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Chapter 1

Introduction

1.1 Recap

• Given a Lie algebra, it splits into solvable and semisimple part via the
radical.

• Venn diagram + arrow diagram from Amy L.

• Solvable stuff is “easy” for representation theory purposes.

• Semisimple = no non-zero solvable/abelian ideals. I.e. rad(g) = 0

• Simple = no non-zero proper ideals.

• Simple complex Lie algebras are classified.

• Ask Questions! If bored count the vertices in the bounty picture.

1.2 Overview

I will talk a bit about this classification, how simple and semisimple are re-
lated. Root decompositions, root systems, their classifications and ((Dynkin
diagrams)). Hand write the intro once the talk is written.

Advantages and disadvantages of not giving proofs.
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Chapter 2

Structure of semisimple Lie
algebras

2.1 The Killing Form

Let g be a Lie algebra (real of complex), recall the representation:

ad : g→ End(g), X 7→ [X, ·] = adX

Definition 2.1. The Killing form on g is defined as:

B : g× g→ C, B(X,Y ) = Tr(adX ◦ adY ) = Tr([X, [Y, ·]])

Remark 2.2. This is NOT the trace of the product XY .

Theorem 2.3. [KK96, Theorem 1.42] g is semisimple ⇐⇒ The killing form
B is non-degenerate.

Theorem 2.4. [KK96, Thoerem 1.54] g semisimple, then g decomposes as a
direct sum of simple Lie algebras.

Proof. Proof uses the Killing form.

2.2 Root Space Decomposition

Let g be a Lie algebra over C.

Analogy 2.5. T : V → V diagonaliseable, then V =
⊕

λ∈Λ⊂C Vλ, where
Vλ = {v ∈ V : Tv = λv}.

We need some magic. . .

Definition 2.6. A Cartan subalgebra of a complex Lie group is:
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• A Nilpotent subalgebra h such that Ng(h) = h.

• (For g semisimple) a maximal abelian subalgebra h such that ∀H ∈ h we
have that the adH ∈ End(g) are simultaneously diagonaliseable.

Remark 2.7. (skip) Note Ng(h) = {X ∈ g : [h, X] ⊂ h}. If h is a subalgebra
then h ⊂ Ng(h) ⊂ g, where h is an ideal if the second equality holds, and
self-normalising if the first does.

Remark 2.8. The first dot point is mostly to emphasise that it is important
for us to be in the semisimple world at this point.

Theorem 2.9. [KK96, Theorem 2.9 and 2.15] Any complex Lie algebra has a
Cartan subalgebra, the notion is well defined when g is semisimple, and they are
all conjugate via Ad(g) for some g ∈ G.

Theorem 2.10. g semisimple complex Lie algebra and h a Cartan subalgebra,
then:

g = h⊕
⊕

α∈∆⊂h∗

gα

Where gα = {X ∈ g : [H,X] = α(H)X ∀H ∈ h}

Definition 2.11. α ∈ h∗ such that gα 6= 0 are roots, and gα are called the root
spaces.

Remark 2.12. ∆ is finite since g has finite dimension.

2.3 Example of Root Space decomposition

Example 2.13. g = sln(C) = {X ∈ Mn(C) : TrX = 0}. In this case our
Cartan subalgebra is:

h = {diag(h1, ..., hn) ∈ sln}

That is, diagonal matrices, whose entries sum to one.
Sanity check: This is abelian, feels maximal, and we will show simultaneous

diagonaliseability of ad(h).

ei : h→ C, ei(diag(h1, ..., hn)) = hi

Consider the vectors Eij with a 1 in the ith row and jth column. Then let
H = diag(h1, ..., hn) ∈ h

[H,Eij ] = HEij − EijH = hiEij − hjEij = (ei − ej
root

)(H)Eij

Therefore:
g = h⊕

⊕
i 6=j

CEij = h⊕
⊕
i 6=j

gei−ej

So ∆ = {ei − ej : i 6= j} ⊂ h∗.
DRAW THE HEXAGON FOR n=3
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Example 2.14. g = so(2n + 1,C) = {X ∈ Mn(C) : XT + X = 0}. Here our
Cartan subalgebra h is given by matrices of the form:

H =



(
0 ih1

−ih1 0

)
. . . (

0 ihn
−ihn 0

)
0


Sanity check: h is an abelian subalgebra, we will check diagonalisability of ad(h).

∆ = {±ei ± ej : i 6= j ∈ [n]} ∪ {±ek : k ∈ [n]} ⊂ h
DRAW BOX DIAGRAM FOR WHEN n=2 (so(3))

Some Properties:

Theorem 2.15. [KK96, Chapter 2, section 4] If ∆ is the collection of roots
attached to a semisimple complex Lie algebra g with Cartan subalgebra h.

• [gα, gβ ] ⊂ gα+β

• α, β ∈ ∆ ∪ {0} and α+ β 6= 0, then B(gα, gβ) = 0 (root decomp is almost
orthogonal)

• α ∈ ∆ then B is non-degenerate on gα × g−α

• α ∈ ∆ =⇒ −α ∈ ∆.

• B|h×h is non-degenerate.

• ∆ spans h∗

• ————elementary above this line, deep below————

• α ∈ ∆ =⇒ dim gα = 1.

• α ∈ ∆, then nα ∈ ∆ =⇒ n ∈ {−1, 1}.

• [gα, gβ ] = gα+β

• h0 ⊂ h is the real subspace on which all roots are real (R span of ∆ in our
examples). Then B|h0×h0 is a non-degenerate inner-product.

2.4 Root Systems

One reason to restrict to h0 is that angles are sensible for real inner product
spaces.

Let B|h0×h0 non-degenerate induces an inner product 〈·, ·〉 on h∗0. The pic-
tures are faithful.
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We have for each α ∈ ∆ ⊂ h∗0 a reflection in α:

sα(β) = β − 2
〈β, α〉
‖α‖2

α = β − 2〈β, α̂〉α̂

DRAW sα on the pictures
The rigidity of these conditions tells us that ∆ forms a root system.

Definition 2.16. A reduced root system is a finite set of points ∆ in a real
inner product space V such that:

• ∆ spans V

• The sα preserve ∆

• 2〈β,α〉
‖α‖2 ∈ Z (reflections are adding integer multiples of α).

• α ∈ ∆ =⇒ 2α 6∈ ∆.

Definition 2.17. ∆ is reducible if ∆ = ∆′ ∪ ∆′′ with ∆′ ⊥ ∆′′. The root
system of a Lie algebra is irreducible iff the Lie algebra is simple.

Definition 2.18. Positive systems ∆+ are roots landing in a hyperplane. Sim-
ple systems Π can get all the positive roots with positive integer combinations.

Remark 2.19. These notions are “equivalent”

Theorem 2.20. [KK96, Theorem 2.108] Let (g, h), (g′, h′) be complex semisim-
ple Lie algebras with Cartan subalgebras whose associated root systems are ∆
and ∆′. Suppose φ : h → h′ is such that φ induces a bijection ∆ ∼= ∆′. Then
there exists a unique map of Lie algebras φ̃ : g → g′ “up to scaling” such that
φ̃|h = φ. (in fact, up to a choice of non-zero root vectors Eα for a positive
system α ∈ Π ⊂ ∆).

h⊕
⊕
α∈∆

gα
φ̃→ h⊕

⊕
α∈∆

gα

Theorem 2.21. All irreducible root systems are of the form

• An : {ei − ej : i 6= j ∈ [n]} ↔ sln.

• Bn : {±ei ± ej : i 6= j ∈ [n]} ∪ {±ek} ↔ so2n+1

• Cn : {±ei ± ej : i 6= j ∈ [n]} ∪ {±2ek} ↔ sp2n

• Dn : {±ei ± ej : i 6= j ∈ [n]} ↔ so2n

• E6, E7, E8 ↔ e6, e7, e8

• F4 ↔ f4

• G2 : see hand out↔ g2

Remark 2.22. The third dot point above gives a restriction on the possible
angles of simple roots: {90

1
, 120

1
, 135√

2
, 150√

3
}.

Dynkin diagram: vertices indexed proportional to size squared.
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