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Abstract. We prove that fairly general spaces of tilings of Rd are
fiber bundles over the torus T

d, with totally disconnected fiber. In
fact, we show that each such space is homeomorphic to the d-fold
suspension of a Zd subshift (or equivalently, a tiling space whose
tiles are marked unit d-cubes). The only restrictions on our tiling
spaces are that 1) the tiles are assumed to be polygons (polyhedra
if d > 2) that meet full-edge to full-edge (or full-face to full-face),
2) only a finite number of tile types are allowed, and 3) each tile
type appears in only a finite number of orientations. The proof is
constructive, and we illustrate it by constructing a “square” version
of the Penrose tiling system.

Barge, Jacklitch, and Vago [BLV] used this bundle structure in
classifying tiling spaces of dimension 1, where the bundle structure
was already known to exist.

1. Introduction and results

The paper of Anderson and Putnam [A-P] inspired this work. These
authors show that substitution tiling spaces are a special case of ex-
panding attractors, a concept introduced [W1], to study the dynamics
of diffeomorphisms. It is well known in both camps that these spaces
are locally the topological product of a Cantor set and a disk of the
appropriate dimension. But what are they globally? Perhaps a bundle
over a manifold with fiber a Cantor set? Though false for expanding
atractors, [F-J] this is true (Theorem 1) for our tiling spaces, which in
particular are flat, and thus one sees that the appropriate base space
will be the torus.

Fiber bundles are used throughout mathematics. For a bundle over
the d-dimensional torus, there are d commuting, “characteristic home-
omorphisms” fi : F → F, of the fiber, F, which do characterize the
bundle, (as a bundle). And though the Cantor set fiber makes these
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harder to deal with than, say, plane bundles, this is a start and has been
effective in the one dimesnional case (Franks, [F], Barge and Diamond
[B-D], and [BLV]). In higher dimensions, these bundles are generically,
(e.g., not products) less “flabby” and thus, hopefully, allow stronger
invariants than Parry-Sullivan and Bowen-Franks types.

The basic ingredients here are tiling systems P of Rd, and the corre-
sponding tiling spaces X(P ). These spaces are assumed to satisfy the
following hypotheses:

1. The tiles are (triangulated) polyhedra that meet full-face to full-
face.

2. Only a finite number of tile types appear. In this counting, tiles
that are translations of one another are considered to be the same
type, but tiles that are rotations of one another are considered to
be different.

3. The space X(P ) is a closed and nonempty subset of the space of
all tilings that can be formed from the tiles in P .

4. The space X(P ) is invariant under translation.

We will henceforth refer to both the tiling system and the associated
topological space by the same letter P .

Our first result is:

Theorem 1.1. A tiling space that satisfies the above hypotheses is a

fiber bundle over the torus, with totally disconnected fiber.

Note that we do not assume that the tilings are quasiperiodic, or
generated by a substitution, or even that they are nonperiodic. The
only difference between these cases is the nature of the fiber. The
fiber for a substitution tiling, or a quasiperiodic tiling, will be a Cantor
set, while the fiber for a (d-fold) periodic tiling system will be a finite
collection of points.

The requirement of polygonal tiles is mostly for convenience. A
tiling, such as the Penrose chickens, whose edges follow standard shapes,
can be deformed to a tiling system with polygonal tiles, and therefore
is a fiber bundles over a torus. The requirement that tiles appear in
only a finite number of orientations is more serious. The techniques of
this paper do not apply to pinwheel-like tiling spaces [ref].

Our second result is:

Theorem 1.2. A tiling space P that satisfies the above hypotheses is

homeomorphic to a tiling space S whose tiles are marked d-cubes, or

equivalently to the d-fold suspension of a Zd subshift. The space S is

defined by local matching rules if and only if P is.



Tiling spaces are Cantor set bundles 3

Note that this theorem proves the existence of a homeomorphism,
not a topological conjugacy. The homeomorphism typically does not

commute with translations, much less with rotations.
The proofs proceed as follows. We call a tiling space rational (in-

tegral) if each edge of each tile is given by a vector with rational (in-
tegral) coordinates. In Section 2 we show that every tiling space P
can be deformed to a rational tiling space R. This deformation is a
homeomorphism of tiling spaces, but not a topological conjugacy. We
then show that every rational tiling is a fiber bundle over the torus.
This proves Theorem 1.

In Section 3 we prove Theorem 2. We rescale the rational tiling space
R into an integer tiling space, and replace the straight edges with zig-
zags consisting of unit segments in the several coordinate directions.
The faces then become unions of unit squares, the 3-cells become unions
of unit cubes, and so on. This gives a “zig-zag” system Z. The tiles of Z
may take on odd shapes, and may even be disconnected, but are unions
of d-cubes. The space Z is homeomorphic (topologically conjugate, in
fact) to the rescaled R. Finally, we consider each constituent d-cube of
a tile z in Z to be a tile in a tiling space S, with the matching rule that
wherever one such constituent appears, the other consitutents of t also
appear nearby. S is a suspension of a subshift, but is also topologically
conjugate to Z, and therefore homeomorphic to P .

2. Tiling spaces as fiber bundles

Lemma 2.1. A tiling space P meeting the above hypotheses is home-

omorphic to a rational tiling space R. Furthermore, R has finite type

if and only if P does.

Proof. For greater clarity, we go through the proof in dimension 2 and
later indicate how it applies, essentially unchanged, in any dimension.
We also illustrate how each step applies to the Penrose system.

Let the tiles of a tiling space P be represented by polygons Ci, i =
1, . . . c in the plane. If tiles Cj and Ck can meet in a tiling along
a common edge, then we identify those edges of Cj and Ck. After
these identifications, we have a finite number of directed line intervals
I1, . . . , In, and the boundary of each Cj is a sequence of translates of
such directed intervals. Let vi be the vector that gives the displacement
of Ii.

In the Penrose “B-tile” system, there are forty triangular tiles, namely
those shown in figure 1 and their rotations by multiples of 2π/10. We
let t denote the rotation by 2π/10, so t5A means tile A rotated by π.
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Although A is congruent to B, they are considered separate tiles. Sim-
ilarly, C and D are considered distinct. Because of the identifications,
there are 40 edges, not 120. In the Penrose system, the vectors are
given by:

We wish to construct new tiles C ′

k, k = 1, . . . , c and new intervals I ′

i,
i = 1, . . . , n such that, if the boundary of Ck is Ii1 , . . . , Iik , then the
boundary of C ′

k is I ′

i1
, . . . , I ′

ik
, and such that the coordinates of each v′

i

are rational. To do this one must merely solve the linear equations

v′

i1
+ · · ·+ v′

ik
= 0(1)

for each tile Ck. That is, we have a system of homogeneous linear
equations, whose coefficients are integers. One can always find a ra-
tional basis for the space of solutions. This space is nonempty, since
v1, . . . , vn is a solution. One can therefore find rational solutions ar-
bitrarily close to the original solution set {vi}. By choosing the v′

i’s
sufficiently close to the vi’s we can insure that the C ′

k’s are nonempty,
correctly oriented, and homeomorphic to the Ck’s.

In the Penrose system, our equations are

v(tna) + v(tnb) − v(tnc) = 0, n = 0, . . . , 9
v(tn+6a) + v(t4+nb) − v(tnc) = 0, n = 0, . . . , 9

−v(tn+4a) + v(tn+1b) − v(tnd) = 0, n = 0, . . . , 9
−v(tn+2a) + v(tn+3b) − v(tnd) = 0, n = 0, . . . , 9(2)

The following is an integer set of solutions:

v(a) = v(t4b) = (1, 4)
v(ta) = v(t5b) = (−1, 4)

v(t2a) = v(t6b) = (−3, 2)
v(t3a) = v(t7b) = (−4, 0)
v(t4a) = v(t8b) = (−3,−2)
v(t5a) = v(t9b) = (−1,−4)
v(t6a) = v(b) = (1,−4)
v(t7a) = v(tb) = (3,−2)
v(t8a) = v(t2b) = (4, 0)
v(t9a) = v(t3b) = (3, 2)

v(c) = (2, 0) v(d) = (6, 0)
v(tc) = (2, 2) v(td) = (5, 4)

v(t2c) = (1, 2) v(t2d) = (2, 6)
v(t3c) = (−1, 2) v(t3d) = (−2, 6)
v(t4c) = (−2, 2) v(t4d) = (−5, 4)
v(t5c) = (−2, 0) v(t5d) = (−6, 0)

v(t6c) = (−2,−2) v(t6d) = (−5,−4)
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v(t7c) = (−1,−2) v(t7d) = (−2,−6)
v(t8c) = (1,−2) v(t8d) = (2,−6)
v(t9c) = (2,−2) v(t9d) = (5,−4)(3)

Note that by picking integer solutions, we have broken the 10-fold
rotational symmetry of the Penrose. This is to be expected, as one
cannot represent Z10 in GL(2, Q).

Now pick homeomorphisms (say, linear maps) from each Ii to the
corresponding I ′

i, and extend these to homeomorphisms from Ck to C ′

k.
We now use these homeomorphisms to convert an arbitrary tiling by
the tiles {Ck} into a tiling by the tiles {C ′

k}. As we shall see, this
procedure is continuous and has a continuous inverse, and so defines a
homeomorphism between the tiling space P and a rational tiling space
R.

Let t be an arbitrary tiling in the tiling space P . We will construct
a corresponding tiling t′ ∈ R, beginning at the origin. The origin in
t sits at a point in a closed tile Ck; we let the origin in t′ sit at the
corresponding point in C ′

k. We then grow outwards, so that the tiling t′

is combinatorially identical to t, only with each tile of type Cj replaced
with a tile of type C ′

j, and each edge of type Ij replaced by I ′

j . This
is shown in figure 2, where a patch of the original Penrose tiling is
replaced by a patch of rational Penrose tiling.
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180 Tiles

Figure 3
To see that this construction does result is a tiling, we must show

that the vertices of t′ are well defined. Let x be a vertex of t, and
consider two paths from a vertex y of the central seed tile to x. The
algebraic difference of these two paths, namely zero, is the boundary
of a sum of tiles in t. By equations (1), the algebraic difference of the
corresponding sum of vectors v′ is also zero. This means that either
path can be used to determine the position of x′, the vertex in t′ that
corresponds to x. Once the vertices are defined, the edges and faces
follow.

This transformation is continuous. If two tilings t and t̃ agree on a
large neighborhood of the origin, then t′ and t̃′ agree on a large neigh-
borhood of the origin. If t and t̃ differ by a small translation, then
t′ and t̃′ differ by a small translation, as determined by the homeo-
morphism between the center tile of t and that of t′. (Since these
homeomorphisms are extensions of homeomorphisms between edges Ii

and I ′

i, there is no ambiguity, and no discontinuity, if the origin in t
sits on the boundary of a tile.) Similarly, the reverse transformation,
from tilings in R to tilings in P , is also continuous. Thus P and R are
homeomorphic tiling spaces.
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Finally, since each tiling t in P is combinatorially equivalent to a
tiling t′ in R, any local atlas for the P system can be naturally trans-
formed into a local atlas for the R system, and vice-versa.

In dimension greater than 2, the analysis is essentially unchanged.
One obtains an equation of the form (1) for each 2-face of each tile
Ck. Once again, there is a rational basis to the space of solutions,
and one can find a rational solutiona arbitrarily close to the original
vectors. To construct homeomorphisms between tiles Ck and C ′

k, one
must start with homeomorphisms (e.g. linear maps) between edges Ii

and I ′

i, extend these to homeomorphisms of the 2-skeleton, then of the
3-skeleton, and so on. There are no topological obstructions. QED

To complete the proof of Theorem 1.1, we must only prove

Lemma 2.2. Every rational tiling space is a fiber bundle over the

torus.

Proof. Let R be a rational tiling, and let D be the least common
multiple of all the denominators of all the coordinates of displacement
vectors vi for the tiles in R. Rescale R by D, so that all displacement
vectors are integers. Then all the vertices in any fixed tiling have the
same coordinates (mod Zd). These coordinates give a natural projec-
tion from the space of tilings to the d-torus Rd/Zd. QED

3. Square tiling spaces

We have shown that our general tiling space P is homeomorphic to
a rational tiling space R that is of finite type if P is (and is not if P is
not). By rescaling, we can assume that R is in fact integer. Topological
conjugacies preserve finite type [Radin-Sadun]. To complete the proof
of Theorem 1.2, it suffices to prove

Lemma 3.1. Every rational tiling space R is, after rescaling, topolog-

ically conjugate to a square-type tiling space S.

Proof. As before, we work first in 2 dimensions, and then sketch
what modifications need to be made in higher dimensions. Also as
before, we demonstrate our construction with the Penrose system.

We first rescale R so that R becomes an integer tiling. Furthermore,
we assume that each tile contains a circle of radius greater than

√
2/2;

this can always be achieved by further scaling. Next we replace each
of our straight edges I ′

i with zig-zags Ji, that is with sequences of unit
displacements in the coordinate directions. We do this in such a way
that the maximum distance of a point in Ji from the original edge
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I ′

i is minimized. In particular, one can always choose Ji such that
this distance is no greater than

√
2/2. There is sometimes more than

one way to minimize this distance. For example, one could replace a
diagonal edge from (0,0) to (1,1) with a zig-zag from (0,0) to (1,0) to
(1,1), or with a zig-zag from (0,0) to (1,0) to (1,1). In such a case,
one must make a choice and apply it consistently. A possible set of
zig-zags for the rational Penrose system is given in figure 3. Under this
replacement, the 180-tile patch of figure 2 turns into the patch of figure
4.

Edges

Figure 3
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180 Tiles

Figure 4
This defines a space Z of tilings whose edges are zig-zags. To each

tiling t′ in R we generate a tiling z in Z by replacing each straight edge
in t′ with its corresponding zig-zag. If a tile type C ′

k in the R system
is bounded by several straight edges I ′

i, then the tile type Dk in the Z
system is defined to be the region bounded by the corresponding zig-
zags Ji’s. The condition that C ′

k contains a circle of radius greater that√
2/2 ensures that Dk is nonempty. (It may, however, be disconnected).

It may happen that geometrically non-congruent tile types C ′

k generate
congruent tile types Dk; however, as marked tiles, these Dk’s should
be considered distinct.

The operation of replacing straight edges with zig-zags is reversible
and does not require a choice of origin. It therefore commutes with
translation and defines a topological conjugacy between R and Z.

In the tiling system Z, the basic tiles are irregularly shaped regions
Dk bounded by zig-zags, and we have already seen that each Dk is
nonempty. Suppose that the tile Dk has area n. Then Dk can be
decomposed as the union of n unit squares D1

k, . . . , Dn
k . In the tiling

system S, the basic tiles are the squares Di
k, and we apply a matching

rule that says that wherever one of the Di
k squares is found, the other

n−1 squares that make up Dk are also found nearby, arranged to form
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the larger region Dk. A tiling in S can therefore be amalgamated into
a tiling by tiles Dk. We allow in S those tilings, and only those tilings,
that amalgamate into tilings in Z. In this way, the tiling system S is
naturally conjugate to Z.

The proof in higher dimensions is almost identical. In dimension
3, one must pick zig-zags Ji to replace the straight edges I ′

i. If several
edges I ′

i bound a 2-face of a tile C ′

k, we must find a union of unit squares
(oriented in the coordinate directions), bounded by the appropriate
zig-zags Ji, that approximates this face. The tile Dk is then the solid
region bounded by these zig-zag faces. In dimension d > 3, one works
recursively, replacing edges I ′

i with zig-zags Ji, then replacing 2-cells
with unions of squares, 3-cells with unions of cubes, and so on up
through dimension d − 1. The tiles Dk are the d-cells bounded by the
d − 1 cells constructed in this manner. One can compute a universal
bound for each dimension, so that the d − 1 dimensional zig-zags are
within that universal bound of the original faces of the C ′

k’s. As long
as the C ′

k’s contain a sphere of radius greater than that bound, the
resulting Dk will be nonempty.

QED
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