-5}^{0} x \sin(3x^2 + 4) dx + \int_{-5}^{0} 2^x dx.$$

The second we can simply evaluate directly, and for the first we use the substitution $u = 3x^2 + 4$. Then du = 6xdx, so we have

$$\int_{29}^{4} \frac{1}{6} \sin(u) du.$$

This then becomes $-\frac{1}{6}(\cos(29)-\cos(4))$. The first part has antiderivative $\frac{2^x}{\ln 2}$, and so we get $\frac{1}{\ln 2} - \frac{2^{-5}}{\ln 2}$.

(8) Suppose that $-1 \le f(x) \le 1$. What can we say about $\int_{-3}^{3} f(x) dx$?

Proof. We know that

$$-1(6) \le \int_{-3}^{3} f(x)dx \le (1)(6).$$

E-mail address: blumberg@math.utexas.edu