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In Example (i) there are of course no reductions (H2(S*) is zero) and we see a
smooth moduli space whose dimension, five, agrees with our index formula.
Similarly in Example (ii) we get a five-dimensional space, and this is in line

with the index formula since while CP2 has b, = 1 the positive part b, is
zero. But in Example (i) we get a singular point, the vertex of the cone
corresponding to the unique reduction L@ L™, wherec,(L)isa generator of
H?(CP?). Now our general theory says that a neighbourhood of this singular
point is modelled on H}/T',=H 1/S*. But H has six real dimensions, by
the index formula, and lies wholly in the L? part of gg in the splitting
ge = R® L2 So wecan regard it as C* with the standard circle action (more
precisely, I, acts with weight 2). Thus the theory gives the local model C*/S",
which is indeed an open cone over CP2. (Of course our general theory makes
no predictions about the global structure of the moduli space.) We can see¢
explicitly in the formula for the connection matrices J, that J, is reducible,
involving only the basis element i of SU(2). This is indeed the standard
connection on the Hopf line bundle over CP2.

Turning to Example (iii), we have now changed orientationso b, =1 and
we have a ten-dimensional space predicted by the index formula. There are
no reductions since the intersection form is positive definite. Similarly in
Example (iv) the spaces have no reductions and their dimensions, zero and
eight, agree with those given by the index formula for SO(3) bundles.

Example (v) is the most complicated. The dimension is ten as expected, but
we again have a reducible solution, corresponding to the quadric Q in our
description of the moduli space. The position is summarized by the diagram
of H(S? x §?%) (Fig. 9).

The reduction corresponds to the class (1, —1) in the standard basis, and
this is in the ASD subspace by symmetry between the two factors. Now our
deformation complex breaks up into two pieces, corresponding to the terms
R and L? in g,. The trivial factor contributes cohomology R to H%, a copy of
H*(S? x $?), but nothing to H}, since H 1(§? x §%) = 0. On the other hand,
as we will see in Section 6.4.3, there is no contribution to H? from the L?
factor. So we get in sum a local model f~ 1(0)/S* where f:C® — R. In Chapter
5 we will show that there is a natural decomposition H 1 = C3 x C?in which
a suitable representative f has the form

f(zy,22)= |"’3|l2 - lzzlz- (4.2.32)

To identify a neighbourhood in the moduli space we reverse the complex
structure on the second C? factor, so e’ € I, acts as > on the first factor and
as -2 on the second. Now the map (z,, z;)— 2, ® z, induces a homeo-
morphism between f~'(0)/S' and the space of 3 x 3 complex matrices with
rank < 1. It is an interesting exercise to match up this description of a
neighbourhood of the singular point with the description in terms of quadrics
in Section 4.1.
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Fig. 9

) Notice that this singularity has rather a different nature to that in Example
(i)). In t.hc latter case a singular point is present for any metric on the base
space, since b, = 0 and all the classes are represented by purely ASD forms
For §% x S2, by contrast, we can make a small perturbation of the melric;
under which the reduction in the ASD moduli space disappears. It suffices to
take a product metric on round two-spheres with different radii p,, p,, say.
Then the ASD su.bspace is spanned by (p?, —p2) and avoids the reduction
(1, — Q. Another interesting exercise is to write down explicit models for the
moduli space after such a variation of metric and to see how their topological
type changes (cf. Section 4.3.3).

4.3 Transversality

4.3.1 Review of standard theory

We ha.ve developed techniques for analysing the local structure of the ASD
m<_>duh spaces and tested them against the explicit examples of Section 4.1. In
this sectior} we will take the theory further by introducing arguments based
on the notion of ‘general position’. We have seen that the part of the moduli
space M consisting of irreducible connections can be regarded as the zero set
of a section ¥ of a bundle & over the Banach manifold #*. This depends on a
chqxoe of Riemannian metric g on the underlying four-manifold X, so we may
write ¥, to indicate this dependence. In fact only the conformal class [g] of
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the metric is relevant, so the abstract picture is that we have a family of

equations, ¥,([4]) = 0, , 4.3.1)

i formal structures on X.

in @, parametrized by the space € of all conl  struc :
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Proposition (4.3.2). Let F: P — Q be a smooth map between finite dimensional

mw(‘il)fol'-:d:;:h point x€ P is contained ina neighbourhood P' < P such that the set

i i nd dense in Q.
values of the restriction F|p is open a
01(';)0“'7;: regular values of F on P form a second category subset of Q.

‘most’ poi in 0, then, the fibre F~'(y)is a submanifold of the correct
gi(::le':s:i);:l l():lfl_t:;’ .(rll"gr p less than ¢ t!lis is' taken to mean (tihat tl:enfl:;e tl:
empty.) If the map F is proper (e.g. if P 1s compact) lv}:'en : nnoand «d to
introduce the notion of category—the regular.values are the p;‘ dryrhyy
in Q, since if Q' is a compact neighbourhood in Q we can cover
by a finite number of patches of the form P asin (4.3.2(|):; o smooth

Suppose now that yo, y, are two regular values, so we have (WO oot
iibrcs. If the points are sufficiently c}‘osc t(:get!\e:; (:;x:lh:h;i ::azpang,o s\:gy,p ;:ov:)(;:cs
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we can embed the fibres F~*(yoh F ~!(y,) in a space:

W, ={(x,0)e P x [0,1]| F(x) = 70} 4.3.3)

As we shall sec in a moment, it is always posfiblc to choose a Path ¥y sc:) (t)l::t
w,isa(p—q+ 1)-dimensional manifold-wnth—bounfiary, gwmgfa cow >
isr:1 between the manifolds F ™ Hyoh F~'(y1) Thg:::ﬁ:::?r?;ﬁ;%? ﬁb:'es
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Ei(‘)l}:('y((:)e)‘.:o?\le can think of thesc as a one-parameter family of spaces
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interpolating between F~'(y,) and F~'(y,), much as we considered in

Section 1.2.3. (We could go on to perturb the projection map slightly to make

it a Morse function, so that, as in the proof of the h-cobordism theorem, the
fibres change by standard surgeries. But this refinement will not be necessary
here.)
We can sum up this discussion, for the family of equations F(x)=y
parametrized by y € Q, in the slogan: for generic parameter values the solutions
form a manifold of the correct dimension, and any two such solution sets differ by
a cobordism within P x [0, 1]. The same ideas apply to other ‘families of

equations’, depending on parameters, and in particular, as we shall see, to the
ASD equations (4.3.1).

A common framework for the ‘general position’ arguments that we need is
provided by the notion of transversality. Let F: P — Q be a smooth map as
above, and R be a third manifold. A smooth map h:R — Q is said to be
transverse to F if for all pairs (x,r) in P x R with F(x) = h(r) the tangent

space of Q at F(x) is spanned by the images of (DF),,(Dh),. When this
condition holds the set:

Z = {(x,r)e P x R|F(x) = h(r)} (4.3.4)

is a smooth submanifold (possibly empty) of P x R, with codimension dim Q.

Transversality is a generic property; any map h can be made transverse to
F by a small perturbation. If R is compact we can prove this as follows. We
consider a family of maps h, parametrized by an auxiliary manifold S (which
we can take to be a ball in a Euclidean space). Precisely, we have a total map:

h:RxS§S — Q (4.3.5)

and h,(r) = h(r, s). We suppose that there is a base point s, S such that

h,, = h. Suppose we have constructed a family of this form such that & is
transverse to F. Then the space,

Z ={(x,r,s)eP x R x S|h(r) = F(x)}, (4.3.6)

is a submanifold of P x R x § with a natural projection map n:Z — S. It is
easy to sec that the regular values s€ S of n are precisely the parameter values
for which h, is transverse to F. We use Sard’s theorem to find a regular value
arbitrarily close to s,, and this gives the desired small, transverse, per-
turbation of the original map h. The remaining step in the proof of generic
transversality is the construction of the transverse family h,. How best to do
this depends on the context. First, suppose that the image space Q is a finite-
dimensional vector space U. We can then take S to be a neighbourhood of 0
in U and put
h,(r) = h(r) + s.

This clearly has the desired property, since the image of the derivative of h
alone is surjective. It may be possible to be more economical; if V< U is a

“w WA AW
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linear subspace which generates the cokgmel of .(DF )e + (Dh),fl(‘)o!' a;l
(x, r)€ Z we can use these same variations with § a nexghboprhood o r;;b .
In general, cover Q with coordinate balls B; and find a'ﬁmte cover 0 ! y
open sets R,(n = 1,...,N) with h(R,) = } B, L.et R, be shghtly sRma e;
open sets which still cover R and y, be cut-off functions, supported in R, an
equal to 1 on R,,. Then take

N
S = ,l:[, 1B, 4.3.7)

and

h(r, NTERE ,SN) = h(‘) + lll(t)s. + ... + ¢~(t)s~.

ition’ i i inates of B;,,.
Here the ‘addition’ of y,(t)s, is done using the coordina ' Digmy .
(If R is not compact we can still find a transverse perturbation of h, using

the argument above on successive compact picces.)

lication of this theory is the proof of the assertior.l above on the
ch:)ig: ?r)pa path y:[0, 1] —» @ such that W, is a submanifold. Wc';i t;ke
R =[0,1] and h =y,, for any path y, from y, to y,. Then weh nd a
perturbation y transverse to F. (Note that we can assume that y h.as the sam?
end points, since the map is already transverse there.) Other applications are:

(1) If K = Q is a countable, locally-finite union of submanifolds whose
codimension exceeds dim R then any map h:R — Q can be perturbf,d
slightly so that its image does not meet K. In fact the locally finite
condition may be dropped, but then one needs u rather longer arg;xmen‘tq,
applying the Baire category theorem in the function space of maps from

2) At: s%ction ¥ of a vector bundle V- P céfn be perturbed so that .lt |ds

transverse to the zero section. The zero set is then a smooth submanifol
of the base space. To fit this into the framework above we can take F to be
the inclusion of the zero séction in the total space .and h to be {hc section,
regarded as a map from P to V. However, in this snt.uatl.on, if x is a zero of
¥ we shall usually write (D), for the intrinsic derivative mapping (T!’),
to’ the fibre V.. The transversality condition is jyst t!mat (DY), be surjec-
tive for all points of the zero set. Since this is a situation we sha}ll want to
refer to frequently in this book we introduce the following te!'mmology. A
point x in the zero set of a section ® of a vector bundle V will be called a
regular point of the zero set if (D®), is sqrjectlve. We say that the zero set
is regular if all its points are regular points.

In the context (2) of vector bundles we can fomulate the cpnstruction gbo:;
of a section with a regular zero set in the following way. Given any section
we consider an auxiliary space S and a bundle,

L/ , P X s’ (4.3.8)

B T T ———
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whose restriction to P x {so} is identified with V. In fact we may as well
assume that Vis the pull-back of V to the product. We choose S so that there
is a section @ of ¥ which agrees with ® on P x {30}, and which has a regular
zero set Z < P x S. Then, as before, we apply Sard’s theorem to the pro-
Jection map from Z to S. A regular value s of the projection map yields a
perturbation @, = @[, is Oof @, having a regular zero set in P.

4.3.2 The Fredholm case

Transversality theory in finite dimensions does not g0 over wholesale to the
infinite-dimensional setting of smooth maps between Banach manifolds, but
to a large extent it does extend to situations where the linear models are
Fredholm operators. We begin with the extension, due to Smale, of the Sard
theorem. Let F: 2 — 2 be a smooth Fredholm map between paracompact
Banach manifolds, and let x be a point of 2. We can choose a coordinate
patch #' c Z containing x, and a coordinate system so that F is represented,
in a neighbourhood of x, by a map:

(& n) — (L), a(S, m)),

as in (4.2.19), with L a linear isomorphism between Banach spaces and
a:Up x R” - R A point ({, 0) is a regular value of F |»-if and only if O is a
regular value for the finite dimensional map,

fc = d],_-.m:R’ —_— R'.

It follows easily from the ordinary Sard theorem that the regular values for
the restriction of F to a small coordinate patch 2 are open and dense in 2.
The Baire category theorem applies equally well to Banach manifolds SO,
taking a countable cover of 2, we obtain the Smale-Sard theorem:

Proposition (4.38). If F:2 - 9 is a smooth Fredholm map between para-

compact Banach manifolds, the regular values of F are of second category, hence
everywhere dense in 9.

If 2 is connected then for any such regular value ye 2 the fibre F ~!( Vc?is
a smooth submanifold of dimension

dim F~'(y) = ind F. (4.39)

Similarly we have a Fredholm transversality theorem:

Proposition (4.3.10). /fF:2 — 2 is a Fredholm map, asin(4.3.8),and h:R — 2
is @ smooth map from a finite-dimensional manifold R, there is a map h':R — 2,
arbitrarily close to h (in the topology of C*™ convergence on compact sets) and

transverse to F. If h is already transverse to F on a closed subset G — T we can
take h' = h on G.
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Proof. The proof is much as before. There are two possible approaches. For
the first we suppose initially that R is compact. Then the construction we
gave for the transverse family h is valid, except that now we must use the more
economical, finite-rank, perturbations which suffice to generate the cokernels.
Then we can take S again to be finite-dimensional. We obtain a finite-
dimensional manifold 2 c 2 x R x § and apply the ordinary Sard theorem
as before. Then we handle the general case by writing S as a union of compact
sets. For the second approach, we work with an infinite set of balls B, and
use an infinite-dimensional space S, replacing the product in (4.3.7) by the
space of bounded sequences. Then S is a Banach manifold and the projection
7:Z - S is Fredholm, with index ind(x) = ind(g) + dim R. We use (4.3.8) to
find a regular value s of = and hence a transverse perturbation h,.

Our main application of the Fredholm theory will be to sections of vector
bundles. Suppose that ¥" — 2 is a bundle of Banach spaces over a Banach
manifold, and ® is a Fredholm section of ¥, i.e. represented by Fredholm
maps in local trivializations of ¥". We would like to perturb @ to find a
section with a regular zero set. We cannot now proceed directly to apply
(4.3.10) since the hypotheses will not be satisfied if 2 is infinite-dimensional.
We can however apply the same scheme to analyse perturbations. Following
the notation at the end of Section 4.3.2 we consider a bundle
¥ = g}(¥’) =2 x §, where § is an auxiliary Banach manifold with base
point s,. Let @ be a section of ¥/, extending ®, which is Fredholm in the #
variable. That is, in local trivializations ® is represented by smooth maps to
the fibre whose partial derivatives in the 2 factor are Fredholm. Forsin § we
regard the restriction of ® to 2 x {s} as another section @, of 7",

Proposition (4.3.11). If the zero set 2 < P x § is regular then there is a dense
(second category) set of parameters s€ S for which the zero sets of the perturba-

tions ®, are regular.

This follows immediately from (4.3.8), applied to the projection map from £
to S, as before. Notice that, as in our first proof of (4.3.10), if it is possible to
choose S to be finite-dimensional then we only need the ‘ordinary’ Sard
theorem. We will return to discuss the construction of such families ®, in the

abstract setting, in Section 4.3.6.

4.3.3 Applications to moduli spaces

" We will now apply this theory to the ASD equations and state our main
results. We will defer the proofs of the main assertions, which involve more
detailed differential-geometric considerations, to Sections 4.3.4 and 4.3.5. The
main results were first proved by Freed and Uhlenbeck and our treatment is
not fundamentally different from theirs. Throughout this section we let X bea
compact, simply connected, oriented four-manifold. We will use the ter-
minology introduced at the end of Section 4.3.1, so (with a given metric) an
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;rprae;ieuciblc 1:SD1‘ cc;lnnection A is called regular if H2 = Q and we call a moduli

regular if all its irreducible points are regula i
regular moduli space of irreducible connecti Cis 8 smooth e 2

. . . ections is a smooth i
dimension given by the index s y oot g of

= s(E). But the converse is not true- i
. . t
::li;c)cc:) (tjli\::e:lh;or::’oﬂul: space is homeomorphic to a smooth manifoel’dlo;r:z:
ut 1s not regular. (We will see is i

Chapter 10). The regularit ition i i the condaion s /1

: ¥ condition is equivalent to th iti
rm\%ed space the-moduli space should be a manifoid. " condition that as a
. or:(l::ﬁ:n by'dltscussmg the natural parameter space in the set-up, the space

rmal structures on X. At one point we will |
manifold results to this space, so we a work witn O peach
\ gree henceforth to work with C* i
on X for some fixed large r(r = 3 will d i ot N these
' = o). The space € is the i
metrics by the C* conformal chan i i et
: ges. It is easy to see that € is naturall
g?::lc]l; ;1:::::1(1. W;, ca(l;.use the construction of Section 1.1.5 to obtai;aa );ez:
§ on 6. Given one conformal structure i
dual subspaces A*, A, t i identi [901?(‘ he ot
O o pa , the space € is naturally identified with the space of
mA- —s A*

with |m,| < t for all xe X. In i

th |m, . In particular the t i
pomt 1s naturally identified as: AHESHl space of 6 al the given

(T6),, = Hom(A~, A*), 4.3.12)

We will now consider the abelian reducti i
. . uctions in our moduli
::lv; ?reen (1:)(2.2.6) bt:at a line bundle L - X admits an ASD cosr:czﬁ?)ﬁ a\:c‘;
€1{L) can be represented by an anti-seif-dual harmoni
( . . . onic form.
;ciigg‘t:f;; ﬁl( ;X',‘ )R) ‘Y:’ll tge space of harmonic two-forms we have a(:en(:orlr{pv:
;R) = X ~; the condition for an ASD connection i
- . - - . l
f:l,1 (L) lies in P K !f the intersection form of X is negative dcﬁniteecs:.):"l*s ﬂl Py
:n z r:z no r‘:ftr;;:t;,o'fn(—any line bundle carries an ASD connec;ion, for ;n);
on X. X) is non-zero on the other hand
. ! is We see a m
:;ﬂ'erinic the space .t’ is then a proper subspace of H %(X) and we v::::g '
pect that generically it meets the integer lattice H *(X;Z) < H}(X;R) onl
Zt_ zero. W? Introduce some notation. Let Gr be the Grassmann ma;lifoldn );
> -c!lmenslona! subspaces of H*(X;R) and U <= Gr be the open subset gf
aximal negative subspaces, with respect to the intersection form. So the

assignment of the space o - .
gives a map: pa (9) of ASD harmonic forms to a conformal class

N | P:¥4 — U. (4.3.13)
OW suppose that c is a class in H3(X; Z ) with c. ¢ < 0 and define
N, . c U={Jt"|cex"}. (43.19)

It is easy to see that N_is a sub i i i
main rooglt hocs 5 . manifold of codimension b*(X)in U. Our



