# Two-dimensional Ising model revisited

Dan Freed

University of Texas at Austin

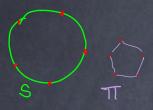
March 9, 2018

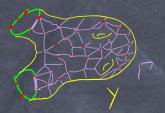
Joint work with Constantin Teleman

#### Latticed 1- and 2-manifolds

#### Definition:

- (i) A latticed 1-manifold  $(S, \Pi)$  is a closed 1-manifold S equipped with a finite subset;  $\Pi \subset S$  is an embedded graph, each component of which is a polygon.
- (ii) A latticed 2-manifold  $(Y, \Gamma)$  is a compact 2-manifold Y equipped with a smoothly embedded finite graph  $\Gamma \subset Y$  such that the closure of each face (component of  $Y \setminus \Gamma$ ) is a smoothly embedded solid n-gon with  $n \geq 2$ . Furthermore, if e is an edge of  $\Gamma$ , then either (a)  $e \cap \partial Y = \emptyset$ , (b)  $e \cap \partial Y$  is a single boundary vertex of e, or (c)  $e \subset \partial Y$ .





#### Latticed 1- and 2-manifolds

#### Definition:

- (i) A latticed 1-manifold  $(S, \Pi)$  is a closed 1-manifold S equipped with a finite subset;  $\Pi \subset S$  is an embedded graph, each component of which is a polygon.
- (ii) A latticed 2-manifold  $(Y,\Gamma)$  is a compact 2-manifold Y equipped with a smoothly embedded finite graph  $\Gamma \subset Y$  such that the closure of each face (component of  $Y \setminus \Gamma$ ) is a smoothly embedded solid n-gon with  $n \geq 2$ . Furthermore, if e is an edge of  $\Gamma$ , then either (a)  $e \cap \partial Y = \emptyset$ , (b)  $e \cap \partial Y$  is a single boundary vertex of e, or (c)  $e \subset \partial Y$ .

- No choice of embedding of *n*-gons
- Loops are disallowed by the conditions
- Faces may share multiple edges

### Ising model

$$\begin{split} A &= \mu_2 = \{\pm 1\} \\ \beta &\in \mathbb{R}^{>0} \\ \theta_\beta \colon A &\longrightarrow \mathbb{R}^{\geq 0} \\ &\pm 1 \longmapsto e^{\pm \beta} \\ \mathbb{S}_{(Y,\Gamma)} &= \mathrm{Map}\big(\mathrm{Vertices}(\Gamma), A\big) \\ g \colon \mathbb{S}_{(Y,\Gamma)} \times \mathrm{Edges}(\Gamma) \to A \end{split}$$

abelian group of "spins" inverse temperature

weight function

configuration space of spins ratio of boundary spins

### Ising model

$$A = \mu_2 = \{\pm 1\}$$

$$\beta \in \mathbb{R}^{>0}$$

$$\theta_{\beta} \colon A \longrightarrow \mathbb{R}^{\geq 0}$$

$$\pm 1 \longmapsto e^{\pm \beta}$$

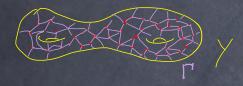
$$S_{(Y,\Gamma)} = \text{Map}(\text{Vertices}(\Gamma), A)$$

$$g \colon S_{(Y,\Gamma)} \times \text{Edges}(\Gamma) \to A$$

abelian group of "spins" inverse temperature

weight function

configuration space of spins ratio of boundary spins



Y closed:

$$I(Y,\Gamma) = \sum_{s \in \mathbb{S}_{(Y,\Gamma)}} \prod_{e \in \text{Edges}(\Gamma)} \theta_{\beta} \big( g(s;e) \big)$$

This is the Ising partition function. Note limits  $\beta \to \infty$ ,  $\beta \to 0$ .

## Ising model

$$A = \mu_2 = \{\pm 1\}$$

$$\beta \in \mathbb{R}^{>0}$$

$$\theta_{\beta} \colon A \longrightarrow \mathbb{R}^{\geq 0}$$

$$\pm 1 \longmapsto e^{\pm \beta}$$

$$S_{(Y,\Gamma)} = \text{Map}(\text{Vertices}(\Gamma), A)$$

$$g \colon S_{(Y,\Gamma)} \times \text{Edges}(\Gamma) \to A$$

configuration space of spins ratio of boundary spins

The model can be defined for more general data:

$$\theta\colon G\longrightarrow \mathbb{R}^{\geq 0}$$

 ${\bf Probabilistic\ interpretation:}$ 

$$\delta_s = \frac{\prod\limits_{e \in \mathrm{Edges}(\Gamma)} \theta_{\beta} \big(g(s;e)\big)}{I(Y,\Gamma)}$$

is a probability measure on  $\mathcal{S}_{(Y,\Gamma)}$ .

Probabilistic interpretation:

$$\delta_s = \frac{\prod\limits_{e \in \operatorname{Edges}(\Gamma)} \theta_{\beta} \big(g(s;e)\big)}{I(Y,\Gamma)}$$

is a probability measure on  $\mathcal{S}_{(Y,\Gamma)}$ .

$$\begin{array}{ll} \beta \to 0 & \text{uniform measure} & \text{paramagnetic} \\ \beta \to \infty & \text{support at 2 points} & \text{ferromagnetic} \end{array}$$

## ${\bf Probabilistic\ interpretation:}$

$$\delta_s = \frac{\prod\limits_{e \in \operatorname{Edges}(\Gamma)} \theta_{\beta} \big(g(s;e)\big)}{I(Y,\Gamma)}$$

is a probability measure on  $\mathcal{S}_{(Y,\Gamma)}$ .

$$eta 
ightarrow 0$$
 uniform measure paramagnetic  $eta 
ightarrow \infty$  support at 2 points ferromagnetic

Expectation value of a function

$$f \colon \mathbb{S}_{(Y,\Gamma)} \longrightarrow \mathbb{C}$$

such as  $f(s) = s(v_1)s(v_2)$  for vertices  $v_1, v_2$  (order operator):

$$\langle f \rangle = \sum_{s \in \mathbb{S}_{(Y,\Gamma)}} f(s) \delta_s$$

Quantum mechanical interpretation (Wick-rotated time):

Construct a functor

$$I \colon \operatorname{Bord}_{\langle 1,2 \rangle}^{\operatorname{latticed}} \longrightarrow \operatorname{Vect}_{\mathbb{C}},$$

a "field theory" with lattices in place of Riemannian metrics

Quantum mechanical interpretation (Wick-rotated time):

Construct a functor

$$I \colon \operatorname{Bord}_{\langle 1,2\rangle}^{\operatorname{latticed}} \longrightarrow \operatorname{Vect}_{\mathbb{C}},$$

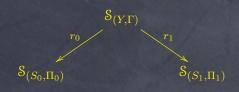
a "field theory" with lattices in place of Riemannian metrics

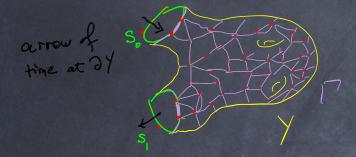
**Objects:** closed latticed 1-manifold  $(S, \Pi)$  maps to the vector space

$$I(S,\Pi) = \operatorname{Fun}(\mathbb{S}_{(S,\Pi)}) = \operatorname{Map}(\mathbb{S}_{(S,\Pi)},\mathbb{C})$$

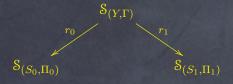


**Morphisms:** 2d latticed bordism  $(Y,\Gamma)$ :  $(S_0,\Pi_0) \to (S_1,\Pi_1)$  gives a correspondence diagram of spin configuration spaces





**Morphisms:** 2d latticed bordism  $(Y,\Gamma)$ :  $(S_0,\Pi_0) \to (S_1,\Pi_1)$  gives a correspondence diagram of spin configuration spaces



Define the linear map by push-pull

$$I(Y,\Gamma) = (r_1)_* \circ K \circ (r_0)^* \colon I(S_0,\Pi_0) \longrightarrow I(S_1,\Pi_1)$$

where the "kernel" K is the weight function

$$K(s) = \prod_{e} \theta_{\beta}(g(s;e)),$$
 e incoming or interior

Wick-rotated discrete time evolution via product bordism ("prism")

$$(Y,\Gamma)=[0,1]\times(S,\Pi)$$

The resulting endomorphism of  $I(S,\Pi)$  is called the *transfer matrix*. We write it as  $e^{-H}$ , where H is the *Hamiltonian*. Eigenvalues of H are energies (possibly infinite).

**1** Kramers-Wannier duality for G = A abelian relates theories  $I_{(A,\theta)}$  and  $I_{(A^{\vee},\theta^{\vee})}$ , but off by a sum over homology

- **1** Kramers-Wannier duality for G = A abelian relates theories  $I_{(A,\theta)}$  and  $I_{(A^{\vee},\theta^{\vee})}$ , but off by a sum over homology
- 2 Need to see how order operators map under duality; usual story with disorder operators not cleanly matching

- **1** Kramers-Wannier duality for G = A abelian relates theories  $I_{(A,\theta)}$  and  $I_{(A^{\vee},\theta^{\vee})}$ , but off by a sum over homology
- 2 Need to see how order operators map under duality; usual story with disorder operators not cleanly matching
- 3 Missing dual for G nonabelian

- **1** Kramers-Wannier duality for G=A abelian relates theories  $I_{(A,\theta)}$  and  $I_{(A^\vee,\theta^\vee)}$ , but off by a sum over homology
- 2 Need to see how order operators map under duality; usual story with disorder operators not cleanly matching
- 3 Missing dual for G nonabelian
- 4 Mismatch in low energy states under duality

- 1 Kramers-Wannier duality for G = A abelian relates theories  $I_{(A,\theta)}$  and  $I_{(A^{\vee},\theta^{\vee})}$ , but off by a sum over homology
- 2 Need to see how order operators map under duality; usual story with disorder operators not cleanly matching
- 3 Missing dual for G nonabelian
- 4 Mismatch in low energy states under duality

**Key Idea:** Use the full strength of the symmetry group G

- **1** Kramers-Wannier duality for G = A abelian relates theories  $I_{(A,\theta)}$  and  $I_{(A^{\vee},\theta^{\vee})}$ , but off by a sum over homology
- 2 Need to see how order operators map under duality; usual story with disorder operators not cleanly matching
- 3 Missing dual for G nonabelian
- 4 Mismatch in low energy states under duality

**Key Idea:** Use the full strength of the symmetry group G

Settles these issues and much more:

• prediction for low energy behavior (all G)

- **1** Kramers-Wannier duality for G = A abelian relates theories  $I_{(A,\theta)}$  and  $I_{(A^{\vee},\theta^{\vee})}$ , but off by a sum over homology
- 2 Need to see how order operators map under duality; usual story with disorder operators not cleanly matching
- 3 Missing dual for G nonabelian
- 4 Mismatch in low energy states under duality

**Key Idea:** Use the full strength of the symmetry group G

Settles these issues and much more:

- prediction for low energy behavior (all G)
- more general classes of models

- **1** Kramers-Wannier duality for G = A abelian relates theories  $I_{(A,\theta)}$  and  $I_{(A^{\vee},\theta^{\vee})}$ , but off by a sum over homology
- 2 Need to see how order operators map under duality; usual story with disorder operators not cleanly matching
- 3 Missing dual for G nonabelian
- 4 Mismatch in low energy states under duality

## **Key Idea:** Use the full strength of the symmetry group G

Settles these issues and much more:

- prediction for low energy behavior (all G)
- more general classes of models
- whole story in context of extended topological field theory

- **1** Kramers-Wannier duality for G=A abelian relates theories  $I_{(A,\theta)}$  and  $I_{(A^\vee,\theta^\vee)}$ , but off by a sum over homology
- 2 Need to see how order operators map under duality; usual story with disorder operators not cleanly matching
- 3 Missing dual for G nonabelian
- 4 Mismatch in low energy states under duality

## **Key Idea:** Use the full strength of the symmetry group G

#### Settles these issues and much more:

- prediction for low energy behavior (all G)
- more general classes of models
- whole story in context of extended topological field theory
- higher dimensional abelian models (stable homotopy theory)

If a group G acts as a symmetry on mathematical object M (condition), we can try to extend (data) to a fibering



If a group G acts as a symmetry on mathematical object M (condition), we can try to extend (data) to a fibering



The precise nature of BG and 'fibering' vary

If a group G acts as a symmetry on mathematical object M (condition), we can try to extend (data) to a fibering



The precise nature of BG and 'fibering' vary

In geometry/topology  $\mathcal{M}$  is the Borel quotient

If a group G acts as a symmetry on mathematical object M (condition), we can try to extend (data) to a fibering



The precise nature of BG and 'fibering' vary

In geometry/topology  $\mathcal{M}$  is the Borel quotient

In general there may be obstructions ("anomalies") which are important features of the symmetry; in any case  $\mathcal{M}$  yields a richer picture

If a group G acts as a symmetry on mathematical object M (condition), we can try to extend (data) to a fibering



The precise nature of BG and 'fibering' vary

In geometry/topology  $\mathcal{M}$  is the Borel quotient

In general there may be obstructions ("anomalies") which are important features of the symmetry; in any case  $\mathcal{M}$  yields a richer picture

Equivariance  $\longrightarrow$  Families

## 'Fibering over BG' in Ising Model

**Definition:** Z manifold.  $\operatorname{Bun}_G(Z)$  groupoid. Objects:  $P \to Z$  principal G-bundle. Morphisms: isos of G-bundles covering  $\operatorname{id}_Z$ .

$$\operatorname{Bun}_G(\operatorname{pt}) \approx *//G$$
  
 $\operatorname{Bun}_G(S^1) \approx G//G$ 

## 'Fibering over BG' in Ising Model

**Definition:** Z manifold.  $\operatorname{Bun}_G(Z)$  groupoid. Objects:  $P \to Z$  principal G-bundle. Morphisms: isos of G-bundles covering  $\operatorname{id}_Z$ .

$$\operatorname{Bun}_G(\operatorname{pt}) \approx *//G$$
  
 $\operatorname{Bun}_G(S^1) \approx G//G$ 

G-Ising model on  $Y^2$ : background lattice  $\Gamma \subset Y$  and G-bundle  $Q \to Y$  fluctuating field a "discrete gauged  $\sigma$ -model"

$$\mathcal{S}_{(Y,\Gamma)}[Q] = \text{sections of } Q \to Y \text{ over Vertices}(\Gamma)$$

The ratio of spins defined via parallel transport

$$g: \mathcal{S}_{(Y,\Gamma)}[Q] \times \operatorname{Edges}(\Gamma) \longrightarrow G$$



The partition function of  $I = I_{(G,\theta)}$  is now a function of a G-bundle:

$$I(Y,\Gamma) \colon \operatorname{Bun}_G(Y) \longrightarrow \mathbb{C}$$

The old partition function is the value at the trivial bundle (pt  $\in BG$ )

The partition function of  $I = I_{(G,\theta)}$  is now a function of a G-bundle:

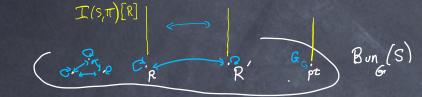
$$I(Y,\Gamma) \colon \operatorname{Bun}_G(Y) \longrightarrow \mathbb{C}$$

The old partition function is the value at the trivial bundle (pt  $\in BG$ )

To a latticed 1-manifold  $(S,\Pi)$  we obtain a vector bundle

$$I(S,\Pi) \longrightarrow \operatorname{Bun}_G(S)$$

These are "twisted sectors"; the old state space is the fiber at  $pt \in BG$ 



**Observation:** The 3-dimensional finite gauge theory  $F_G$  satisfies:

$$F_G(Y) = \operatorname{Fun}(\operatorname{Bun}_G(Y))$$
  
 $F_G(S) = \operatorname{Vect}(\operatorname{Bun}_G(S))$ 

**Observation:** The 3-dimensional finite gauge theory  $F_G$  satisfies:

$$F_G(Y) = \operatorname{Fun}(\operatorname{Bun}_G(Y))$$
  
 $F_G(S) = \operatorname{Vect}(\operatorname{Bun}_G(S))$ 

**Upshot:** I is a boundary theory for  $F_G$ :

$$I(Y,\Gamma) \in F_G(Y)$$
  
 $I(S,\Pi) \in F_G(S)$ 

**Observation:** The 3-dimensional finite gauge theory  $F_G$  satisfies:

$$F_G(Y) = \operatorname{Fun}(\operatorname{Bun}_G(Y))$$
  
 $F_G(S) = \operatorname{Vect}(\operatorname{Bun}_G(S))$ 

**Upshot:** I is a boundary theory for  $F_G$ :

$$I(Y,\Gamma) \in F_G(Y)$$
  
 $I(S,\Pi) \in F_G(S)$ 

This is a general picture of symmetry in field theory. The novelty is to apply full force of  $F_G$  as an *extended* field theory.

G finite group

 $Bord_3 = Bord_{(0,1,2,3)}$  (unoriented) bordism 3-category

TensCat Morita 3-category

of tensor categories/ $\mathbb C$ 

 $F_G \colon \operatorname{Bord}_3 \longrightarrow \operatorname{TensCat}$  symmetric monoidal functor

G finite group

 $Bord_3 = Bord_{(0,1,2,3)}$  (unoriented) bordism 3-category

TensCat Morita 3-category

of tensor categories/ $\mathbb C$ 

 $F_G \colon \operatorname{Bord}_3 \longrightarrow \operatorname{TensCat}$  symmetric monoidal functor

Construction 1—finite path integral:  $Bun_G(-)$  fluctuating field

G finite group

 $Bord_3 = Bord_{(0,1,2,3)}$  (unoriented) bordism 3-category

TensCat Morita 3-category

of tensor categories/ $\mathbb{C}$ 

 $F_G: \operatorname{Bord}_3 \longrightarrow \operatorname{TensCat}$  symmetric monoidal functor

Construction 1—finite path integral:  $Bun_G(-)$  fluctuating field

For  $X^3$  closed sum the constant function 1:

$$F_G(X) = \sum_{[P] \in \pi_0 \operatorname{Bun}_G(X)} \frac{1}{\# \operatorname{Aut} P}.$$

G finite group

 $Bord_3 = Bord_{(0,1,2,3)}$  (unoriented) bordism 3-category

TensCat Morita 3-category

of tensor categories/ $\mathbb{C}$ 

 $F_G: \text{Bord}_3 \longrightarrow \text{TensCat}$  symmetric monoidal functor

Construction 1—finite path integral:  $Bun_G(-)$  fluctuating field

For  $X^3$  closed sum the constant function 1:

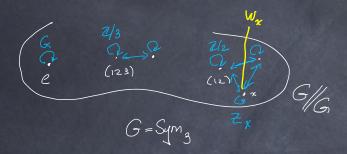
$$F_G(X) = \sum_{[P] \in \pi_0 \operatorname{Bun}_G(X)} \frac{1}{\# \operatorname{Aut} P}.$$

For  $Y^2$  closed sum (= (co)limit) the constant Vect-valued function  $\mathbb{C}$ :

$$F_G(Y) = \operatorname{Fun}(\operatorname{Bun}_G(Y))$$

$$F_G(S^1) = \operatorname{Vect}_G(G)$$

category of conjugation-equivariant G-bundles on G. Modular  $\otimes \operatorname{cat}$ .



$$F_G(S^1) = \operatorname{Vect}_G(G)$$

category of conjugation-equivariant G-bundles on G. Modular  $\otimes \operatorname{cat}$ .

$$F_G(pt) = Vect[G]$$
 (\*)

tensor category of vector bundles on G under convolution—categorified group algebra.

$$F_G(S^1) = \operatorname{Vect}_G(G)$$

category of conjugation-equivariant G-bundles on G. Modular  $\otimes \operatorname{cat}$ .

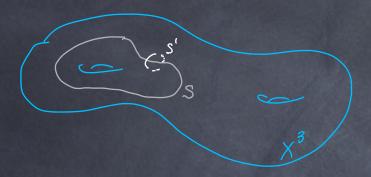
$$F_G(\mathrm{pt}) = \mathrm{Vect}[G]$$
 (\*)

tensor category of vector bundles on G under convolution—categorified group algebra.

Construction 2—cobordism hypothesis: Simply specify (\*)

### Line operators

 $S \subset X$  (oriented and co-oriented) 1d submanifold of  $X^3$  closed Link  $S^1$  used to label S by objects of  $F_G(S^1) = \text{Vect}_G(G)$ 



### Line operators

 $S \subset X$  (oriented and co-oriented) 1d submanifold of  $X^3$  closed Link  $S^1$  used to label S by objects of  $F_G(S^1) = \text{Vect}_G(G)$ 

Wilson loops: Rep(G)  $\approx$  full subcategory of Vect<sub>G</sub>(G) with support at  $e \in G$ . Classical expression using holonomy with character  $\chi$ :

$$F_G(X; (S, \chi)_W) = \sum_{[P] \in \pi_0 \operatorname{Bun}_G(X)} \frac{h_{S, \chi}(P)}{\# \operatorname{Aut} P}.$$

#### Line operators

 $S \subset X$  (oriented and co-oriented) 1d submanifold of  $X^3$  closed Link  $S^1$  used to label S by objects of  $F_G(S^1) = \text{Vect}_G(G)$ 

Wilson loops: Rep(G)  $\approx$  full subcategory of Vect<sub>G</sub>(G) with support at  $e \in G$ . Classical expression using holonomy with character  $\chi$ :

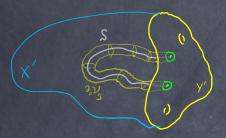
$$F_G(X; (S, \chi)_W) = \sum_{[P] \in \pi_0 \operatorname{Bun}_G(X)} \frac{h_{S,\chi}(P)}{\# \operatorname{Aut} P}.$$

't Hooft loops: Full subcategory of  $\operatorname{Vect}_G(G)$  in which centralizers  $Z_x$  act trivially on fiber at  $x \in G$ . Classical model sums bundles on  $X \setminus S$  with specified holonomy about S.

If  $\partial X \neq \emptyset$  there are line operators for neat 1d submanifolds  $S \subset X$ . Evaluate by cutting out tubular neighborhood  $\nu_S$ .

$$S^{1} \coprod S^{1} \underbrace{ \bigvee_{\partial_{0}\nu_{S}}}^{Y'} \emptyset^{1} \qquad X' = X \setminus \nu_{S}$$
$$Y' = X' \cap \partial X$$

Can evaluate explicitly on Wilson (parallel transport) and 't Hooft



# Electromagnetic duality

Let G=A be abelian, and  $A^{\vee}=\operatorname{Hom}(A,\mathbb{T})$  the Pontrjagin dual group.

**Theorem:** On oriented manifolds there is an isomorphism of theories

$$\mathfrak{F}\colon F_A \stackrel{\cong}{\longrightarrow} F_{A^{\vee}}$$

# Electromagnetic duality

Let G = A be abelian, and  $A^{\vee} = \operatorname{Hom}(A, \mathbb{T})$  the Pontrjagin dual group.

**Theorem:** On oriented manifolds there is an isomorphism of theories

$$\mathcal{F}\colon F_A \stackrel{\cong}{\longrightarrow} F_{A^{\vee}}$$

For example, on  $Y^2$  closed oriented,  $\mathcal{F}$  is the Fourier transform

$$\mathcal{F} \colon \operatorname{Fun}(H^1(Y;A)) \xrightarrow{\cong} \operatorname{Fun}(H^1(Y;A^{\vee}))$$

# Electromagnetic duality

Let G = A be abelian, and  $A^{\vee} = \operatorname{Hom}(A, \mathbb{T})$  the Pontrjagin dual group.

**Theorem:** On oriented manifolds there is an isomorphism of theories

$$\mathcal{F}\colon F_A \stackrel{\cong}{\longrightarrow} F_{A^{\vee}}$$

For example, on  $Y^2$  closed oriented,  $\mathcal F$  is the Fourier transform

$$\mathcal{F} \colon \operatorname{Fun}(H^1(Y;A)) \xrightarrow{\cong} \operatorname{Fun}(H^1(Y;A^{\vee}))$$

A special case of usual 4d electromagnetism, shifted since A finite

$$\widehat{F_G} \colon \operatorname{Bord}_3 \longrightarrow \operatorname{TensCat}$$

$$\operatorname{pt} \longmapsto \operatorname{Rep}(G)$$

$$\widehat{F_G} \colon \operatorname{Bord}_3 \longrightarrow \operatorname{TensCat}$$
  
 $\operatorname{pt} \longmapsto \operatorname{Rep}(G)$ 

**Theorem:** There is a Morita equivalence  $Vect[G] \approx Rep(G)$ , hence iso

$$\mathfrak{F}\colon F_G \stackrel{\cong}{\longrightarrow} \widehat{F_G}$$

of extended topological field theories

$$\widehat{F_G} \colon \operatorname{Bord}_3 \longrightarrow \operatorname{TensCat}$$

$$\operatorname{pt} \longmapsto \operatorname{Rep}(G)$$

**Theorem:** There is a Morita equivalence  $Vect[G] \approx Rep(G)$ , hence iso

$$\mathfrak{F}\colon F_G \stackrel{\cong}{\longrightarrow} \widehat{F_G}$$

of extended topological field theories

For G = A abelian  $\operatorname{Rep}(A) \approx \operatorname{Vect}[A^{\vee}]$  which recovers the previous

$$\widehat{F_G} \colon \operatorname{Bord}_3 \longrightarrow \operatorname{TensCat}$$

$$\operatorname{pt} \longmapsto \operatorname{Rep}(G)$$

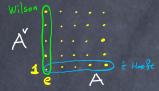
**Theorem:** There is a Morita equivalence  $Vect[G] \approx Rep(G)$ , hence iso

$$\mathfrak{F}\colon F_G \stackrel{\cong}{\longrightarrow} \widehat{F_G}$$

of extended topological field theories

For G = A abelian  $\operatorname{Rep}(A) \approx \operatorname{Vect}[A^{\vee}]$  which recovers the previous

Note  $F_A(S^1) = \text{Vect}_A(A) \approx \text{Vect}(A \times A^{\vee})$ ; duality exchanges the factors



**Definition:** A topological boundary theory for  $F_G: \operatorname{Bord}_3 \to \operatorname{TensCat}$  is

$$\beta \colon 1 \longrightarrow \tau_{<2} F_G,$$

a map of functors  $Bord_2 \rightarrow TensCat$ .

**Definition:** A topological boundary theory for  $F_G : \text{Bord}_3 \to \text{TensCat}$  is

$$\beta \colon 1 \longrightarrow \tau_{<2} F_G,$$

a map of functors  $Bord_2 \rightarrow TensCat$ .

Cobordism hypothesis:  $\beta$  determined by  $\beta(pt)$ , a left Vect[G]-module

**Definition:** A topological boundary theory for  $F_G : \text{Bord}_3 \to \text{TensCat}$  is

$$\beta \colon 1 \longrightarrow \tau_{<2} F_G$$
,

a map of functors  $Bord_2 \to TensCat$ .

Cobordism hypothesis:  $\beta$  determined by  $\beta(\text{pt})$ , a left Vect[G]-module

**Theorem [EGNO]:** Irreducible  $\operatorname{Vect}[G]$ -modules are parametrized by central extensions  $1 \longrightarrow \mathbb{T} \longrightarrow \widetilde{H} \longrightarrow H \longrightarrow 1$  of subgroups  $H \subset G$ .

**Definition:** A topological boundary theory for  $F_G: \operatorname{Bord}_3 \to \operatorname{TensCat}$  is

$$\beta \colon 1 \longrightarrow \tau_{\leq 2} F_G$$

a map of functors  $Bord_2 \rightarrow TensCat$ .

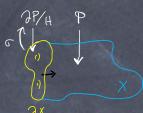
Cobordism hypothesis:  $\beta$  determined by  $\beta(pt)$ , a left Vect[G]-module

**Theorem [EGNO]:** Irreducible Vect[G]-modules are parametrized by central extensions  $1 \longrightarrow \mathbb{T} \longrightarrow \widetilde{H} \longrightarrow H \longrightarrow 1$  of subgroups  $H \subset G$ .

Classical model: boundary field a section of associated G/H-bundle

$$\mathbb{C} \xrightarrow{\beta(\partial X)} F_G(\partial X) \xrightarrow{F_G(X)} \mathbb{C}$$

$$\sum_{[P \to X]} \frac{1}{\# \operatorname{Aut} P} \sum_{\sigma \colon \partial X \to \partial P/H} \lambda_{\widetilde{H}}(\sigma^* \partial P \to \partial X)$$



The corresponding left Vect[G]-module is (twisted) Vect(G/H)

The corresponding left  $\mathrm{Vect}[G]$ -module is (twisted)  $\mathrm{Vect}(G/H)$ 

Two canonical topological boundary theories: Dirichlet and Neumann

The corresponding left Vect[G]-module is (twisted) Vect(G/H)

Two canonical topological boundary theories: Dirichlet and Neumann

**Dirichlet:** subgroup  $G \subset G$ , so trivialization of G-bundle on boundary module is Vect (fiber functor)

The corresponding left Vect[G]-module is (twisted) Vect(G/H)

Two canonical topological boundary theories: Dirichlet and Neumann

**Dirichlet:** subgroup  $G \subset G$ , so trivialization of G-bundle on boundary module is Vect (fiber functor)

**Neumann:** subgroup  $e \subset G$ , so no new boundary field module is Vect[G]

$$I = I_{(G,\theta)} \colon \operatorname{Bord}_{\langle 1,2 \rangle}^{\operatorname{latticed}} \longrightarrow \tau_{\langle 1,2 \rangle} F_G$$

$$I = I_{(G,\theta)} \colon \operatorname{Bord}_{\langle 1,2 \rangle}^{\operatorname{latticed}} \longrightarrow \tau_{\langle 1,2 \rangle} F_G$$

**Definition:** Let G be a finite group. A function  $\theta: G \to \mathbb{R}$  is admissible if (i)  $\theta(g) \geq 0$  for all  $g \in G$ ; (ii)  $\theta(g^{-1}) = \theta(g)$  for all  $g \in G$ ; and (iii)  $\theta^{\vee}(\rho)$  is a nonnegative operator for each irreducible unitary representation  $\rho: G \to \operatorname{Aut}(W)$ .

$$I = I_{(G,\theta)} \colon \operatorname{Bord}_{\langle 1,2 \rangle}^{\operatorname{latticed}} \longrightarrow \tau_{\langle 1,2 \rangle} F_G$$

**Definition:** Let G be a finite group. A function  $\theta: G \to \mathbb{R}$  is admissible if (i)  $\theta(g) \geq 0$  for all  $g \in G$ ; (ii)  $\theta(g^{-1}) = \theta(g)$  for all  $g \in G$ ; and (iii)  $\theta^{\vee}(\rho)$  is a nonnegative operator for each irreducible unitary representation  $\rho: G \to \operatorname{Aut}(W)$ .

Boundary theory defined by same push-pull formula as earlier

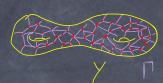
$$I = I_{(G,\theta)} \colon \operatorname{Bord}_{\langle 1,2 \rangle}^{\operatorname{latticed}} \longrightarrow \tau_{\langle 1,2 \rangle} F_G$$

**Definition:** Let G be a finite group. A function  $\theta: G \to \mathbb{R}$  is admissible if (i)  $\theta(g) \geq 0$  for all  $g \in G$ ; (ii)  $\theta(g^{-1}) = \theta(g)$  for all  $g \in G$ ; and (iii)  $\theta^{\vee}(\rho)$  is a nonnegative operator for each irreducible unitary representation  $\rho: G \to \operatorname{Aut}(W)$ .

Boundary theory defined by same push-pull formula as earlier

For  $(Y, \Gamma)$  closed obtain a function on  $\operatorname{Bun}_G(Y)$ :

$$I(Y,\Gamma)[Q] = \sum_{s \in \mathcal{S}_{(Y,\Gamma)}[Q]} \ \prod_{e \in \mathrm{Edges}(\Gamma)} \theta \left(g(s;e)\right)$$

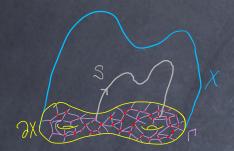


Line operators for neat 1d submanifolds  $S \subset X^3$  with  $\partial S \subset (\partial X, \Gamma)$ 

Line operators for neat 1d submanifolds  $S \subset X^3$  with  $\partial S \subset (\partial X, \Gamma)$ 

Wilson/order operators:  $\chi : G \to \mathbb{T}$  character, S ends at vertices

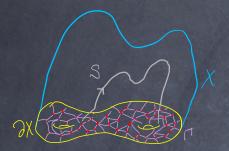
$$(F,I)(X,\Gamma) = \sum_{[P] \in \pi_0 \operatorname{Bun}_G(X)} \frac{1}{\# \operatorname{Aut} P} \sum_{s \in \mathcal{S}_{(\partial X,\Gamma)}[\partial P]} h_{S,\chi}(P,s) \prod_{e \in \operatorname{Edges}(\Gamma)} \theta(g(s;e))$$



Line operators for neat 1d submanifolds  $S \subset X^3$  with  $\partial S \subset (\partial X, \Gamma)$ 

Wilson/order operators:  $\chi \colon G \to \mathbb{T}$  character, S ends at vertices

't Hooft/disorder operators: conjugacy class in G, S ends in faces



### Revisit problems

- Nramers-Wannier duality for G = A abelian relates theories  $I_{(A,\theta)}$  and  $I_{(A^{\vee},\theta^{\vee})}$ , but off by a sum over homology
  - ✓ Kramers-Wannier duality is part of electromagnetic duality

#### Revisit problems

- Kramers-Wannier duality for G = A abelian relates theories I<sub>(A,θ)</sub> and I<sub>(A<sup>∨</sup>,θ<sup>∨</sup>)</sub>, but off by a sum over homology
   ✓ Kramers-Wannier duality is part of electromagnetic duality
- Need to see how order operators map under duality; usual story with disorder operators not cleanly matching
   ✓ Order/Disorder special case of Wilson/'t Hooft

#### Revisit problems

- 1 Kramers-Wannier duality for G = A abelian relates theories  $I_{(A,\theta)}$  and  $I_{(A^{\vee},\theta^{\vee})}$ , but off by a sum over homology  $\checkmark$  Kramers-Wannier duality is part of electromagnetic duality
- Need to see how order operators map under duality; usual story with disorder operators not cleanly matching
   ✓ Order/Disorder special case of Wilson/'t Hooft
- 3 Missing dual for G nonabelian  $\checkmark$  Can construct using Turaev-Viro for  $\widehat{F}_G$

#### Revisit problems

- 1 Kramers-Wannier duality for G = A abelian relates theories  $I_{(A,\theta)}$  and  $I_{(A^{\vee},\theta^{\vee})}$ , but off by a sum over homology  $\checkmark$  Kramers-Wannier duality is part of electromagnetic duality
- Need to see how order operators map under duality; usual story with disorder operators not clearly matching
   ✓ Order/Disorder special case of Wilson/'t Hooft
- 3 Missing dual for G nonabelian  $\checkmark$  Can construct using Turaev-Viro for  $\widehat{F_G}$
- 4 Mismatch in low energy states under duality Discuss next

# Revisit problems

- **1** Kramers-Wannier duality for G = A abelian relates theories  $I_{(A,\theta)}$  and  $I_{(A^{\vee},\theta^{\vee})}$ , but off by a sum over homology 
  ✓ Kramers-Wannier duality is part of electromagnetic duality
- Need to see how order operators map under duality; usual story with disorder operators not cleanly matching
   ✓ Order/Disorder special case of Wilson/'t Hooft
- 3 Missing dual for G nonabelian  $\checkmark$  Can construct using Turaev-Viro for  $\widehat{F_G}$
- 4 Mismatch in low energy states under duality Discuss next
  - prediction for low energy behavior (discuss next)
  - more general classes of models
  - whole story in context of extended topological field theory
    - higher dimensional abelian models (stable homotopy theory)

 $egin{aligned} \mathcal{M} \ \Delta \subset \mathcal{M} \ (\mathcal{M} \setminus \Delta)_{\mathrm{gapped}} \subset \mathcal{M} \setminus \Delta \ \pi_0(\mathcal{M} \setminus \Delta)_{\mathrm{gapped}} \end{aligned}$ 

moduli space of quantum theories locus of phase transitions systems with spectral gap set of *phases* 

 $egin{aligned} \mathcal{M} \ & \Delta \subset \mathcal{M} \ & (\mathcal{M} \setminus \Delta)_{\mathrm{gapped}} \subset \mathcal{M} \setminus \Delta \ & \pi_0(\mathcal{M} \setminus \Delta)_{\mathrm{gapped}} \end{aligned}$ 

moduli space of quantum theories locus of phase transitions systems with spectral gap set of *phases* 

• Points in  $(\mathcal{M} \setminus \Delta)_{\text{gapped}}$  have a low energy effective topological\* field theory, thought to be a complete invariant of its path component

 $egin{aligned} \mathcal{M} \ \Delta \subset \mathcal{M} \ (\mathcal{M} \setminus \Delta)_{\mathrm{gapped}} \subset \mathcal{M} \setminus \Delta \ \pi_0(\mathcal{M} \setminus \Delta)_{\mathrm{gapped}} \end{aligned}$ 

moduli space of quantum theories locus of phase transitions systems with spectral gap set of *phases* 

- Points in  $(\mathcal{M} \setminus \Delta)_{\text{gapped}}$  have a low energy effective topological\* field theory, thought to be a complete invariant of its path component
- Renormalization group flow on  $(\mathcal{M} \setminus \Delta)_{\text{gapped}}$

 $egin{aligned} \mathcal{M} \ & \Delta \subset \mathcal{M} \ & (\mathcal{M} \setminus \Delta)_{\mathrm{gapped}} \subset \mathcal{M} \setminus \Delta \ & \pi_0(\mathcal{M} \setminus \Delta)_{\mathrm{gapped}} \end{aligned}$ 

moduli space of quantum theories locus of phase transitions systems with spectral gap set of *phases* 

- Points in  $(\mathcal{M} \setminus \Delta)_{\text{gapped}}$  have a low energy effective topological\* field theory, thought to be a complete invariant of its path component
- Renormalization group flow on  $(\overline{\mathcal{M}} \setminus \Delta)_{\text{gapped}}$

In our case take  $\mathcal{M}_G = \{\text{admissible }\theta\}/\text{rescaling}$   $\mathcal{M}_{\mathcal{L}} = \{\mathcal{M}_{\mathcal{L}}, \mathcal{L}\} = \mathcal{M}_{\mathcal{L}}$ 

 $egin{aligned} \mathcal{M} \ \Delta \subset \mathcal{M} \ (\mathcal{M} \setminus \Delta)_{\mathrm{gapped}} \subset \mathcal{M} \setminus \Delta \ \pi_0(\mathcal{M} \setminus \Delta)_{\mathrm{gapped}} \end{aligned}$ 

moduli space of quantum theories locus of phase transitions systems with spectral gap set of *phases* 

- Points in  $(\mathcal{M} \setminus \Delta)_{\text{gapped}}$  have a low energy effective topological\* field theory, thought to be a complete invariant of its path component
- Renormalization group flow on  $(\mathcal{M} \setminus \Delta)_{gapped}$

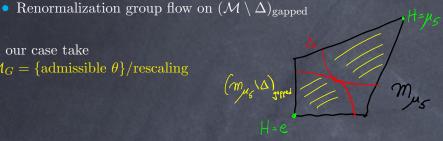
In our case take  $\mathcal{M}_G = \{\text{admissible }\theta\}/\text{rescaling}$   $\mathcal{M}_G = \{\text{admissible }\theta\}/\text{rescaling}$   $\mathcal{M}_{\mathcal{A}_2} = \{\text{admissible }\theta\}/\text{rescaling}$ 

M  $\Delta \subset M$  $(\mathcal{M} \setminus \Delta)_{\text{gapped}} \subset \mathcal{M} \setminus \Delta$  $\pi_0(\mathcal{M} \setminus \Delta)_{\text{gapped}}$ 

moduli space of quantum theories locus of phase transitions systems with spectral gap set of phases

• Points in  $(\mathcal{M} \setminus \Delta)_{\text{gapped}}$  have a low energy effective topological\* field theory, thought to be a complete invariant of its path component

In our case take  $\mathcal{M}_G = \{\text{admissible }\theta\}/\text{rescaling}$ 



Theorem stated earlier classifies irreducibles via subgroups  $H \subset G$ 

Theorem stated earlier classifies irreducibles via subgroups  $H \subset G'$ 

Prediction: Phases detected by symmetry breaking (Landau)

Theorem stated earlier classifies irreducibles via subgroups  $H\subset G$ 

Prediction: Phases detected by symmetry breaking (Landau)

Uses twisted sectors—low energy states form a vector bundle

$$W \longrightarrow G/\!/G$$

 $W \longrightarrow G//G$ 

Theorem stated earlier classifies irreducibles via subgroups  $H\subset G$ 

**Prediction:** Phases detected by symmetry breaking (Landau)

Uses twisted sectors—low energy states form a vector bundle

 $(G = \mu_2)$ 

#### Topological construction; general theories

 $\mathcal{T} = \text{Vect}[G]$  categorified group algebra (white)

 $\mathcal{B}_1 = \text{Vect}[G]$  Neumann boundary theory (blue)

 $\mathcal{B}_2 = \text{Vect}$  Dirichlet boundary theory (red)

 $\mathcal{D} = \text{Vect} \qquad \text{unique morphism } \mathcal{B}_1 \to \mathcal{B}_2 \text{ (green)}$ 

#### Topological construction; general theories

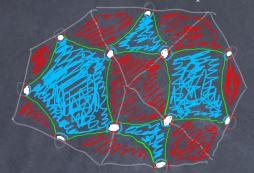
 $\mathcal{T} = \text{Vect}[G]$  categorified group algebra (white)

 $\mathfrak{B}_1 = \operatorname{Vect}[G]$  Neumann boundary theory (blue)

 $B_2 = Vect$  Dirichlet boundary theory (red)

Replace lattice  $\Gamma$  by a coloring via Morse function with critical points:

index 0 vertices index 1 edges index 2 faces



#### Topological construction; general theories

 $\mathcal{T} = \text{Vect}[G]$  categorified group algebra (white)

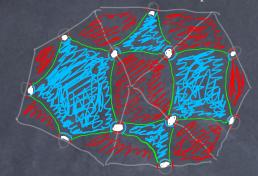
 $\mathcal{B}_1 = \text{Vect}[G]$  Neumann boundary theory (blue)

 $\mathcal{B}_2 = \text{Vect}$  Dirichlet boundary theory (red)

 $\mathcal{D} = \text{Vect}$  unique morphism  $\mathcal{B}_1 \to \mathcal{B}_2$  (green)

Replace lattice  $\Gamma$  by a coloring via Morse function with critical points:

 $\begin{array}{ll} \text{index 0} & \text{vertices} \\ \text{index 1} & \text{edges} \\ \text{index 2} & \text{faces} \end{array}$ 



$$\operatorname{Vect}[G] \longleftrightarrow \operatorname{Rep}(G) \qquad \text{(tensor categories)}$$

$$\operatorname{Vect}(G/H) \longleftrightarrow \operatorname{Rep}(H) \qquad \text{(left modules)}$$

$$\operatorname{Vect}[G] \longleftrightarrow \operatorname{Rep}(G)$$
 (tensor categories)  
 $\operatorname{Vect}(G/H) \longleftrightarrow \operatorname{Rep}(H)$  (left modules)

So exchanges theories specified by  $(\mathcal{T}, \mathcal{B}_1, \mathcal{B}_2, \mathcal{D})$ :

$$(\operatorname{Vect}[G],\operatorname{Vect},\operatorname{Vect})\longleftrightarrow(\operatorname{Rep}(G),\operatorname{Vect},\operatorname{Rep}(G),\operatorname{Vect})$$

$$\operatorname{Vect}[G] \longleftrightarrow \operatorname{Rep}(G)$$
 (tensor categories)  
 $\operatorname{Vect}(G/H) \longleftrightarrow \operatorname{Rep}(H)$  (left modules)

So exchanges theories specified by  $(\mathcal{T}, \mathcal{B}_1, \mathcal{B}_2, \mathcal{D})$ :

$$(\operatorname{Vect}[G],\operatorname{Vect},\operatorname{Vect})\longleftrightarrow(\operatorname{Rep}(G),\operatorname{Vect},\operatorname{Rep}(G),\operatorname{Vect})$$

**Theorem:** There is an equivalence of G-gauge theory and the Turaev-Viro Rep(G) theory which exchanges their lattice boundary theories, and exchanges Wilson/Order and 't Hooft/Disorder operators. For G abelian the equivalence is electromagnetic duality.

$$\operatorname{Vect}[G] \longleftrightarrow \operatorname{Rep}(G)$$
 (tensor categories)  
 $\operatorname{Vect}(G/H) \longleftrightarrow \operatorname{Rep}(H)$  (left modules)

So exchanges theories specified by  $(\mathcal{T}, \mathcal{B}_1, \mathcal{B}_2, \mathcal{D})$ :

$$(\operatorname{Vect}[G],\operatorname{Vect},\operatorname{Vect})\longleftrightarrow(\operatorname{Rep}(G),\operatorname{Vect},\operatorname{Rep}(G),\operatorname{Vect})$$

**Theorem:** There is an equivalence of G-gauge theory and the Turaev-Viro  $\operatorname{Rep}(G)$  theory which exchanges their lattice boundary theories, and exchanges Wilson/Order and 't Hooft/Disorder operators. For G abelian the equivalence is electromagnetic duality.

**Generalization:** With an additional assumption on  $(\mathfrak{T}, \mathfrak{B}_1, \mathfrak{B}_2, \mathfrak{D})$ , that  $\operatorname{End}_{\mathfrak{T}}(\mathfrak{B}_i) \approx \mathfrak{T}$ , we can reduce to  $\mathfrak{B}_1 = \mathfrak{T}$ ,  $\mathfrak{B}_2 = \operatorname{Vect}$ . In that case  $\mathfrak{T}$  is the representation category of a *Frobenius Hopf algebra H*, exchanged by duality with  $H^*$ .

S pointed space, finite homotopy type  $\mathfrak{F}_X$  Map $(X_+, S)$ 

n-dimensional theory  $F_S$  (finite path integral) with partition function

$$F_S(X) = \sum_{[\varphi] \in \pi_0 \mathcal{F}_X} \frac{1}{\# \pi_1(\mathcal{F}_X, \varphi)} \frac{\# \pi_2(\mathcal{F}_X, \varphi)}{\# \pi_3(\mathcal{F}_X, \varphi)} \cdots$$

S pointed space, finite homotopy type  $\mathfrak{F}_X$  Map $(X_+,S)$ 

n-dimensional theory  $F_S$  (finite path integral) with partition function

$$F_S(X) = \sum_{[\varphi] \in \pi_0 \mathcal{F}_X} \frac{1}{\# \pi_1(\mathcal{F}_X, \varphi)} \frac{\# \pi_2(\mathcal{F}_X, \varphi)}{\# \pi_3(\mathcal{F}_X, \varphi)} \cdots$$

Canonical Dirichlet and Neumann boundary theories



S pointed space, finite homotopy type  $\mathcal{F}_X$  Map $(X_+, S)$ 

n-dimensional theory  $F_S$  (finite path integral) with partition function

$$F_S(X) = \sum_{[\varphi] \in \pi_0 \mathcal{F}_X} \frac{1}{\# \pi_1(\mathcal{F}_X, \varphi)} \frac{\# \pi_2(\mathcal{F}_X, \varphi)}{\# \pi_3(\mathcal{F}_X, \varphi)} \cdots$$

Canonical Dirichlet and Neumann boundary theories

S pointed space, finite homotopy type  $\mathfrak{F}_X$  Map $(X_+, S)$ 

n-dimensional theory  $F_S$  (finite path integral) with partition function

$$F_S(X) = \sum_{[\varphi] \in \pi_0 \mathcal{F}_X} \frac{1}{\# \pi_1(\mathcal{F}_X, \varphi)} \frac{\# \pi_2(\mathcal{F}_X, \varphi)}{\# \pi_3(\mathcal{F}_X, \varphi)} \cdots$$

Canonical Dirichlet and Neumann boundary theories

*S* pointed space, finite homotopy type

$$\mathcal{F}_X$$
 Map $(X_+, S)$ 

n-dimensional theory  $F_S$  (finite path integral) with partition function

$$F_S(X) = \sum_{[\varphi] \in \pi_0 \mathcal{F}_X} \frac{1}{\# \pi_1(\mathcal{F}_X, \varphi)} \frac{\# \pi_2(\mathcal{F}_X, \varphi)}{\# \pi_3(\mathcal{F}_X, \varphi)} \cdots$$

Canonical Dirichlet and Neumann boundary theories

If S is an  $\infty$  loop space, the 0-space of a spectrum  $\mathcal{T}$ , then there is a (Pontrjagin) dual spectrum  $\mathcal{T}^{\vee}$ . Electromagnetic duality:

$$F_{\mathfrak{I}} \approx F_{\Sigma^{n-1}\mathfrak{I}^{\vee}}$$

space, finite homotopy type

$$\mathcal{F}_X$$
 Map $(X_+, S)$ 

n-dimensional theory  $F_S$  (finite path integral) with partition function

$$F_S(X) = \sum_{[\varphi] \in \pi_0 \mathcal{F}_X} \frac{1}{\# \pi_1(\mathcal{F}_X, \varphi)} \frac{\# \pi_2(\mathcal{F}_X, \varphi)}{\# \pi_3(\mathcal{F}_X, \varphi)} \cdots$$

Canonical Dirichlet and Neumann boundary theories

If S is an  $\infty$  loop space, the 0-space of a spectrum  $\mathcal{T}$ , then there is a (Pontrjagin) dual spectrum  $\mathcal{T}^{\vee}$ . Electromagnetic duality:

$$F_{\mathfrak{I}} \approx F_{\Sigma^{n-1}\mathfrak{I}^{\vee}}$$

The abelian Ising story is n = 3 and  $\mathfrak{T} = \Sigma HA$ .