
Lecture 11: Hirzebruch’s signature theorem

In this lecture we define the signature of a closed oriented n-manifold for n divisible by four. It

is a bordism invariant Sign: ΩSO
n → Z. (Recall that we defined a Z/2Z-valued bordism invariant

of non-oriented manifolds in Lecture 2.) The signature is a complete bordism invariant of closed

oriented 4-manifolds (see (2.28)), as we prove here. It can be determined by tensoring with Q,

or even tensoring with R. We use the general Pontrjagin-Thom Theorem 10.33 to convert the

computation of this invariant to a homotopy theory problem. We state the theorem that all such

bordism invariants can be determined on products of complex projective spaces. In this lecture we

illustrate the techniques necessary to compute that ΩSO
4 ⊗ Q is a one-dimensional rational vector

space. The general proof will be sketched in the next lecture. Here we also prove Hirzebruch’s

formula assuming the general result.

We sometimes tensor with R instead of tensoring with Q. Tensoring with R has the advan-

tage that real cohomology is represented by differential forms. Also, the computation of the real

cohomology of BSO can be related to invariant polynomials on the orthogonal Lie algebra so.

Definition of signature

(11.1) The fundamental class of an oriented manifold. Let M be a closed oriented n-manifold for

some n ∈ Z≥0. The orientation1 defines a fundamental class

(11.2) [M ] ∈ Hn(M).

Here coefficients in Z are understood. The fundamental class depends on the orientation: the

fundamental class of the oppositely oriented manifold satisfies

(11.3) [−M ] = −[M ].

The fundamental class is part of a discussion of duality in homology and cohomology; see [H1,

§3.3]. The fundamental class determines a homomorphism

(11.4)
Hn(M ;A) −→ A

c 7−→ 〈c, [M ]〉

for any coefficient group A. When A = R we use the de Rham theorem to represent an element c ∈

Hn(M ;R) by a closed differential n-form ω. Then

(11.5) 〈c, [M ]〉 =

∫

M

ω.

(Recall that integration of differential forms depends on an orientation, and is consistent with (11.3).)

For that reason the map (11.4) can be thought of as an integration operation no matter the coeffi-

cients.
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1We remark that any closed manifold (without orientation, or possibly nonorientable) has a fundamental class in

mod 2 homology.
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(11.6) The intersection pairing. Let M be a closed oriented n-manifold and suppose n = 4k for

some k ∈ Z≥0. To define the intersection pairing we use the cup product on cohomology. Consider,

then, the integer-valued bihomomorphism

(11.7)
IM : H2k(M ;Z)×H2k(M ;Z) −→ Z

c1, c2 7−→ 〈c1 ⌣ c2, [M ]〉

This intersection form is symmetric, by basic properties of the cup product The abelian groupH2k(M ;Z)

is finitely generated, so has a finite torsion subgroup and a finite rank free quotient; the rank of

the free quotient is the second Betti number b2(M).

Exercise 11.8. Prove that the torsion subgroup is in the kernel of the intersection form (11.7).

This means that if c1 is torsion, then I(c1, c2) = 0 for all c2.

It follows that the intersection form drops to a pairing

(11.9)
IM : FreeH2k(M ;Z)× FreeH2k(M ;Z) −→ Z

c̄1, c̄2 7−→ 〈c̄1 ⌣ c̄2, [M ]〉

on the free quotient. Poincaré duality is the assertion that IM is nondegenerate: if IM (c̄1, c̄2) = 0

for all c̄2, then c̄1 = 0. See [H1, §3.3] for a discussion.

(11.10) Homology interpretation. Another consequence of Poincaré duality is that there is a dual

pairing on FreeH2k(M), and it is more geometric. In fact, the name ‘intersection pairing’ derives

from the homology version. To compute it we represent two homology classes in the middle di-

mension by closed oriented submanifolds C1, C2 ⊂ M , wiggle them to be transverse, and define the

intersection pairing as the oriented intersection number IM (C1, C2) ∈ Z.

(11.11) de Rham interpretation. Let A be a finitely generated abelian group of rank r. Then

A → A⊗R has kernel the torsion subgroup of A. The codomain is a real vector space of dimension r,

and the image is a full sublattice isomorphic to the free quotient FreeA. We apply this to the middle

cohomology group. A part of the de Rham theorem asserts that wedge product of closed forms

goes over to cup product of real cohomology classes, and so we can represent the intersection

pairing IM ⊗ R in de Rham theory by the pairing

(11.12)

ÎM : Ω2k(M)× Ω2k(M) −→ R

ω1, ω2 7−→

∫

M

ω1 ∧ ω2

The pairing is symmetric and makes sense for all differential forms.

Exercise 11.13. Use Stokes’ theorem to prove that (11.12) vanishes if one of the forms is closed

and the other exact. Conclude that it induces a pairing on de Rham cohomology, hence by the de

Rham theorem on real cohomology.
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The induced pairing on real cohomology is IM ⊗R.

Definition 11.14. The signature Sign(M) is the signature of the symmetric bilinear form IM ⊗R.

Recall that a symmetric bilinear form B on a real vector space V has three numerical invariants

which add up to the dimension of V : the nullity and two numbers b+, b−. There is a basis e1, . . . , en
of V so that

(11.15)

B(ei, ej) = 0, i 6= j;

B(ei, ei) = 1, i = 1, . . . , b+;

B(ei, ei) = −1, i = b+ + 1, . . . , b+ + b−;

B(ei, ei) = 0, i = b+ + b− + 1, . . . , n.

There is a subspace kerB ⊂ V , the null space of B, whose dimension is the nullity. b+ is the

dimension of the maximal subspace on which B is positive definite; b− is the dimension of the

maximal subspace on which B is negative definite. See [HK], for example. The signature is defined

to be the difference Sign(B) = b+ − b−. Note B is nondegenerate iff kerB = 0 iff the nullity

vanishes.

Examples

The following depends on a knowledge of the cohomology ring in several cases, but you can also

use the oriented intersection pairing. We begin with several 4-manifolds.

Example 11.16 (S4). Since H2(S4;Z) = 0, we have Sign(S4) = 0.

Example 11.17 (S2×S2). The second cohomology H2(S2×S2;Z) has rank two. In the standard

basis the intersection form is represented by the matrix

(11.18) H =

(
0 1
1 0

)

The ‘H’ stands for ‘hyperbolic’. One way to see this is to compute in homology. The submani-

folds S2 × pt and pt×S2 represent generators of H2(S
2 × S2), each has self-intersection number

zero, and the intersection number of one with the other is one. Diagonalize H to check that its

signature is zero.

Example 11.19 (K3 surface). The K3-surface was introduced in (5.60). You computed its total

Chern class, so its Pontrjagin class, in Exercise 7.67. One can compute (I’m not giving techniques

here for doing so) that the intersection form is

(11.20) − E8 ⊕−E8 ⊕H ⊕H ⊕H,

where E8 is an 8× 8 symmetric positive definite matrix of integers derived from the Lie group E8.

Its signature is −16.
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The K3 surface is spin(able), which follows from the fact that its first Chern class vanishes. (A

related statement appears as Proposition 9.28.) The following important theorem of Rohlin applies.

Theorem 11.21 (Rohlin). Let Mn be a closed oriented manifold with n ≡ 4 (mod 8). Then

SignM is divisible by 16.

Example 11.22 (CP2). The groupH2(CP2;Z) is infinite cyclic and a positive generator is Poincareé

dual to a projective line CP1 ⊂ CP2. The self-intersection number of that line is one, whence

SignCP2 = 1.

Example 11.23 (CP2). This is the usual notation for the orientation-reversed manifold −CP2.

By (11.3) we find SignCP2 = −1.

Obviously, neither CP2 nor CP2 is spinable, as proved in Corollary 9.29 and now also follows from

Theorem 11.21.

I leave several important facts to you.

Exercise 11.24. Prove that SignCP2ℓ = 1 for all ℓ ∈ Z>0.

Exercise 11.25. Show that the signature is additive under disjoint union and also connected sum.

Prove that if M1,M2 have dimensions divisible by 4, then Sign(M1 ×M2) = Sign(M1) Sign(M2).

In fact, the statement is true without restriction on dimension as long as we define SignM = 0 if

dimM is not divisible by four.

Signature and bordism

We prove that the signature is a bordism invariant: if M4k = ∂N4k+1 and N is compact and

oriented, then SignM = 0. We first prove two lemmas. The first should remind you of Stokes’

theorem.

Lemma 11.26. Let N4k+1 be a compact oriented manifold with boundary i : M4k →֒ N . Suppose

c ∈ H4k(N ;A) for some abelian group A. Then

(11.27) 〈i∗(c), [M ]〉 = 0.

Proof. We have

(11.28) 〈i∗(c), [M ]〉 = 〈c, i∗[M ]〉 = 0

since i∗[M ] = 0. (This is a property of duality; intuitively, the manifold M is a boundary, so too

is its fundamental class.) �

This can also be proved using differential forms, via the de Rham theorem, if A ⊂ R. Namely,

if ω is a closed 4k-form on N which represents the real image of c in H4k(N ;R), then the pair-

ing 〈i∗(c), [M ]〉 can be computed as

(11.29)

∫

M

i∗(ω) =

∫

N

dω = 0

by Stokes’ theorem.
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Lemma 11.30. Let B : V × V → R be a nondegenerate symmetric bilinear form on a real vector

space V . Suppose W ⊂ V is isotropic—B(w1, w2) = 0 for all w1, w2 ∈ W—and 2 dimW = dimV .

Then SignB = 0.

Proof. Let e1 ∈ W be nonzero. SinceB is nondegenerate there exists f1 ∈ V such that B(e1, f1) = 1.

Shifting f1 by a multiple of e1 we can arrange that B(f1, f1) = 0. In other words, the form B on the

subspace R{e1, f1} ⊂ V is hyperbolic, so has signature zero. Let V1 be the orthogonal complement

to R{e1, f1} ⊂ V relative to the form B. Since B is nondegenerate we have V = R{e1, f1} ⊕ V1.

Also, W1 := W ∩ V1 ⊂ V1 is isotropic and 2dimW1 = dimV1. Set B1 = B
∣∣
V1

. Then the data

(V1, B1,W1) satisfies the same hypotheses as (V,B,W ) and has smaller dimension. So we can

repeat and in a finite number of steps write B as a sum of hyperbolic forms. �

Theorem 11.31. Let N4k+1 be a compact oriented manifold with boundary i : M4k →֒ N . Then

SignM = 0.

Proof. Consider the commutative diagram

(11.32) H2k(N ;R)
i∗

∼=

H2k(M ;R)

∼=

H2k+1(N,M ;R)

∼=

H2k+1(N,M ;R) H2k(M ;R)
i∗

H2k(N ;R)

The rows are a stretch of the long exact sequences of the pair (N,M) in real cohomology and

real homology. The vertical arrows are Poincaré duality isomorphisms. We claim that image(i∗) is

isotropic for the real intersection pairing

(11.33) IM ⊗ R : H2k(M ;R)×H2k(M ;R) −→ R

and has dimension 1
2 dimH2k(M ;R). The isotropy follows immediately from Lemma 11.26. This

and the commutativity of (11.32) imply that (i) image(i∗) maps isomorphically to ker(i∗) under

Poincaré duality, and (ii) image(i∗) annihilates ker(i∗) under the pairing of cohomology and homol-

ogy. It is an easy exercise that these combine to prove 2 dim image(i∗) = dimH2k(M ;R). Now the

theorem follows immediately from Lemma 11.30. �

Corollary 11.34. For each k ∈ Z≥0 the signature defines a homomorphism

(11.35) Sign: ΩSO
4k −→ Z.

That (11.35) is well-defined follows from Theorem 11.31; that it is a homomorphism follows from

Exercise 11.25. In fact, defining the signature to vanish in dimensions not divisible by four, we see

from Exercise 11.25 that

(11.36) Sign: ΩSO −→ Z

is a ring homomorphism.

Any manifold with nonzero signature is not null bordant. In particular,

Proposition 11.37. CP2ℓ is not null bordant, l ∈ Z>0.

Exercise 11.38. Demonstrate explicitly that CP2ℓ+1 is null bordant by exhibiting a null bordism.
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Hirzebruch’s signature theorem

(11.39) Pontrjagin numbers. Recall the Pontrjagin classes, defined in (7.68). For a smooth

manifold M we have pi(M) ∈ H4i(M ;Z). Suppose M is closed and oriented. Then for any

sequence (i1, . . . , ir) of positive integers we define the Pontrjagin number

(11.40) pi1,...,ir(M) = 〈pi1(M) ⌣ · · · ⌣ pir(M), [M ]〉.

By degree count, this vanishes unless 4(i1+· · ·+ir) = dimM . In any case Lemma 11.26 immediately

implies the following

Proposition 11.41. The Pontrjagin numbers are bordism invariants

(11.42) pi1,...,ir : Ω
SO
n −→ Z.

(11.43) Tensoring with Q. The following simple observation is crucial: the map Z −→ Z ⊗ Q

is injective. For this is merely the inclusion Z →֒ Q. This means that (11.35) and (11.42) are

determined by the linear functionals

(11.44) Sign: ΩSO
4k ⊗Q −→ Q

and

(11.45) pi1,...,ir : Ω
SO
n ⊗Q −→ Q

obtained by tensoring with Q. This has the advantage that the vector space ΩSO
n ⊗ Q is easier to

compute than the abelian group ΩSO
n . In fact, we already summarized the main results about ΩSO

in Theorem 2.24. These follow by applying the Pontrjagin-Thom theorem of Lecture 10, specifically

Corollary 10.38. We recall just the statement we need here and present the proof in the next lecture.

Theorem 11.46. There is an isomorphism

(11.47) Q[y4, y8, y12, . . . ]
∼=
−−→ ΩSO ⊗Q

under which y4k maps to the oriented bordism class of the complex projective space CP2k.

Assuming Theorem 11.46 for now, we can prove the main theorem of this lecture.

Theorem 11.48 (Hirzebruch). Let M4k be a closed oriented manifold. Then

(11.49) SignM = 〈L(M), [M ]〉,

where L(M) ∈ H•(M ;Q) is the L-class (7.61).
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Proof. It suffices to check the equation (11.49) on a basis of the rational vector space ΩSO
4k ⊗Q. By

Theorem 11.46 this is given by a product of projective spaces Mk1,...kr := CP2k1 × · · · × CP2kr for

k1 + · · · + kr = k. By Exercise 11.24 and Exercise 11.25 we see that

(11.50) SignMk1,...,kr = 1.

On the other hand, by Proposition 8.8 we have

(11.51) 〈L(CP2ki), [CPki ]〉 = 1

for all i. Since

(11.52) L(CP2k) = L(CP2k1) · · ·L(CP2kr)

and

(11.53) [CP2k1 × · · · × CP2kr ] = [CP2k1 ]× · · · × [CP2kr ],

it follows that

(11.54) 〈L(Mk1,...,kr), [Mk1,...,kr ]〉 = 1.

(The product on the right hand side of (11.53) is the tensor product in the Kunneth theorem for the

rational homology vector space H2k(CP
2k1×· · ·×CP2kr ;Q).) The theorem now follows from (11.50)

and (11.54). �

Integrality

For a 4-manifold M4 the signature formula (11.49) asserts

(11.55) SignM = 〈p1(M)/3, [M ]〉.

In particular, since the left hand side is an integer, so is the right hand side. A priori this is far from

clear: whereas p1(M) is an integral cohomology class, 1
3p1(M) is definitely not—it is only a rational

class. Also, there exist real vector bundles V → M over 4-manifolds so that 〈p1(V )/3, [M ]〉 is not

an integer.

Exercise 11.56. Find an example. Even better, find an example in which M is a spin manifold.

So the integrality is special to the tangent bundle.

This is the tip of an iceberg of integrality theorems.

Exercise 11.57. Work out the formula for the signature in 8 and 12 dimensions in terms of

Pontrjagin numbers. Note that the denominators grow rapidly.
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Hurewicz theorems

A basic tool for the computation is the Hurewicz theorem, which relates homotopy and homology

groups.

(11.58) The integral Hurewicz theorem. Let (X,x) be a pointed topological space.2 The Hurewicz

map

(11.59) ηn : πnX −→ HnX

sends a homotopy class represented by a pointed map f : Sn → X to the homology class f∗[S
n].

You probably proved in the prelim class that for n = 1 the Hurewicz map is surjective with kernel

the commutator subgroup [π1X,π1X] ⊂ π1X, i.e., H1X is the abelianization of π1X. For higher n

we have the following. Recall that a pointed space is k-connected, k ∈ Z>0, if it is path connected

and if πiX = 0 for i ≤ k.

Theorem 11.60 (Hurewicz). Let X be a pointed space which is (n − 1)-connected for n ∈ Z≥2.

Then the Hurewicz homomorphism ηn is an isomorphism.

We refer the reader to standard texts (e.g. [H1], [Ma]) for a proof of the Hurewicz theorem. The

following is immediate by induction.

Corollary 11.61. Let X be a 1-connected pointed space which satisfies HiX = 0 for i = 2, 3, . . . , n−

1. Then X is (n− 1)-connected and (11.59) is an isomorphism.

(11.62) The rational Hurewicz theorem. There is also a version of the Hurewicz theorem over Q.

We state it here and refer to [KK] for an “elementary” proof. (It truly is more elementary than

other proofs!)

Theorem 11.63 (Q-Hurewicz). Let X be a 1-connected pointed space, and assume that πiX⊗Q =

0, 2 ≤ i ≤ n− 1, for some n ∈ Z≥2. Then the rational Hurewicz map

(11.64) ηi ⊗Q : πiX ⊗Q −→ Hi(X;Q)

is an isomorphism for 1 ≤ i ≤ 2n− 2.

It is also true that η2n−1 is surjective, but we do not need this.

Computation for 4-manifolds

By Corollary 10.38 there is an isomorphism

(11.65) φ : π4(MSO) −→ ΩSO
4 .

Recall that π4(MSO) ∼= π4+qMSO(q) for q sufficiently large. And (11.43) it suffices to compute

π4(MSO)⊗Q.

2I didn’t mention earlier the technical issue that the basepoint should be nondegenerate in a certain sense: the
inclusion {x} →֒ X should be a cofibration. See [Ma] for details.
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Theorem 11.66. If q ≥ 6, then dimQ π4+q (MSO(q)⊗Q) = 1.

Proof. Recall that there is a diffeomorphism SO(3) ≃ RP3, so its rational homotopy groups are

isomorphic to those of the double cover S3, the first few of which are

(11.67) πiSO(3)⊗Q ∼=

{
0, i = 1, 2;

Q, i = 3.

Now for any integer q ≥ 3 the group SO(q + 1) acts transitively on Sq with stabilizer of a point

in Sq the subgroup SO(q). So there is a fiber bundle SO(q) → SO(q + 1) → Sq, which is in fact a

principal SO(q)-bundle.3 The induced long exact sequence of homotopy groups4 has a stretch

(11.68) πi+1SO(q + 1) −→ πi+1S
q −→ πiSO(q) −→ πiSO(q + 1) −→ πiS

q −→ πi−1SO(q) −→ · · ·

and it remains exact after tensoring with Q. First use it to show π2SO(q) ⊗Q = 0 for all5 q ≥ 3.

Set q = 3. Then, using the result that π4S
3 ∼= Z/2Z, so that π4S

3 ⊗ Q = 0, we deduce that

π3SO(4)⊗Q has dimension 2. Now set q = 4 and deduce that π3SO(5)⊗Q has dimension 1. You

will need to also use the result that π5S
3 ⊗Q = 0. By induction on q ≥ 5 we then prove

(11.69) πiSO(q)⊗Q ∼=

{
0, i = 1, 2;

Q, i = 3

for all q ≥ 5.

Next, use the universal fiber bundle G → EG → BG for G = SO(q), q ≥ 5, which is a special

case of (6.60), and the fact that EG is contractible, so has vanishing homotopy groups, to deduce

(11.70) πiBSO(q)⊗Q ∼=

{
0, i = 1, 2, 3;

Q, i = 4

from the long exact sequence of homotopy groups. Then the Q-Hurewicz Theorem 11.63 implies

(11.71) Hi

(
BSO(q);Q

)
∼=





0, i = 1, 2, 3;

Q, i = 4;

0, i = 5, 6

for q ≥ 5.

3We construct it here by fixing a point in Sq . Can you construct an isomorphic principal SO(q)-bundle without
choosing a basepoint? what is the geometric meaning of the total space?

4We have used this before; see [H1, Theorem 4.41] or, for a quick review, [BT, §17].
5In fact, π2G = 0 for any finite dimensional Lie group G.
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The proof of the Thom isomorphism theorem, Proposition 8.35, gives a cell structure for the

Thom complex. The resulting Thom isomorphism on homology implies

(11.72) Hi

(
MSO(q);Q

)
∼=





0, i = 1, . . . , q − 1;

Q, i = q;

0, i = 1 + q, 2 + q, 3 + q

Q, i = 4 + q

0, i = 5 + q, 6 + q.

The cell structure also implies that the Thom complex MSO(q) of the universal bundle S(q) →

BSO(q) is (q − 1)-connected. The Q-Hurewicz theorem then implies that the Q-Hurewicz map

πiMSO(q)⊗Q → Hi

(
MSO(q);Q

)
is an isomorphism for 1 ≤ i ≤ 2q−2, whence if q ≥ 6 we deduce

in particular

(11.73) π4+q

(
MSO(q);Q

)
∼= Q.

�

By Proposition 11.37 the class of CP2 in ΩSO
4 ⊗ Q is nonzero. (We need a bit more: CP2 has

infinite order in ΩSO
4 because its signature is nonzero and the signature (11.35) is a homomorphism.)

Since π4(MSO) ⊗ Q is one-dimensional, the class of CP2 is a basis. Finally, we prove (11.55) by

checking both sides for M = CP2 using Example 11.22, Proposition 7.51, and the definition (7.68)

of the Pontrjagin classes.
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