
Lecture 16: 1-dimensional TQFTs

In this lecture we determine the groupoid of 1-dimensional TQFTs of oriented manifolds with

values in any symmetric monoidal category. This is a truncated version of the cobordism hypothesis,

but illustrates a few of the basic underlying ideas.

Categorical preliminaries

We need three notions from category theory: a full subcategory of an arbitrary category, the

groupoid of units of an arbitrary category, and the dimension of an object in a symmetric monoidal

category.

Definition 16.1. Let C be a category and C ′
0 ⊂ C0 a subset of objects. Then the full subcategory C ′

with set of objects C ′
0 has as hom-sets

(16.2) C ′
1(y0, y1) = C1(y0, y1), y0, y1 ∈ C ′

0.

There is a natural inclusion C ′
0 → C0 which is an isomorphism on hom-sets. We can describe the

entire set of morphisms C ′
1 as a pullback:

(16.3) C ′
1 C1

s×t

C ′
0 × C ′

0

j×j
C0 × C0

where s, t are the source and target maps (13.8) and j : C ′
0 →֒ C0 is the inclusion.

We need a particular example of a full subcategory.

Definition 16.4. Let C be a symmetric monoidal category. Define C fd ⊂ C as the full subcategory

whose objects are the dualizable objects of C.

The notation ‘fd’ puts in mind ‘finite dimensional’, which is correct for the category Vect: the

dualizable vector spaces are those which are finite dimensional. It also stands for ‘fully dualizable’.

The ‘fully’ is not (yet) relevant.

Recall that if M is a monoid, then the group of units M∼ ⊂ M is the subset of invertible

elements. For example, if M is the monoid of n× n matrices under multiplication, then M∼ is the

subset of invertible matrices, which form a group.

Definition 16.5. Let C be a category. Its groupoid of units1 is the groupoid C∼ with same objects

C∼
0 = C0 as in the category C and with morphisms C∼

1 ⊂ C1 the subset of invertible morphisms

in C.
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Notice that identity arrows are invertible and compositions of invertible morphisms are invertible,

so C∼ is a category. Obviously, it is a groupoid.

The last definition applies only to symmetric monoidal categories.

Definition 16.6. Let C be a symmetric monoidal category and y ∈ C a dualizable object. Then

the dimension of y, denoted dim y ∈ C(1C , 1C), is the composition

(16.7) dim y : 1C
c

−−→ y ⊗ y∨
σ

−−→ y∨ ⊗ y
e

−−→ 1C ,

where (y∨, c, e) is duality data for y.

The reader can easily check that dim y is independent of the choice of duality data (Definition 15.19).

Classification of 1-dimensional oriented TQFTs

Recall from (2.28) that the oriented bordism group in dimension zero is the free abelian group

on one generator: ΩSO
0

∼= Z. We can restate this in terms of bordism invariants. Let M be any

commutative monoid. Then 0-dimensional bordism invariants with values in M is the commutative

monoid Hom(ΩSO
0 ,M), where the sum F +G of two bordism invariants is computed elementwise:

(F +G)(Y ) = F (Y )+G(Y ) for all compact 0-manifolds Y . Then F (Y ) is automatically invertible,

since ΩSO
0 is a group.

Theorem 16.8 (cobordism hypothesis—set version). The map

(16.9)
Φ: Hom(ΩSO

0 ,M) −→ M∼

F 7−→ F (pt+)

is an isomorphism of abelian groups.

This is the restatement.

Now we consider 1-dimensional oriented TQFTs.

Theorem 16.10 (cobordism hypothesis—1-categorical version). Let C be a symmetric monoidal

category. Then the map

(16.11)
Φ: TQFTSO

〈0,1〉(C) −→ (C fd)∼

F 7−→ F (pt+)

is an equivalence of groupoids.

The map Φ is well-defined by Theorem 15.36, which asserts in particular that F (pt+) is dualizable.

Recall (you shouldn’t have forgotten in one page!) Definition 16.4 and Definition 16.5, which give

meaning to the subgroupoid (C fd)∼ of C.

The proof relies on the classification of closed 0-manifolds and compact 1-manifolds with bound-

ary [M3]. Note that if Y0, Y1 are closed 0-manifolds which are diffeomorphic, then the set of



Bordism: Old and New (Lecture 16) 3

Figure 28. The five connected oriented bordisms in BordSO〈0,1〉

diffeomorphisms Y0 → Y1 is a torsor for the group of permutations (of, say, Y0). A connected com-

pact 1-manifold with boundary is diffeomorphic to a circle or a closed interval, which immediately

leads to the classification of connected morphisms in BordSO〈0,1〉, as illustrated in Figure 28: every

connected oriented bordism is diffeomorphic to one of the five possibilities illustrated there.

Proof. We must show that Φ is fully faithful and essentially surjective. Recall that

First, if F,G are field theories and η1, η2 : F → G isomorphisms, and suppose that η1(pt+) =

η2(pt+). Since pt− = pt∨+, according to the formula proved in Proposition 15.34 we have η(pt−) =
(

η(pt+)
∨
)−1

for any natural isomorphism η. It follows that η1(pt−) = η2(pt−). Since any compact

oriented 0-manifold Y is a finite disjoint union of copies of pt+ and pt−, it follows that η1(Y ) =

η2(Y ) for all Y , whence η1 = η2. This shows that Φ is faithful.

To show Φ is full, given F,G and an isomorphism f : F (pt+) → G(pt+) we must construct

η : F → G such that η(pt+) = f . So define η(pt+) = f and η(pt−) = (f∨)−1. Extend using

the monoidal structure in C to define η(Y ) for all compact oriented 0-manifolds Y . This uses the

statement given before the proof that any such Y is diffeomorphic to (pt+)
∐n+ ∐ (pt−)

∐n− for

unique n+, n− ∈ Z
≥0. Also, the diffeomorphism is determined up to permutation, but because of

coherence the resulting map η(Y ) is independent of the chosen diffeomorphism. It remains to show

that η is a natural isomorphism, so to verify (13.18) for each morphism in BordSO〈0,1〉. It suffices to

consider connected bordisms, so each of the morphisms in Figure 28. The first two are identity

maps, for which (13.18) is trivial. The commutativity of the diagram

(16.12) F (−)F (+)

f (f∨)−11

F (Xc)

G(Xc)

G(−)G(+)



4 D. S. Freed

for coevaluation Xc follows from the commutativity of

(16.13) 1
F (Xc)

G(Xc)

F (−)F (+)

11G(Xc)

1f
F (−)G(+)

G(−)G(+)
F (Xc)11

F (−)F (+)G(−)G(+)
1f11

F (−)G(+)G(−)G(+)

1G(Xe)1

In these diagrams we use ‘+’ and ‘−’ for ‘pt+’ and ‘pt−’, and also denote identity maps as ‘1’. The

argument for evaluation Xe is similar, and that for the circle follows since the circle is Xe ◦ σ ◦Xc.

Notice that the commutative diagram for the circle S1 asserts F (S1) = G(S1).

Finally, we must show that Φ is essentially surjective. Given y ∈ C dualizable, we must2

construct a field theory F with F (pt+) = y. Let (y∨, c, e) be duality data for y. Define F (pt+) = y,

F (pt−) = y∨, and

(16.14) F
(

(pt+)
∐n+ ∐ (pt−)

∐n−

)

= y⊗n+ ⊗ (y∨)⊗n− .

Any compact oriented 0-manifold Y is diffeomorphic to some (pt+)
∐n+ ∐ (pt−)

∐n− , and again by

coherence the choice of diffeomorphism does not matter. Now any oriented bordism X : Y0 → Y1 is

diffeomorphic to a disjoint union of the bordisms in Figure 28, and for these standard bordisms we

define F (Xc) = c, F (Xe) = e, and F (S1) = e◦σ ◦c; the first two bordisms in the figure are identity

maps, which necessarily map to identity maps. We map X to a tensor product of these basic

bordisms. It remains to check that F is a functor, i.e., that compositions map to compositions.

When composing in BordSO〈0,1〉 the only nontrivial compositions are those indicated in Figure 29.

The first composition is what we use to define F (S1). The S-diagram relations (15.20) and (15.21)

show that the last compositions are consistent under F . �

Figure 29. Nontrivial compositions in BordSO〈0,1〉
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2In fact, we only need construct F with F (pt+)
∼= y, but we will construct one where F (pt+) equals y.
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