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1 Introduction

In conventional quantum theory the states of a system are represented by
the rays in a complex Hilbert space H, and the time-evolution is given by a
one-parameter group of unitary operators

Ut = eiHt : H → H

(for t ∈ R), generated by an unbounded self-adjoint operator H called the
Hamiltonian. Positivity of the energy corresponds to the fact that H is
positive-semidefinite, i.e. that the spectrum of H is contained in R+. This
is clearly equivalent to saying that the operator-valued function t 7→ Ut is
the boundary-value of a holomorphic function t 7→ Ut which is defined in the
upper half-plane

{t ∈ C : Im(t) > 0}
and is bounded in the operator norm.1

The holomorphic formulation helps us see what a strong constraint the
positivity of energy is. It implies, for example, that if, for some ξ ∈ H, the
state Ut(ξ) belongs to a closed subspace H0 of H for all t < 0 then it belongs
to H0 for all t ≥ 0, i.e. “nothing can happen for the first time”.

How can this notion be adapted to the context of quantum field theory?
The essential feature of quantum field theory is that the observables of the

1The physically relevant condition is actually that the energy is bounded below: re-
placing the Hamiltonian H by H − c makes no observable difference. Rather than asking
for Ut to be bounded for Im(t) > 0 it is better to require ||Ut|| ≤ ecIm(t) for some c.
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theory are organized by their positions in a given space-time M , which we
shall take to be a smooth d-dimensional manifold with a Lorentzian metric
g = (gij). We expect that energy, and its positivity, should also have a local
aspect.

In the usual formulation of quantum field theory, for each space-time
point x ∈ M there is a topological vector space Ox of observables at x, and
the Ox fit together to form a vector bundle on M . The content of the theory
is completely encoded2 in multilinear ‘maps’

Ox1 × . . .×Oxk −→ C (1)

(f1, . . . , fk) 7→ 〈f1, . . . , fk〉(M,g)

for all sequences {x1, . . . , xk} of points in M , defining generalized functions3

on the products Mk. The functions (1) are called vacuum expectation values.
To come from a field theory they must satisfy a long list of conditions such as
the Wightman axioms [SW]. These include a causality axiom which asserts
that if the points x1, . . . , xk are spatially separated (i.e. no two can be joined
by a time-like curve) then the expectation value is independent of the ordering
of the points.

One motivation for this formulation is the “path-integral” picture, ac-
cording to which the theory arises from a mythological superstructure con-
sisting of a space ΦM of “fields” of some kind which are locally defined on
the Lorentzian manifold (M, g). In this picture the vector space Ox of ob-
servables at x is the space of smooth functions f : ΦM → C such that f(φ)
depends only on the restriction of φ to an arbitrarily small neighbourhood
of x. All of the physics of the theory is determined by an action functional
Sg : ΦM → R which notionally defines a complex-valued measure on the
space ΦM , symbolically denoted by e−iSg(φ)/~Dφ . The parameter ~ here —
the unit of action — is Planck’s constant. The vacuum expectation values

2This is an oversimplification just for this introduction. In a gauge theory, for example,
an observable such as a “Wilson loop” — the holonomy of the gauge field around a closed
loop in space-time — is localized not at a point but at a loop, and we shall not exclude
such features.

3The Wightman axioms ask for the vacuum expectation values to be distributions
on Mk (which morally means that the theory has a logarithmic-conformal limit at short
distances), but when the space-time dimension is three or more this is too strong to include
natural examples such as the sigma-model with a circle as target, for which the vacuum
expectation values are hyperfunctions but not distributions.
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are given in terms of the measure by

〈f1, . . . , fk〉(M,g) =

∫
ΦM

f1(φ) . . . fk(φ)e−iSg(φ)/~Dφ.

The smallness of the unit ~ of action means that the notional integral is
very highly oscillatory, and so the measure on ΦM is effectively concentrated
near the critical points of the action. These points are the solutions of the
classical equations of motion, and they form the classical state space of the
system.

There are two ways to introduce the idea of positive energy into this
picture. Both involve holomorphicity, and we shall refer to both — rather
vaguely — as ‘Wick rotation’. They derive from two different ways of view-
ing the time t in the evolution-operator Ut of quantum mechanics. The more
traditional way is to regard the possibility of extending the map t 7→ Ut to
the upper half-plane as “creating” a complex time-manifold with the physical
time-axis at its boundary. In field theory this leads to viewing space-time
M as part of the boundary of a complex manifold MC, and asking for the
the vacuum expectation values (1) to be the boundary-values of holomorphic
functions on a domain in (MC)k. This makes good sense when M is the
standard Minkowski space M ∼= R3,1. It is less natural in the case of a curved
space-time, if only because a smooth manifold does not have a complexifi-
cation4 until one chooses — non-canonically — a real-analytic structure on
it. Even then, M may have only a small thickening as a complex manifold,
while the holomorphic characterization of positive energy makes use of the
whole upper half of the t-plane.

The alternative approach — the one we shall pursue in this paper — is
to treat the time-parameter t as the length of an oriented time-interval M
equipped with a varying metric. Then we do not need to complexify M : we
simply allow the metric on M to be complex-valued. There are two reasons
why this approach fits well with the path-integral picture when the time-
interval of quantum mechanics is replaced by the space-time M of quantum
field theory. First, the usual action-functionals Sg depend explicitly on the
Lorentzian metric g of M in a way that makes sense when g is complex.
Secondly and more importantly, the path-integral is an oscillatory integral

4In fact the motivation suggests not a complexification of M but a way of putting it
on the boundary of a complex manifold. We shall come back to this in Section 5.
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which does not converge even schematically. Its archetype is an improper
Gaussian integral of the form

F (A) =

∫
Rn

exp

(
i

2
xTAx

)
dx1 . . . dxn, (2)

where A is a real symmetric n × n matrix. The standard way to treat such
an integral is to begin with a complex symmetric matrix A whose imaginary
part is positive definite — i.e. a point A of the Siegel ‘generalized upper half-
plane’. For such matrices the integral converges and defines a holomorphic
function of A in the Siegel domain. The value of the original improper integral
is defined as the limit as A moves to the boundary of the domain.

The main point of the present paper is to introduce an interesting do-
main MetC(M) of complex-valued metrics on a smooth manifold M . The
domain is a complexification of the manifold Met(M) of ordinary Rieman-
nian metrics on M , and it has the real Lorentzian metrics (but not real
metrics of other signatures) as a dense open subset of its boundary. The
special role of Lorentzian signature is perhaps the most notable feature of
our work. In Section 5 we shall explain how a theory defined on space-
times with complex metrics gives rise, under appropriate conditions, to a
theory defined for Lorentzian space-times which, when the Lorentzian metric
is globally hyperbolic, automatically satisfies the expected causality axiom.
Finally, although we avoid complexifying space-time, our approach leads us
to a conjecture about a question arising in the rival approach: for a theory
defined in Minkowski space M , how can one characterize the largest domain
in (MC)k to which the vacuum expectation values extend holomorphically?

The relevant meaning of ‘boundary’ for the complex domains we are in-
terested in is the Shilov boundary, which is usually defined only for finite-
dimensional domains. If U is an open subset of a finite-dimensional complex
manifold U+, and the closure of U in U+ is a compact manifold X with
a piecewise-smooth boundary, then the Shilov boundary of U is the small-
est compact subset K of X with the property that for every holomorphic
function f on U which extends continuously to X we have

sup
x∈U
|f(x)| = sup

x∈K
|f(x)|.

The prime example is the polydisc

U = {(z1, . . . , zn) ∈ Cn : |zi| < 1},
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whose Shilov boundary is the torus |z1| = . . . = |zn| = 1. The Shilov bound-
ary of a manifold is part of its topological boundary, but can be much smaller.
In our examples its real dimension is equal to the complex dimension of the
domain. In the case of the Siegel domain of complex symmetric matrices
the real symmetric matrices form the ‘generalized real axis’, which is a dense
open subset of the Shilov boundary of the domain, as we shall describe in
detail in Section 4.

2 The domain of complex metrics

A Riemannian metric on a manifold M is a positive-definite symmetric bi-
linear form g : Tx × Tx → R on the tangent space Tx at each point x ∈ M .
The metrics we shall consider will be defined by symmetric R-bilinear maps
g : Tx × Tx → C at each point, with an appropriate generalization of the
positivity condition.

To see what condition we should require, let us consider the simplest
example of a field theory: a free real scalar field of mass m. Then ΦM is the
vector space C∞(M ;R) of smooth functions, and the action is given by the
quadratic form

iSg(φ) =
1

2

∫
M

(dφ ∧ ∗dφ+m2φ ∧ ∗φ)

=
1

2

∫
M

{∑
gij

∂φ

∂xi
∂φ

∂xj
+m2φ2

}
(det g)1/2|dx1 . . . dxd|.

Here (gij) denotes the inverse of the matrix g = (gij), and ∗ is the Hodge
star-operator defined by the metric, which takes differential forms of degree
p to forms of degree d − p twisted by the orientation bundle. (We shall not
assume the space-time M is orientable.) In particular the star-operator takes
the constant function 1 to the volume element

∗1 = volg = (detg)1/2|dx1 . . . dxd| (3)

Notice that for a Lorentzian metric g the volume element ∗1 is pure imagi-
nary, corresponding to the

√
−1 = i in front of the action Sg. The first con-

dition we require of our complex metrics is that the real part of the twisted
d-form volg defined by the formula (3) is a positive volume-form on M . We
therefore require that det g, which is invariantly defined up to multiplication
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by a positive real number, is not real and negative, and we choose (det g)1/2

to have positive real part.
To ensure that the real part of the quadratic form iSg is positive-definite

we also need the real part of the matrix (detg)1/2g−1 — or equivalently of
the inverse matrix (detg)−1/2g — to be positive-definite.

We need more than this, however. The conditions so far would give us a
domain whose boundary (like that of the Siegel generalized upper half-plane)
contains indefinite real quadratic forms of all signatures, and not only the
Lorentzian ones. A clue to what more is needed comes from the theory of
the electromagnetic field on M , with its field-strength given by a real 2-form
F on M , and with the action-functional

iSg(F ) =
1

2

∫
M

F ∧ ∗F.

The Hodge ∗-operator makes sense for a complex metric: for a p-form α
we define a twisted (d − p)-form ∗α by taking the inner-product of α with
volg = ∗1, using the complex inner-product g.

For the electromagnetic field we need the real part of the quadratic form

∧2(T ∗x ) −→ | ∧d (T ∗x )| ⊗ C

given by F 7→ F ∧ ∗F to be positive-definite. (Here | ∧d (T ∗x )| denotes the
real line of volume elements on Tx obtained by tensoring ∧d(T ∗x ) by the line
of orientation of Tx, and an element of it is positive if it is a positive volume-
element.) This makes it natural, if we are going to consider space-time
manifolds M of all dimensions, to require

Condition 2.1

for all degrees p ≥ 0 the real part of the quadratic form

∧p(T ∗x ) −→ | ∧d (T ∗x )| ⊗ C

given by α 7→ α ∧ ∗α is positive-definite.

Theorem 2.2 Condition 2.1 is equivalent to: there is a basis of the real
vector space Tx in which the metric g takes the form

λ1y
2
1 + λ2y

2
2 + . . .+ λdy

2
d,
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where the yi are coordinates with respect to the basis, and the λi are non-zero
complex numbers not on the negative real axis such that

| arg(λ1)|+ | arg(λ2)|+ . . .+ | arg(λd)| < π. (4)

The complex-valued quadratic forms g : V → C on a real vector space
V which satisfy the conditions of the theorem form an open subset QC(V )
of the complex vector space S2(V ∗C ). We shall refer to them as the allowable
complex metrics. It follows from Theorem 2.2 that the real inner products
with signature (d− 1, 1) — but not those with other signatures — lie on the
boundary of the domain QC(V ). For if the metric is real then each | arg(λi)|
is either 0 or π, and the inequality (4) of Theorem 2.2 shows that at most
one of the | arg(λi)| can become π on the boundary. Another consequence of
the inequality (4) is that

max arg λi − min arg λi < π,

which shows that when v runs through V the complex numbers g(v) form a
closed convex cone in C disjoint from the open negative real axis.

We define the space MetC(M) of allowable complex metrics on a smooth
manifold M as the space of smooth sections of the bundle on M whose fibre
at x is QC(Tx).

Before giving the surprisingly simple proof of Theorem 2.2 let us say a lit-
tle more to motivate its conditions. The desire to make the path integral look
more convergent hardly needs further comment, but choosing to focus on the
quadratic ‘higher abelian gauge field’ actions α∧∗α — the ‘Ramond-Ramond’
fields of superstring theory — may well seem arbitrary. Why not allow other
kinds of tensor fields? Including the higher gauge theories, however, does at
least impose an upper bound on the class of complex metrics we can allow.
For the partition functions of these theories on a d-dimensional torus M with
a flat Riemannian metric g are explicitly known (cf. [Ke], [Sz](4.4)). The
gauge-equivalence classes of fields form an infinite-dimensional Lie group, and
an abelian gauge (p − 1)-field A has a field-strength FA, a closed p-form on
M , with integral periods, which determines A up to the finite-dimensional
torus Hp−1(M ;T) of flat gauge fields with FA = 0. The space of fields is
therefore a product

Hp−1(M ;T) × Φ0 × Harmp
Z(M),
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where Φ0 is the vector space of exact p-forms on M , and Harmp
Z(M) is the

finite-dimensional lattice of harmonic (and hence constant) p-forms with in-
tegral periods. The partition function is likewise a product of three terms:
the torus of flat fields contributes its volume (for an appropriate metric deter-
mined by the geometry of M), the lattice Γ of harmonic p-forms contributes
its theta-function ∑

α∈Γ

exp

(
−1

2

∫
M

α ∧ ∗α
)
,

while the vector space Φ0 contributes an ‘analytic torsion’ which is a power
of the determinant of the Laplace operator acting on smooth functions on
M (with the zero-eigenvalue omitted) — an analogue of the Dedekind eta-
function, but with the lattice of characters of the torusM replacing the lattice
Z+ τZ ⊂ C. Of these three factors, the first clearly extends holomorphically
to the space of all flat complex metrics on M , and the analytic torsion can be
continued to a non-vanishing holomorphic function in the ‘Siegel half-plane’
of complex metrics with positive real part; but the theta-function can not be
continued beyond those metrics for which the real part of the form

∫
α ∧ ∗α

is positive.

In the opposite direction, the inequality (4) is motivated by a lower bound
on the class of complex metrics we would like to include, coming from the tra-
ditional analytical continuation of vacuum expection values to an open subset
of the k-fold product of complexified Minkowski space MC. The Wightman
axioms imply that the expectation values extend holomorphically to a do-
main Uk called the ‘permuted extended tube’5. It is a very basic result in the
Wightman approach to quantum field theory (cf. [SW], or [Ka](2.1)) that Uk
contains the configuration space Confk(E) of all k-tuples of distinct points
of the standard Euclidean subspace E ⊂ MC. That makes it very natural
to include among the allowable metrics those of all the d-dimensional real
subspaces V of MC such that the configuration space Confk(V ) of distinct
k-tuples in V is contained in the holomorphic hull of Uk. But we have:

Proposition 2.3 If the induced metric on a d-dimensional real subspace
V of MC satisfies condition (4) above then Confk(V ) is contained in the
holomorphic hull of Uk.

5A set of points x1, . . . , xk belongs to Uk if, after ordering them suitably, there is an
element γ of the complexified Lorentz group such that the imaginary part of γ(xi − xi+1)
belongs to the forward light-cone for each i.

8



We shall sketch a proof of this result after Proposition 2.7 below.

Proof of Theorem 2.2 To diagonalize a complex symmetric matrix g = A+iB
with respect to a real basis is to diagonalize its real and imaginary parts
simultaneously, which is possible if either A or B — or, more generally, a
real linear combination of them such as the real part of (detg)−1/2g — is
positive-definite. If g is diagonalized as in the theorem with respect to a
basis {ei} of Tx, then the form α 7→ α ∧ ∗α on ∧p(T ∗x ) is diagonal with
respect to the basis {e∗S = e∗i1∧ . . .∧e

∗
ip}, where {e∗i } is the dual basis to {ei},

and S runs through p-tuples S = (i1, . . . , ip). The value of α ∧ ∗α on e∗S is

(λ1 . . . λd)
1/2
∏
i∈S

λ−1
i ,

whose argument is

1

2

{∑
i∈S

arg(λi)−
∑
i 6∈S

arg(λi)

}
.

The result follows by taking S to be the the set with arg(λi) negative. ♠

The proof of Theorem 2.2 shows that to give an element g of QC(V ) is the
same as to give a finite sequence θ1 ≥ θ2 ≥ . . . ≥ θm in the interval (−π, π)
together with a decomposition

V = V1 ⊕ . . .⊕ Vm

such that ∑
k

dimVk · |θk| < π,

and on Vk the bilinear form g is eiθk times a real positive-definite form. The
only ambiguity in this is that if, say, θk = θk+1 we can replace Vk by Vk⊕Vk+1

and omit θk+1 and Vk+1. This means that the subspace P =
⊕

e−iθk/2Vk of
the complexification VC of V is canonically associated to the form g. On the
real subspace P the complex bilinear form g is real and positive-definite. Our
argument shows that

V ∼= exp(iπΘ/2)(P ) ⊂ PC = VC,

9



where Θ : P → P is a self-adjoint operator with trace-norm6 ||Θ||1 < 1. This
shows that the space QC(V ) is parametrized by the pairs (g0,Θ), where g0

is a positive-definite inner-product on V and Θ belongs to the convex open
set Π(V, g0) of operators in V which are self-adjoint with respect to g0 and
satisfy ||Θ||1 < 1, i.e. the interior of the convex hull of the rank 1 orthogonal
projections in V . In fact we have proved

Proposition 2.4 QC(V ) is a fibre-bundle over the space of positive-definite
inner products on V whose fibre at a point g0 is Π(V, g0). Equivalently,
choosing a reference inner-product on V , we have

QC(V ) ∼= GL(V )×O(V ) Π(V ).

In particular, QC(V ) is contractible.

It is an important fact that an allowable complex metric on V remains
allowable when restricted to any subspace W of V . This follows from an
analogous property of the trace-norm, but we shall give a direct proof because
its point of view on the angles θi as critical values helps give a feeling for
allowable complex metrics.

Proposition 2.5 If g ∈ QC(V ) and W is any vector subspace of V then
g|W belongs to QC(W ).

Proof For any g ∈ QC(V ) the function v 7→ arg(g(v)) is a smooth map
from the real projective space P(V ) to the open interval (−π, π) ⊂ R. By
rescaling the basis elements {ek} we can write g as

∑
eiθky2

k. The numbers θk
are precisely the critical values of arg(g). We shall order the basis elements
so that

π > θ1 ≥ θ2 ≥ . . . ≥ θd > −π.

For each vector subspace A of V let us write θA and θA for the supremum
and infimum of arg(g) on P(A). Then we have

θk = sup{θA : dim(A) = k} = inf{θA : dim(A) = d− k + 1}.

It is enough to prove Proposition 2.5 when W is a subspace of V of codi-
mension 1. In that case the preceding characterization of the critical values

6The trace-norm is the sum of the absolute values of the eigenvalues.
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shows that if θ′1 ≥ . . . ≥ θ′d−1 are the critical values of arg(g|W ) we have
θk ≥ θ′k ≥ θk+1. The critical values for g|W therefore interleave those for g:

θ1 ≥ θ′1 ≥ θ2 ≥ θ′2 ≥ . . . ≥ θd−1 ≥ θ′d−1 ≥ θd.

This implies that
∑
|θ′k| ≤

∑
|θk| < π, as we want. ♠

In Section 5 we shall need the following variant of the preceding for-
mulation. Suppose that Z is a d-dimensional complex vector space with a
nondegenerate bilinear form g. (Any such pair (Z, g) is isomorphic to Cd with
the standard form

∑
z2
k.) Let R(Z) denote the space of all d-dimensional

real subspaces A of A such that g|A belongs to QC(A). This is an open subset
of the Grassmannian of all real subspaces of Z. If Z is the complexification
of a real vector space ZR with a positive-definite metric then (by (2.5)) the
projection V ⊂ Z → ZR is an isomorphism.

Proposition 2.6 The space R(Z) is contractible, and is isomorphic to

OC(Z)×O(ZR) Π(ZR).

Proof This is essentially a reformulation of what has been said, but it may be
helpful to relate the spaces QC(V ) and R(Z) by considering, for a complex
quadratic vector space (Z, g) as above, the intermediate space R(V ;Z) of
R-linear embeddings f : V → Z of the real vector space V such that f ∗(g) is
allowable. This space has two connected components, corresponding to the
orientation of the projection V → ZR.

The groups GL(V ) and OC(Z) act by right- and left-composition on
R(V ;Z), and each action is free. Thus R(V ;Z) is at the same time a princi-
pal GL(V )-bundle with base R(Z) and a principal OC(Z)-bundle with base
QC(V ). But the Lie groups GL(V ) and OC(Z) are homotopy equivalent to
their maximal compact subgroups, i.e. in both cases to the compact orthog-
onal group Od. More precisely, the contractibility of QC(V ) implies that
R(V ;Z) is homotopy-equivalent to the fibre OC(Z)f for any f ∈ R(V ;Z).
If we choose f so that f ∗(g) is a positive-definite real form on V this gives
us a homotopy-equivalence O(V ) → OC(Z)f → R(V ;Z). But O(V ) is
also contained in and equivalent to the fibre fGL(V ) of the other fibration
R(V ;Z)→ R(Z), which implies the contractibility of its base R(Z). ♠

The last property of QC(V ) which we shall record is
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Proposition 2.7 The domain QC(V ) is holomorphically convex.

Proof The Siegel domain U(V ) of complex-valued inner products with
positive-definite imaginary part on a real vector space V is known to be
a domain of holomorphy in S2(V ∗C ). So therefore is the product∏

0≤p≤d/2

U(∧p(V ))

inside its ambient complex vector space. The space QC(V ) is the intersection
of this product domain with the affine variety which is the natural embed-
ding of S2(V ∗C ) in this ambient vector space, and so it too is a domain of
holomorphy.

Sketch proof of 2.3

If V is a totally-real subspace of MC whose induced metric is allowable
then the preceding discussion shows that, up to a complex orthogonal trans-
formation of MC,

V = exp(iΘ/2)(E).

Here E is the standard Euclidean subspace of MC, identified with Rd so
that the first coordinate is the Wick-rotated time, and Θ is a real diagonal
matrix whose entries θ1, . . . , θd belong to the ‘generalized octagon’ Π0 ⊂ Rd

consisting of those Θ whose diagonal entries θ1, . . . , θd satisfy the inequality
(4). What we want to prove is that when Θ ∈ Π0 the diagonal matrix
exp(iΘ/2) maps each k-tuple x = {x1, . . . , xk} of distinct points of E to a
point of the Wightman ‘permuted extended tube’ Uk. It is enough to do this
when the points of x have their rth-coordinates all distinct for 1 ≤ r ≤ d,
for Uk is invariant under the complex orthogonal group O(MC), and the
coordinates can be made distinct by applying an element of O(E) ⊂ O(MC).
(Notice that the map exp(iΘ/2) commutes with the action of O(E).)

Having fixed a set of points x, let us consider the open subset U of
Cd consisting of all complex diagonal matrices Θ such that exp(iΘ/2)(x) is
contained in the holomorphic hull of Uk. We propose to show that U contains
the open ‘tube domain’ Π0 × iR.

The crucial fact is that Π0 is the convex hull of its subspace Π00 consisting
of the matrices with rank 1, i.e. those for which only one of the θr is non-zero.
If the real part of Θ belongs to Π00 then exp(iΘ/2)(x) is contained in Uk, for
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a point of Cd with only one non-zero coordinate λ in the rth place belongs to
the extended forward tube if r = 1 and Re(λ) > 0 or r > 1 and Im(λ) > 0,
and for each r we can re-order the points x1, . . . , xk so that xi − xi+1 has
its rth coordinate positive for 1 ≤ i ≤ k − 1, and then exp(iΘ/2) will take
xi − xi+1 into the extended forward tube.

We should now like to apply Bochner’s ‘tube theorem’, which asserts that
if P is a connected open subset of Rd then a holomorphic function defined in
the tube domain P × iR extends holomorphically to the tube domain whose
base is the convex hull of P . Unfortunately our domain U is not an open tube
domain, though it contains a neighbourhood of the non-open tube domain
Π00 × iRd. Experts seem to believe that Bochner’s theorem applies in our
situation, but among the many generalizations in the literature we have not
found one that exactly covers it. As Proposition 2.3 plays only a motivational
role in this paper we have not pursued the question further.

The two-dimensional case

The case d = 2 is especially simple because then the matrix (det g)−1/2g
depends only on the conformal structure, and decouples from the volume
element.

A non-degenerate complex inner product g on a 2-dimensional real vec-
tor space V is determined up to a scalar multiple by its two distinct null-
directions in the complexified space VC. We can think of these as two points of
the Riemann sphere P(VC). Then (det g)−1/2g has positive real part precisely
when the two points lie one in each of the open hemispheres of the sphere
P(VC) separated by the real equatorial circle P(V ). When the two points
move to distinct points of the equator we get a Lorentzian inner product,
with its two light-directions in P(V ).

A point of the sphere P(VC) not on the equator can be regarded as a
complex structure on the real vector space V , and the two hemispheres cor-
respond to the two possibilities for the orientation which a complex structure
defines. On a smooth surface Σ any almost-complex structure is integrable,
so a point of MetC(Σ) is a pair of complex structures of opposite orientations
on Σ, together with a complex volume element. The Riemannian metrics are
those for which the two complex structures are complex-conjugate to each
other, and the volume element is real.

When d = 2 the domain QC(V ) is thus a 3-dimensional polydisc, one disc
for each of the complex structures, and the third for the volume-element.
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The one-dimensional case: electric circuits

Our concept of an allowable complex metric does not at first look inter-
esting in the one-dimensional case, but if we allow singular 1-manifolds —
identified with finite graphs M — we find that complex metrics arise natu-
rally in electrical circuit theory. A Riemannian metric on M is determined
(up to isometry) by the assignment of a positive real number to each edge
of the graph, and can be interpreted as its resistance when the edge is re-
garded as a wire in an electrical circuit. A state of the system (perhaps with
current entering or leaving at each node) is determined by a continuous po-
tential function φ : M → R which is smooth on each closed edge, and whose
gradient is the current flowing in the circuit. The energy of a state is

1

2

∫
M

||∇φ||2ds,

and so the system can be regarded as a free massless field theory on the graph:
in particular the vacuum expectation value 〈φ(x), φ(y)〉, when x and y are
two nodes of the graph, is the ratio of the potential-difference φ(x)−φ(y) to
the current flowing in at x and out at y when no current is allowed to enter
or leave at other nodes.

We encounter complex metrics when we consider a circuit in which an
alternating current with frequency ω is flowing, and in which each branch
has not only a resistance R but also a positive inductance L and a positive
capacitance C. In that situation the volume element

√
g = R is replaced by

the impedance √
g = R + iωL+ 1/iωC,

a complex number which defines an allowable metric because Re
√
g > 0.

Quite apart from electric circuitry, however, singular one-dimensional
manifolds with allowable complex metrics can arise in quantum field the-
ory as the Gromov-Hausdorff limits of non-singular space-times of higher
dimension.

3 Quantum field theories as functors

The traditional Wightman approach to quantum field theory is not well-
adapted to important examples such as gauge theories, especially when the
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space-time is not flat. Another formulation — potentially more general —
views a d-dimensional field theory as something more like a group repre-
sentation, except that the group is replaced by a category CCd of space-time
manifolds. The guiding principle of this approach is to preserve as much as
possible of the path-integral intuition. We shall present it very briefly here,
with minimal motivation.

Roughly, the objects of the category CCd are compact smooth (d − 1)-
dimensional manifolds Σ equipped with complex metrics g ∈ MetC(Σ). A
morphism from Σ0 to Σ1 is a cobordism M from Σ0 to Σ1, also with a
complex metric. We shall write M : Σ0  Σ1 to indicate a cobordism.
Composition of morphisms is by concatenation of the cobordisms. The reason
for the word ‘roughly’ is that, because there is no canonical way to give a
smooth structure to the concatenation of two smooth cobordisms, we must
modify the definition slightly so that an object of CCd is not a (d−1)-manifold
but rather is a germ of a d-manifold along a given (d − 1)-manifold Σ —
i.e. Σ is given as a closed submanifold of a d-manifold U , but any two
open neighbourhoods of Σ in U define the same object of CCd . We require
Σ to be two-sided in U , and equipped with a co-orientation which tells us
which side is incoming and which is outgoing. (Nevertheless, we shall usually
suppress the thickening U , the co-orientation, and the complex metric g from
the notation.) Furthermore, two morphisms M and M ′ from Σ0 to Σ1 are
identified if there is an isometry M →M ′ which is the identity on the germs
Σ0 and Σ1.

In terms of the category CCd we define a d-dimensional field theory as a
holomorphic functor from CCd to the category of Fréchet topological vector
spaces and nuclear (i.e. trace-class) linear maps. We shall write EΣ for
the vector space associated to an object Σ, and ZM : EΣ0 → EΣ1 for the
linear map associated to a cobordism M : Σ0  Σ1. To say that the functor
is ‘holomorphic’ means that, for a given smooth manifold-germ Σ ⊂ U , the
topological vector spaces EΣ form a locally trivial holomorphic vector bundle
on the complex manifold MetC(U) of complex metrics on U , and that the
maps ZM : EΣ0 → EΣ1 define a morphism of holomorphic vector bundles on
the manifold MetC(M) (to which the bundles {EΣ0} and {EΣ1} are pulled
back).

In practice, theories are usually defined on cobordism categories where
the manifolds are required to have additional structure such as an orientation
or a spin-structure. These can easily be included, but are not relevant to our
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account. For the same reason we do not mention that, for a theory including
fermions, the vector spaces EΣ will have a mod 2 grading, and the usual
sign-conventions will be applied when we speak of their tensor products.

Because our objects Σ ⊂ U are really germs of d-manifolds, we automati-
cally have a family of cobordisms Σ′  Σ embedded in U , each diffeomorphic
to the trivial cobordism Σ× [0, 1] with the outgoing boundary Σ× {1} cor-
responding to Σ ⊂ U . These cobordisms can be ordered by inclusion, giving
us a direct system of objects Σ′ with cobordisms to Σ. Similarly, looking
downstream rather than upstream, we have a family of cobordisms Σ Σ′′

contained in U , giving us an inverse system of objects Σ′′ to which Σ maps.
For any field theory, therefore, there are natural maps

lim
→
EΣ′ → EΣ → lim

←
EΣ′′ .

We shall assume the functor has the continuity property that each of these
maps is injective with dense image. We shall write ĚΣ for the upstream limit
lim→EΣ′ , and ÊΣ for the downstream limit. Then ÊΣ, as the inverse-limit of
a countable sequence of nuclear maps of Fréchet spaces, is a nuclear Fréchet
space7. The other space ĚΣ is also nuclear, but not usually metrizable: it is
the dual of the nuclear Fréchet space ÊΣ∗ , where Σ∗ denotes the germ Σ with
its co-orientation reversed. As this is such a basic point, we have included a
proof as an Appendix at the end of this section.

When we have a cobordism M : Σ0  Σ1 we automatically get maps
ĚΣ0 → ĚΣ1 and ÊΣ0 → ÊΣ1 , and both of them factorize though a map
ÊΣ0 → ĚΣ1 . In fact this is equivalent to the original assumption that UM
is nuclear, because any map from the dual of a nuclear Fréchet space to a
nuclear Fréchet space is nuclear.

The space EΣ with which we began plays only a provisional role in the
theory, serving to construct the fundamental nuclear spaces between which
it is sandwiched.

The essential requirement we place on the functor is that it takes disjoint
unions to tensor products:

ĚΣtΣ′
∼= ĚΣ ⊗ ĚΣ′ .

7A very useful concise account of nuclear spaces can be found in [C].
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This implies — and is equivalent to — ÊΣtΣ′
∼= ÊΣ⊗ ÊΣ′ . Of course for two

cobordisms M and M ′ we also assume

ZMtM ′ = ZM ⊗ ZM ′ .

There is a unique natural concept of tensor product here, because all the
vector spaces are nuclear.

The tensoring assumption implies that E∅ = C, where ∅ denotes the
empty (d− 1)-manifold. Thus for a closed d-manifold M we have a partition
function ZM ∈ End(E∅) = C. The whole structure of the theory is a way of
expressing the sense in which the number ZM deppends locally on M .

In this discussion we have still committed some abuses of language. The
“category” CCd is not really a category because it does not have identity
maps. We could deal with this by agreeing that an isomorphism Σ0 → Σ1

is a cobordism of zero length, but then these degenerate cobordisms are
represented by operators which are not nuclear. The true replacement for
the missing identity operators is our assumption that the maps ĚΣ → ÊΣ are
injective with dense image. To avoid the abuse of language we can say that
a field theory is a functor Σ 7→ EΣ from (d− 1)-manifolds and isomorphisms
to vector spaces, together with a transformation ZM : EΣ0 → EΣ1 for each
cobordism. But whatever line we take, we must assume that an isomorphism
f : Σ0 → Σ1 of germs of d-manifolds induces an isomorphism f∗ : EΣ0 → EΣ1

which depends smoothly on f in the sense that for any family P ×Σ0 → Σ1

parametrized by a finite-dimensional manifold P the induced map P×EΣ0 →
EΣ1 is smooth.

Let us explain briefly how to get from this functorial picture to the tra-
ditional language of local observables and vacuum expectation values. For a
point x of a d-manifold M we define the vector space Ox of observables at x
as follows. We consider the family of all closed discs D smoothly embedded
in M which contain x in the interior D̊. If D′ ⊂ D̊ then D\D̊′ is a cobordism
∂D′  ∂D and gives us a trace-class map E∂D′ → E∂D. We therefore have
an inverse system {E∂D} indexed by the discs D, and we define Ox as its
inverse-limit.

Now suppose that M is closed, and that x1, . . . xk are distinct points of
M . Let D1, . . . Dk be disjoint discs in M with xi ∈ D̊i. Then M ′ = M \

⋃
D̊i
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is a cobordism from
⊔
∂Di to the empty (d − 1)-manifold ∅, and defines

ZM ′ : Et∂Di → E∅ = C. Using the tensoring property we can write this

ZM ′ :
⊗

E∂Di −→ C,

and then we can pass to the inverse-limits to get the expectation-value map⊗
Oxi −→ C.

We might prefer the language of “field operators” to that of vacuum
expectation values. If the space-time M is a cobordism Σ0  Σ1, then for
any x in the interior of M — say x ∈ D̊ ⊂ M — the cobordisms M \ D̊
define maps

Ox → Hom(EΣ0 ;EΣ1),

while if x lies on a hypersurface Σ an observable at x defines a map ĚΣ → ÊΣ,
i.e. it acts on EΣ as an unbounded operator. But on a Lorentzian space-
time M we sometimes want to make the observables at all points x ∈M act
on a single vector space, and to ask whether they commute when space-like
separated. We shall postpone that discussion to Section 5.

Lorentzian manifolds

There is a category CLor
d which at first sight looks more relevant to quan-

tum field theory than CCd . Its objects are compact Riemannian manifolds of
dimension (d−1) and its morphisms are d-dimensional cobordisms equipped
with real Lorentzian metrics. Fredenhagen and his coworkers (cf. [BF]) have
developed the theory of quantum fields in curved space-time using a version
of this category. The category CLor

d lies “on the boundary” of the category
CCd . In section 5 we shall discuss the sense in which a representation of CCd
has a “boundary value” on CLor

d , at least if it is unitary.

Unitarity

So far we have not asked for an inner product on the topological vector
space EΣ associated to a (d−1)-manifold Σ. Our main concern in this work is
with unitary theories, even though not all interesting quantum field theories
are unitary.

To define unitarity in our context, recall that, if Σ∗ denotes the manifold
germ Σ with its co-orientation reversed, then ĚΣ∗ is the dual topological
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vector space to ÊΣ. Furthermore, a cobordism M : Σ0  Σ1 can also be
regarded as a cobordism from Σ∗1 to Σ∗0, and the two maps EΣ0 → EΣ1

and EΣ∗1
→ EΣ∗0

are automatically algebraic transposes of each other. Thus
Σ 7→ Σ∗ is a contravariant functor.

In a unitary theory we shall not expect the vector space EΣ to have an
inner product for every (d− 1)-manifold Σ. A complex metric g ∈ MetC(Σ)
has a complex conjugate ḡ. If we write Σ̄ for Σ with the metric ḡ but with its
co-orientation unchanged8 then Σ 7→ Σ̄ is a covariant functor. It is natural
to require that

EΣ̄
∼= ĒΣ. (5)

For a theory satisfying condition (5) the conjugate dual of the vector
space ĚΣ is ÊΣ̄∗ . We expect ĚΣ to have an inner product only when Σ ∼= Σ̄∗,
i.e. when the d-manifold germ Σ ⊂ U admits a reflection with fixed-point set
Σ which reverses the co-orientation and changes the metric to its complex
conjugate. Such a hypersurface-germ Σ will be called time-symmetric. Its
metric is real and Riemannian when restricted to the (d − 1)-dimensional
hypersurface Σ itself.

We can now define a unitary theory as one which satisfies two conditions:

(i) the reality condition (5), and

(ii) reflection-positivity, in the sense that when we have a time-symmetric
hypersurface Σ ∼= Σ̄∗ the hermitian duality between ĚΣ and ĚΣ̄ is positive-
definite.

For a unitary theory, when we have a time-symmetric germ Σ we can
complete the pre-Hilbert space ĚΣ to obtain a Hilbert space EHilb

Σ with

ĚΣ → EHilb
Σ → ÊΣ.

The theory on flat tori

8If our theory is defined on a category of oriented space-time manifolds, we must give
Σ̄ the opposite orientation to Σ, although the same co-orientation in U .
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The partition function of a theory on flat Riemannian tori already gives
us a lot of information about the theory. The moduli space of such tori is
the double-coset space

Od\GLd(R)/SL(Z) ∼= Q(Rd)/SLd(Z),

whereQ(Rd) = Od\GLd(R) is the space of positive-definite real d×dmatrices.
This space is an orbifold, so the partition function is best described as a
smooth function Z : Q(Rd) → C which is invariant under SLd(Z). The
axioms we have proposed imply that Z extends to a holomorphic function

QC(Rd) → C,

but they also imply very strong constraints beyond that. Notably, for each
way of writing a torus M as a cobordism M̃ : Σ  Σ from a (d − 1)-
dimensional torus Σ to itself we have Z(M) = trace(ZM̃), where ZM̃ : EΣ → EΣ

is a nuclear operator in the vector space EΣ, which is graded by the characters
of the translation-group of Σ. More explicitly, we have

Q(Rd) = Q(Rd−1)× R×+ × Rd−1,

and with repect to this decomposition we must have

Z(A, et, ξ) =
∑
i,α

χi,α(ξ) e−λit,

where {λi = λi(A)} is the sequence (tending to +∞) of eigenvalues of the
Hamiltonian operator on EΣ, which is graded by the character-group Zd−1

of the torus Σ = Rd−1/Zd−1.

Appendix: The duality (ĚΣ)∗ ∼= ÊΣ∗

To keep things as general as possible, we suppose that Σ 7→ EΣ is a
functor from the d-dimensional cobordism category to a category of metriz-
able topological vector spaces and nuclear maps. We suppose also that the
category of vector spaces is equipped with a tensor product functor9 which
is coherently associative and commutative, and that we are given natural
isomorphisms EΣ1 ⊗ EΣ2 → EΣ1tΣ2 .

9For example, we could work with the category of Hilbert spaces with the natural
Hilbert space tensor product.
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Composable cobordisms Σ1  Σ2  Σ3 give us maps

EΣ1 → EΣ2 → EΣ3 . (6)

By reinterpreting Σ1  Σ2 as a cobordism Σ1 t Σ∗2  ∅ we get a map
EΣ1 ⊗ EΣ∗2

→ C, and hence EΣ1 → (EΣ∗2
)∗. Similarly, we can reinterpret

Σ2  Σ3 as ∅  Σ∗2 t Σ3, which gives (EΣ∗2
)∗ → EΣ3 . It is easy to see that

the composite EΣ1 → (EΣ∗2
)∗ → EΣ3 coincides with EΣ1 → EΣ2 → EΣ3 .

Yet again, performing the reinterpretations in the reverse order, we get
maps

(EΣ∗1
)∗ → EΣ2 → (EΣ∗3

)∗

whose composite is the transpose of the map induced by the composite cobor-
dism Σ∗3  Σ∗1.

Now suppose that we have an infinite sequence of cobordisms

. . . Σi+1  Σi  Σi−1  . . . , (7)

indexed by i ≥ 0, which form the downstream tail of a manifold-germ Σ, i.e.
the sequence which we used above to define the space ÊΣ = lim←EΣi . Let us
perform the two manipulations that we performed on (6) alternately on the
sequence (7), thereby obtaining a sequence whose even terms are EΣ2i

and
whose odd terms are (EΣ∗2i+1

)∗. The inverse-limit of the whole sequence is the
same as that of any cofinal subsequence. Considering the cofinal subsequence
of even terms shows that the inverse-limit is ÊΣ. But the inverse-limit of the
cofinal sequence of odd terms is

lim
←

(EΣ∗21+1
)∗ = (lim

→
EΣ∗21+1

)∗.

This shows that ÊΣ
∼= (ĚΣ∗)

∗. But, because ÊΣ is automatically a nuclear
Fréchet space, we can dualize again and conclude that (ÊΣ)∗ ∼= ĚΣ∗ also.

4 Some analogies from representation theory

To understand the relation between representations of the category CCd and
of the Lorentzian category CLor

d which lies “on its boundary” it is helpful to
consider the representation theory of some finite-dimensional groups which
lie on the boundary of complex semigroups.
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The group G = PSL2(R) is the group of Möbius transformations of the
Riemann sphere Σ = C∪∞ which map the open upper half-plane U to itself.
It lies on the boundary of the complex sub-semigroup of GC = PSL2(C)
consisting of Möbius transformations which map the closure of U into its own
interior. It is natural, however, to consider a slightly larger semigroup G<

C by
including the degenerate Möbius transformations which collapse U to a single
point in U — these correspond to complex 2× 2 matrices of rank one. The
resulting semigroup is then a contractible open subset of the 3-dimensional
complex projective space formed from the 2 × 2 matrices. The topological
boundary of G<

C consists of the Möbius transformations which take U to a disc
or point in the upper half-plane which touches the real axis, and the Shilov
boundary consists of the group G of real Möbius transformations — an open
solid torus — compactified by its 2-torus boundary, which is the hyperboloid
det(A) = 0 in P3

R consisting of the degenerate real Möbius transformations.
(Thus the complete Shilov boundary is the part of P3

R where det(A) ≥ 0.)

The irreducible unitary representations of the group G = PSL2(R) are
essentially10 of two kinds, the principal series and the discrete series. The
best-known principal series representation is the action of G on the Hilbert
space of 1/2-densities on the circle P1

R which is the boundary of U — the
general member of the series is the action on densities of complex degree s
with Re(s) = 1/2. The best-known discrete series representation is the action
of G on the square-summable holomorphic 1-forms on U, with the natural
norm

‖ α ‖2= i

∫
U
α ∧ ᾱ

— more generally, for each positive integer p we have the action on holomor-
phic p-forms α = f(z)(dz)⊗p, when one must divide α ∧ ᾱ by the (p − 1)st

power of the G-invariant area form on the Poincaré plane U to define the
norm. The discrete series representations obviously extend to bounded holo-
morphic representations of the semigroup G<

C by contraction operators, while
the principal series representations cannot extend because when |a| < 1 the
element w 7→ aw (here w = (z − i)/(z + i) is the coordinate in the unit-disc
model |w| < 1 of U) of the semigroup G<

C would be represented by an operator
whose eigenvalues are an for all n ∈ Z. But let us notice that, though the dis-
crete series representations are unitary on the boundary group G = PSL2(R),

10We shall ignore the “supplementary” series, which is of measure zero in the space of
representations.
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the degenerate elements of G<
C , which collapse U to a point p ∈ U, are rep-

resented by bounded operators of rank 1. So these unitary representations
of PSL2(R) do not extend unitarily to the whole Shilov boundary: the de-
generate elements correspond to rank 1 operators ξ 7→ 〈ζ, ξ〉η, where η and
ζ are “non-normalizable elements” of the Hilbert space — i.e. they belong
to an appropriate completion of it.

The groupG is a subgroup of the group Diff+(S1) of orientation-preserving
diffeomorphisms of the circle. This infinite-dimensional Lie group does not
possess a complexification, though its Lie algebra, the space of smooth vec-
tor fields on the circle, can of course be complexified. The beginning of the
present work was the observation made quite independently ([N],[S1]) by the
two authors, and also by Yu. Neretin, in the 1980s that there is an infinite-
dimensional complex semigroup A which has exactly the same relation to
Diff+(S1) as G<

C has to G = PSL2(R). Its elements are complex annuli with
parametrized boundary circles: one can think of them as “ exponentiations”
of outward-pointing complex vector fields defined on a circle in the the com-
plex plane. The annuli form a complex semigroup when concatenated as
cobordisms, and the lowest-weight or “positive-energy” representations of
Diff+(S1) which arise in 2-dimensional conformal field theory are precisely
those which are boundary values of holomorphic representations of the semi-
group A by trace-class operators.

The discussion of PSL2(R) generalizes to the symplectic group G =
Sp(V ) ∼= Sp2n(R) of a real symplectic vector space V of dimension 2n. The
role of the upper half-plane U is played by the Siegel ‘generalized upper
half-plane’ — the domain U(V ) of positive11 Lagrangian subspaces of the
complexification VC. The group G lies on the boundary of a semigroup G<

C
which is the Siegel domain U(Ṽ ⊕ V ), where Ṽ denotes V with sign of its
symplectic form reversed. A generic element of this domain is the graph of
a complex symplectic transformation of VC which maps the closure of U(V )
into its own interior, but, just as was the case with PSL2(C), there are de-
generate elements which map U(V ) non-injectively into itself. The complex

11A complex Lagrangian subspace W is positive if iω(w, w̄) > 0 for every non-zero
w ∈W , where ω is the symplectic form of V̂C. If we choose a decomposition V = Q⊕Q∗

of V as a sum of real Lagrangian subspaces then positive Lagrangian subspaces W of
VC can be identified with complex-valued symmetric forms on Q whose imaginary part is
positive-definite.
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semigroup G<
C has been carefully studied by Roger Howe [H], who called it

the oscillator semigroup.
The Shilov boundary of G<

C is the Grassmannian of real Lagrangian sub-
spaces of Ṽ ⊕ V : generically, these are the graphs of elements of the real
symplectic group G = Sp(V ), but this group is compactified by the addi-
tion of Lagrangian subspaces which intersect the axes of Ṽ ⊕ V nontrivially,
and thus correspond to Lagrangian correspondences from V to V which are
not actual maps V → V . Once again, whereas Sp<(VC) is a genuine semi-
group, the composition-law of the real group Sp(V ) does not extend to the
compactification.

The group G = Sp(V ) has a discrete series of unitary representations
generalizing those of PSL2(R). The most important is the metaplectic rep-
resentation — actually a representation of a double covering G̃ of Sp(V ) —
which is the action on the quantization HV of the symplectic space V . The
Hilbert space HV is characterized by the property that it contains a copy of
the ray (

∧n(W ))⊗(1/2) for each point W of the domain U(V ) — the square-
root of the natural hermitian holomorphic line bundle {

∧n(W )} on U(V ) is
canonical up to multiplication by ±1, and is holomorphically embedded in
HV . It is acted on by G̃ rather than G.

The action of G̃ on HV is the boundary-value of a holomorphic projective
representation of the oscillator semigroup G<

C . For G<
C is just the domain

U(Ṽ ⊕ V ), each point of which defines a ray in

HṼ⊕V
∼= H∗V ⊗HV

∼= EndHS(HV ),

where EndHS denotes the Hilbert-Schmidt endomorphisms12.

When n = 1 the group Sp(V ) is SL2(R), a double covering of the group
PSL2(R) of Möbius transformations we considered before. To relate the
cases of PSL2(R) and Sp(V ), recall that PSL2(C) is an open subspace of the
complex projective space P3

C formed from the vector space of 2× 2 matrices:
in fact it is the complement of the quadric Q2

C
∼= P1

C × P1
C defined by the

vanishing of the determinant, i.e. by the matrices of rank 1. The double
covering group SL2(C) sits inside the Grassmannian of complex Lagrangian
subspaces of C4, which is a quadric 3-fold Q3

C in P4
C: it is a non-singular

12A more careful discussion shows that G<
C is represented by operators of trace class.
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hyperplane section (corresponding to the Lagrangian condition) of the Klein
quadric formed by all the lines in P3(C). The quadric Q3

C is the branched
double-covering of the projective space P3

C of 2-matrices, branched along the
quadric Q2

C of rank 1 matrices. The contractible semigroup SL<2 (C) is the
open subset of the Lagrangian Grassmannian of C4 consisting of the positive
Lagrangian subspaces, and it is a double covering of PSL<2 (C).

5 Unitarity and global hyperbolicity

In the previous section we saw how a holomorphic representation of a com-
plex semigroup by contraction operators on a Hilbert space can give rise —
on passing to the boundary — to a unitary representation of a group which
is a dense open subset of the Shilov boundary of the semigroup. The remain-
ing points of the Shilov boundary are not represented by unitary operators
— the representation extends to them only in some “weak” sense. We now
come to the analogue of this phenomenon in quantum field theory, where
the Lorentzian cobordism category CLor

d lies on the boundary of CCd , and the
role of the open dense subgroup of the Shilov boundary is played by the
subcategory of globally hyperbolic cobordisms which we shall define below.
We should mention, however, that although the category of globally hyper-
bolic cobordisms is very natural, the category CLor

d may be smaller than the
optimal category we could put on the boundary of CCd . For example, the
Lorentzian cobordisms could possibly be allowed to contain ‘black holes’ sur-
rounded by horizons, rather analogous to the ‘cobordisms-with-boundaries’
used to describe two-dimensional theories with both open and closed strings.
We shall not pursue such speculations here.

When we have a theory defined on CCd let us first consider how to extend
the assignment Σ 7→ EΣ to a Lorentzian germ Σ ⊂ U with Σ co-oriented
in U . We can identify U with Σ × (−ε, ε) by exponentiating the geodesic
curves emanating perpendicularly from Σ. The metric then takes the form
ht − dt2, where t 7→ ht is a smooth map from (−ε, ε) to the manifold of
Riemannian metrics on Σ. If the germ is time-symmetric then we can define
EΣ by replacing the Lorentzian metric by the ‘Wick rotated’ Riemannian
metric hit + dt2, which makes sense because if ht = h−t then ht is a function
of t2, so that hit is defined and real. But this does not help for a general
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hypersurface, and in any case seems rather arbitrary: we shall return to this
point in Remark 5.3 below.

It is less easy to assign an operator ZM : EΣ0 → EΣ1 to a Lorentzian
cobordism M : Σ0  Σ1. Even if M is a cylinder topologically, it can be
complicated in its “causal” structure. Consider, for example, a 2-dimensional
cylindrical space-time. We saw in Section 2 that, up to a conformal mul-
tiplier, a complex metric on a surface is a pair of complex structures with
opposite orientations. At the Shilov boundary the complex structures degen-
erate to the foliations by the left- and right-moving light-lines of a Lorentzian
surface. If each light-line which sets out from the incoming boundary circle
of the cylinder eventually reaches the outgoing boundary circle then each
family of light-lines gives us a diffeomorphism from the incoming to the out-
going boundary. In fact (cf. [S2] p. 8 and p.16) the isomorphism classes of
Lorentzian cylinders of this kind are determined up to conformal equivalence
by the pair of diffeomorphisms together with a positive integer which counts
the number of times that the left- and right-moving lines emanating from
a given point of the incoming circle cross before hitting the outgoing circle.
This agrees with the well-known fact that the Hilbert space associated to a
circle in 2-dimensional conformal field theory comes with a projective unitary
representation of the group Diff+(S1)×Diff+(S1).

But the light-lines from the incoming circle can behave in a more com-
plicated way. For example, one set of light-lines may spiral closer and closer
to a closed limit cycle of the foliation, a light-line which is a circle parallel
to the incoming boundary circle of the annulus. That set of lines will then
never reach the outgoing circle. One might think of this phenomenon as akin
to a black hole in the space-time, though, unlike a black hole, the Lorentzian
metric here has no singularity.13

In works on general relativity a Lorentzian cobordism M : Σ0  Σ1 be-
tween Riemannian manifolds is called globally hyperbolic14 if every maximally-

13In this example, the “blocked” foliation is conformally the same as the “degenerate
annulus” obtained by collapsing the closed light-line to a point, i.e. a pair of discs with
their centre-points identified. This is usually regarded as an “annulus of infinite length”,
and it acts on an irreducible positive-energy representation of Diff+(S1) by a projection
operator of rank one, just as a degenerate complex Möbius transformation acts by a rank
1 operator in a discrete-series representation of PSL2(R).

14Of course we are only considering compact time-slices, which is not the usual focus in
relativity theory.

26



extended time-like geodesic in M travels from Σ0 to Σ1. Such an M must
be diffeomorphic to Σ0 × i[0, 1], and in our compact situation we can take
the definition of global hyperbolicity to be the existence of a smooth time-
function τ : M → i[0, 1] which is a fibration with Riemannian fibres. It is
only for globally hyperbolic manifolds that, for example, the Cauchy problem
for the wave-equation on M is soluble.

The globally hyperbolic cobordisms form an open subcategory Cgh
d of CLor

d

which should play the role of the real Lie group to which the holomorphic
contraction representations of Section 4 can be extended (though the result
(5.2) we prove below is unfortunately weaker).

If M is a globally hyperbolic cobordism equipped with a time-function,
we define a diffeomorphism M → Σ0 × i[0, 1] by following the orthogonal
trajectories to the time-slices. In this description the metric takes the form
hτ + c2dτ 2 for some function c : Σ0 × [0, 1] → R. A small deformation δc of
c into the right half-plane changes the Lorentzian metric into an allowable
complex metric, and we could hope to define ZM in the Lorentzian case as
the limit of the operators associated to such deformations. That, however,
encounters the problem that the deformed metric depends not only on the
choice of the deformation δc, but, more importantly, on the choice of the
time-function, which should be irrelevant to the operator UM . Happily, there
is a better point of view.

The passage from CCd to CLor
d is already interesting when d = 1, i.e. for

quantum mechanics rather than quantum field theory — the case when the
Euclidean path-integral can be treated by traditional measure-theory. It is
worthwhile to spell out the argument in this case, before passing to higher
dimensions.

The main point is to understand why a holomorphic representation of the
category CC1 is just a 1-parameter contraction semigroup, where the param-
eter runs through the open half-plane C+ = {z ∈ C : Re(z) > 0}. Recall
that we began this work with the relation of such semigroups to 1-parameter
unitary groups.

Any complex metric on the interval I = [0, 1] can be pulled back from the
holomorphic quadratic differential dz2 on C by means of a smooth embedding
f : I → C such that f(0) = 0 and Re f ′(t) > 0 for all t ∈ I. In fact the
space Emb(I;C) of such embeddings is isomorphic to MetC(I) as a complex
manifold. If f ′(t) = 1 when t is sufficiently close to the ends of the interval I
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then the pulled-back metric defines a morphism If : P → P in the category
CC1 , where P denotes the object defined by the germ of the standard metric
on the line R at the origin.

The crucial observation is that the operator Zf : EP → EP defined by If
depends only on the point f(1) ∈ C+, where C+ denotes the open right half-
plane of C. We see that as follows. First, Zf does not change if f is replaced
by f̃ = f ◦φ where φ is any diffeomorphism I → I which is the identity near
the ends of the interval. This means that Zf does not change if f moves
along a curve in Emb(I;C) whose tangent vector at each point is the action
of an element of the Lie algebra Vect(I̊) of compactly supported vector fields
on the interior of I, and hence — because Zf depends holomorphically on f
— it does not change if each tangent vector is the action of an element of
the complexified Lie algebra VectC(I̊). But if f, f̃ ∈ Emb(I;C) define two
morphisms P → P and have f(1) = f̃(1), the tangent vectors to the obvious
linear path from f to f̃ are given by the action of elements of VectC(I̊).

We can therefore write Zf = u(z), where z = f(1). Obviously we have
u(z1)u(z2) = u(z1 + z2) for any z1, z2 ∈ C+. Furthermore, the vector space
ĚP is a pre-Hilbert space because the object P of Cgh

1 is time-symmetric, and
the unitarity condition tells us that u(z̄) is the hermitian transpose of u(z).

The desired unitary semigroup {u(iT )}T∈R, which will act on the triple
ĚP → EHilb

P → ÊP , can now be defined as follows. As explained in Section
3, any vector ξ ∈ ĚP can be written ξ = u(ε)η for some ε > 0 and some
η ∈ EP . We define u(iT )ξ = u(ε + iT )η, which is plainly independent of ε.
Finally, u(iT ) is unitary because

u(−iT )u(iT )ξ = u(−iT )u(ε+ iT )η

= u(−iT )u(ε/2)u(ε/2 + iT )η

= u(ε/2− iT )u(ε/2 + iT )η

= u(ε)η = ξ.

To pass from d = 1 to higher-dimensional cobordisms we observe that the
essential step in our argument was the first case of the following

Principle 5.1 If a d-dimensional cobordism M is a real submanifold of
a complex d-manifold MC, and M has an allowable complex metric induced
from a holomorphic symmetric form g on the tangent bundle TMC, then the
linear map ZM does not change when M is moved around smoothly inside
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MC (leaving its ends fixed), providing the restriction of g to M remains an
allowable complex metric.

As in the d = 1 case, this principle holds because any infinitesimal move-
ment of M inside MC is given by a complex vector field on M , while ZM
depends holomorphically on M and, being invariant under the action of
Diff(M rel ∂M), does not change when M moves in a direction given by
the action of a complexified tangent vector to this group.

Unfortunately, to use the principle we need the cobordism M to be em-
bedded in a complexification MC, and the only natural way to ensure this
is to pass from the smooth Lorentzian category CLor

d to the corresponding
real-analytic cobordism category CLor,ω

d , where both the manifolds and their
metrics are assumed real-analytic. Inside this category there is the subcate-
gory Cgh,ω

d of globally hyperbolic cobordisms: we shall also assume that the
time-function τ : M → i[0, 1] is real-analytic, though that could be avoided,
because any smooth function can be approximated real-analytically.

There are two ways of thinking about restricting to real-analytic cobor-
disms. One might think that the smooth cobordism category is the natu-
ral object, and try to eliminate the analyticity hypothesis. But one could
also think that that the natural allowable space-times really do come sur-
rounded by a thin holomorphic thickening, within which the choice of a
smooth totally-real representative is essentially arbitrary. In any case, we
can prove the following theorem.

Theorem 5.2 A unitary quantum field theory as defined in Section 3 on
the category CCd induces a functor from Cgh,ω

d to topological vector spaces. The
functor takes time-symmetric objects to Hilbert spaces, and takes cobordisms
between them to unitary operators.

To be quite precise: the theorem asserts that if Σ is a time-symmetric
(d− 1)-manifold germ then there is a Hilbert space EHilb

Σ with

ĚΣ ⊂ EHilb
Σ ⊂ ÊΣ,

and a real-analytic globally hyperbolic cobordism Σ0  Σ1 between time-
symmetric hypersurfaces induces a unitary isomorphism EHilb

Σ0
→ EHilb

Σ1
which

also maps ĚΣ0 to ĚΣ1 and ÊΣ0 to ÊΣ1 .
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Proof of 5.2 Given a real-analytic globally hyperbolic cobordismM : Σ0  Σ1

we choose a time function t : M → [0, 1] whose level surfaces foliate M by
Riemannian manifolds, and, following the orthogonal trajectories to the fo-
liation, we identify M with Σ0 × [0, 1] as before.

Using the real-analyticity assumptions, we can find a complexification
MC of M to which both t and g can be extended holomorphically, and we
can assume that τ = it : MC → U ⊂ C is a holomorphic fibre bundle over
a neighbourhood U of the interval i[0, 1]. Furthermore, the isomorphism
Σ0× [0, 1]→M extends to a holomorphic trivialization of the bundle MC →
U . For any smooth curve f : [0, 1]→ U such that f(0) = 0 and Re f ′(s) > 0
for s ∈ [0, 1] this gives us a totally real submanifold Mf of MC sitting over
the curve. We can use the morphism associated to the cobordism Mf in
exactly the way we used Zf in discussing the 1-dimensional case, to obtain
a unitary operator ZM associated to the Lorentzian cobordism.

It is important that ZM does not depend on the choice of the time-
function t defining the foliation. For two choices of t are linearly homotopic,
and changing from one to the other amounts to deforming the totally-real
embedding Σ0× [0, 1]→MC by a real-analytic diffeomorphism of Σ0× [0, 1].

Remark 5.3 We can apply the principle 5.1 to understand better how a
theory defined on CCd assigns a vector space EΣ to a Lorentzian germ Σ ⊂ U .

If the Lorentzian metric on U is real-analytic then the complex theory
gives us a holomorphic bundle {Êf} on the space J of germs of embeddings
f : (−ε, ε)→ C such that f(0) = 0 and Re f ′(t) > 0 for all t. In particular,
for λ ∈ C+ we have the radial paths fλ ∈ J for which fλ(t) = λt. But recall
that Êf is the inverse-limit of a sequence of spaces associated to the germs
of f at the points f(tk), for any sequence {tk ↓ 0}.

Now consider two neighbouring rays fλ, fλ′ with |λ| = |λ′|, and choose a
sequence {t′k ↓ 0} which interleaves {tk}, i.e. tk > t′k > tk+1. We can choose
a path f ∈ J which lies in the sector bounded by the rays fλ and fλ′ and
coincides with them alternately in the neighbourhoods of the points λtk and
λ′t′k. This f gives us a family of cobordisms from the germ at λ′t′k to the
germ at λtk, and from the germ at λtk+1 to the germ at λ′t′k. Putting these
together, we obtain inverse canonical isomorphisms between Êfλ and Êfλ′ .
The coherence of these isomorphisms when we consider three nearby rays
also follows from the principle 5.1.

By this means we see that we could have chosen any smooth path f to
define ÊΣ. However the family Êf has the property that Êf̄ is the complex-
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conjugate space to Êf , so that reversing the complex time-direction conju-

gates the identification of ÊΣ with the Euclidean choice Êf1 . If the Lorentzian
germ Σ ⊂ U is time-symmetric — but not otherwise — the arguments we
have already used will give us a hermitian inner product on ĚΣ.

Field operators

Finally, we come to the Wick rotation of field operators, though our
account will be sketchy. The first step is to understand how the vector space
Ox of observables at a point x of a space-time M behaves as the metric of
M passes from complex to Lorentzian. We shall continue to assume that M
and its Lorentzian metric are real-analytic.

In Section 3 we associated a space Ox to a germ at x of a complex metric
on a manifold containing x: it is the fibre of a bundle on the space MetC(x̂)
of such germs. If we embed a Lorentzian M in a complexification MC there
will be a holomorphic exponential map from a neighbourhood of 0 in the
complexified tangent space TC

x = TxM⊗C to MC. Inside TC
x we can consider

the d-dimensional real vector subspaces V on which the metric induced from
the complex bilinear form of TC

x is allowable. We saw in (2.6) that these
V form a contractible open subset U of the real Grassmannian Grd(T

C
x ).

Exponentiating V will give us a germ of a d-manifold with a complex metric,
and hence a map U → MetC(x̂). Pulling back the bundle of observables by
this map gives us a bundle on U , which, using the principle (5.1) as we did
in (5.3), we see to be trivial. Identifying its fibres gives us our definition of
Ox for Lorentzian M .

We need no new ideas to see that for any Lorentzian cobordism M :
Σ0  Σ1 and any x ∈ M̊ an element ψ ∈ Ox acts as an operator EΣ0 → EΣ1 .
Furthermore, if x lies on a time-slice Σ we get an operator ψ ∈ Hom(ĚΣ; ÊΣ),
i.e. an unbounded operator in EΣ, simply by considering the cobordisms
corresponding to a sequence of successively thinner collars of Σ. Indeed the
same argument shows that if x1, . . . , xk are distinct points on Σ, we have a
map

Ox1 ⊗ . . .⊗Oxk → Hom(ĚΣ; ÊΣ)

which does not depend on choosing an ordering of the points.

In the introduction we mentioned the Wightman axiom that field opera-
tors at space-like separated points must commute. We can now see how this
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follows from our framework, at least in a globally hyperbolic space-time. For
the spaces ĚΣt ⊂ EHilb

Σt
⊂ EΣt for all times t0 ≤ t ≤ t1 can be identified with

those at time t0 by the unitary propagation Ut,t′ from time t to a later time
t′ to get a single rigged Hilbert space Ě ⊂ EHilb ⊂ E, and we can define an
unbounded operator

ψ̃ = Z−1
t0,t
◦ ψ ◦ Zt0,t : Ě → Ê

for any ψ ∈ Ox with x ∈ Σt. Furthermore, if we change the choice of time-
function on the cobordism, so that x lies on a different time-slice, then ψ̃ will
not change.

The fact that two observables ψ, ψ′ situated at space-like separated points
x, x′ give rise to operators ψ̃, ψ̃′ which are composable, and commute, is now
clear. For if x and x′ are space-like separated we can choose a single time-
slice Σt which contains them both, and we see that the composed operator,
in either order, is Z−1

t0,t ◦ (ψ ⊗ ψ′) ◦ Zt0,t.

The domain of holomorphicity of the vacuum expectation values

We end with a conjecture about a question arising in the traditional
treatment of field theories defined in the standard Minkowski space M of
dimension d. There, the vacuum expectation values, initially defined as dis-
tributions or other generalized functions on k-fold products M× . . .×M, are
regarded as boundary values of holomorphic functions defined in an open do-
main in the complexified space MC× . . .×MC. The Wightman axioms imply
that the vacuum expectation values are the boundary values of holomorphic
functions defined in the domain Uk known as the ‘permuted extended tube’,
whose definition was given in Section 2.

If k > 2, however, Uk cannot be the largest domain where the expectation
values are holomorphic, for it is known not to be holomorphically convex. It
is an old problem to describe the maximal possible domain, or even the
holomorphically convex hull of Uk.

The ideas of this paper suggest that a candidate for the maximal do-
main is the simply-connected covering of the open subset U∗k of all k-tuples
x = {x1, . . . , xk} of distinct points in MC which lie on a totally real submani-
fold M (of dimension d) of MC for which the induced complex metric belongs
to MetC(M) and is constant outside of a compact region. By the results of
Section 2 we know that any such submanifold M must project diffeomorphi-
cally to E, the standard Euclidean subspace of MC obtained by rotating the
time-axis of M by

√
−1.
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To motivate the conjecture we must enlarge our framework to allow
Lorentzian space-times whose time-slices are not compact. The simplest way
to do this is to introduce the cobordism category in which a morphism is
a d-manifold M with an allowable complex metric which outside a compact
subset is isomorphic to the part of an allowable totally real affine d-plane in
MC cut off between two parallel (d− 1)-planes.

A field theory defined and holomorphic on this category, if it has a
Lorentz-invariant vacuum state in a natural sense, will have vacuum expecta-
tion values which are holomorphic functions of the pair (M,x). In particular
we can restrict to the space F of those (M,x) for which, as in the conjecture,
M is embedded in MC and is flat in the neighbourhood of each point of x.
Then F is an infinite-dimensional bundle over the open subset U∗k of (MC)k,
and the complex Poincaré group acts on it by bundle maps. The expectation
values will be a holomorphic map

E : F → Hom(O⊗k;C),

where O is the space of observables at a point of M.
Our much-used Principle 5.1 tells us that the value of the function E does

not change if, while holding the marked points x fixed in MC, we move M
smoothly in the allowable class. So in fact we have a holomorphic function on
a covering space of the open domain of possible marked points x, where the
sheets of the covering over a set of points x correspond to the isotopy classes
of allowable manifolds M containing x, i.e. to the connected components of
the fibre Fx of F → U∗k .

The conjecture is certainly correct in the simple case k = 2, for then U∗2
is just the same as U2: any two points (x1, x2) for which ||x1 − x2||2 is not
real and negative lie, by the results of Section 2, on an allowable real affine
linear subspace of MC ×MC.
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