Problem Set # 8

M392C: Morse Theory

- 1. Let M be a smooth manifold with a covariant derivative ∇ on its tangent bundle (linear connection).
 - (a) For vector fields ξ_1, ξ_2 on M prove that the expression

$$T(\xi_1, \xi_2) = \nabla_{\xi_1} \xi_2 - \nabla_{\xi_2} \xi_1 - [\xi_1, \xi_2]$$

is linear over functions, i.e., defines a tensor. Verify that it is a skew-symmetric function of ξ_1, ξ_2 , so an element $T \in \Omega^2_M(TM)$. It is called the *torsion tensor* of ∇ .

(b) Let $\iota \in \Omega^1_M(TM)$ be the identity endomorphism of $TM \to M$. Combine the covariant derivative and the Cartan d to define a first order differential operator

$$d_{\nabla} \colon \Omega^q_M(TM) \longrightarrow \Omega^{q+1}_M(TM)$$

for all q such that $d_{\nabla} = d$ for q = 0. Prove $T = d_{\nabla}\iota$. (Hint: Recall the formula which evaluates the differential of a 1-form on two vector fields.)

- (c) Let $f: N \to M$ be a smooth map of a smooth manifold N into M. Prove that $d_{\nabla} df = f^* T_{\nabla}$. (This is an equality in $\Omega^2_N(f^*TM)$). Make sense of $df \in \Omega^1_N(f^*TM)$. Here ' d_{∇} ' uses the pullback covariant derivative.)
- (d) Suppose ξ, η are vector fields on N. Use them to define sections $\hat{\xi}, \hat{\eta}$ of $f^*TM \to N$. Suppose $[\xi, \eta] = 0$ and $T_{\nabla} = 0$. Prove $\nabla_{\xi} \hat{\eta} = \nabla_{\eta} \hat{\xi}$. This is the identity that was used in lecture in case N is an open subset of an affine plane with affine coordinates s, t and ξ, η are the vector fields $\partial/\partial s, \partial/\partial t$.
- 2. Let V, W be finite dimensional real vector spaces, $\varphi \colon V \to W$ a C^{∞} map all of whose derivatives are bounded. Prove that

$$L^2_1(\mathbb{R}, V) \longrightarrow L^2_1(\mathbb{R}, W)$$
$$\gamma \longmapsto \varphi \circ \gamma$$

is a C^{∞} map (between the indicated Sobolev spaces).