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Gang of Four
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1952-1963: Hirzebruch Riemann-Roch, Bott periodicity, Atiyah-Hirzebruch K-theory,
Atiyah-Singer index theorem

® Variations on the theme

Global topological invariants ~~= local geometric invariants (of Dirac operators)

An application to physics



Riemann-Roch theorem

X smooth projective curve of genus g
D divisor on X
L(D) meromorphic functions on X with pole of order < ord, (D) at each z € X

Problem: Compute dim £(D)
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Riemann-Roch theorem

X smooth projective curve of genus g
D divisor on X
L(D) meromorphic functions on X with pole of order < ord, (D) at each z € X

Problem: Compute dim £(D)

Theorem: If K is a canonical divisor of X, then

dim £(D) — dim £(K — D) = deg(D) — g + 1

; "rlf = Uflx(’D>
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Riemann-Roch theorem

X smooth projective curve of genus g
D divisor on X
L(D) meromorphic functions on X with pole of order < ord, (D) at each z € X

Problem: Compute dim £(D)

Theorem: If K is a canonical divisor of X, then

dim £(D) —dim L(K — D) = deg(D) — g+ 1
X smooth projective variety of dimension n
V—-X holomorphic vector bundle

Problem: Compute the Euler characteristic x(X,V) = >, (—=1)4dim H4(X,V)
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For n =2 and V — X trivial of rank one, the Noether formula is classical:

L (800 + e(X))[X]

X(X):E



For n =2 and V — X trivial of rank one, the Noether formula is classical:

X(X) = 2 (A(X) + (X)) [X]

Hirzebruch applied Thom’s cobordism theory, sheaf theory, and the theory of characteristic
classes to solve the RR problem (and also to compute the signature of a smooth manifold)



For n =2 and V — X trivial of rank one, the Noether formula is classical:

X(X) = 2 (A(X) + (X)) [X]

Hirzebruch applied Thom’s cobordism theory, sheaf theory, and the theory of characteristic
classes to solve the RR problem (and also to compute the signature of a smooth manifold)

TX =T} @ S a sy y; = c1(L;) € H*(X;Z)
V=K1® - ®K: r; = c1(K;)
splitting principle first Chern classes

Todd(X) = ] [ =t BIY =Y

—e Y
1=1 i

~
Il
=




For n =2 and V — X trivial of rank one, the Noether formula is classical:

L (2(x) + ea(X))[X]

X(X):E

Hirzebruch applied Thom’s cobordism theory, sheaf theory, and the theory of characteristic
classes to solve the RR problem (and also to compute the signature of a smooth manifold)

TX =T} @ S a sy y; = c1(L;) € H*(X;Z)
V=K&  -®K, r; = c1(K;)
splitting principle first Chern classes

Todd(X) = ] [ =t BIY =Y

—e Y
1=1 i
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Theorem: x(X,V) = Todd(X) ch(V)[X]



X

Integrality of the A genus

TXQC=L,®L,---® Ly @ Lo

X (almost) complex:

compact smooth manifold of dimension 4k

s = G0

2k

Yi/2
sinh y; /2

is a function of ¢1(X) and p;(X)



Integrality of the A genus

X compact smooth manifold of dimension 4k
TX®C:L1@E@L2k®T% yi:cl(Li)
2k
1 Yi/2
A(X) = —_—
(X) g sinh y;/2
X (almost) complex: ¢ (X) = wa(X) (mod 2)

Todd(X) = e (X)/2A(X) is a function of ¢;(X) and p;(X)

Question (Hirzebruch 1954): If X is compact smooth and c € I:I2(X; Z) satisfies
c=wy(X) (mod 2), then is e¢/?A(X) an integer?

Special case (¢ = 0): Is the A genus of a spin manifold an integer?
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SOME PROBLEMS ON DIFFERENTIABLE AND COMPLEX MANIFOLDS
Friepricn HirzeBrucH
(Received March 31, 1954)

A conference with the title Fiber bundles and differential geometry was held at
Cornell University from May 3 to May 7, 1953.* It was supported by a grant
from the National Science Foundation. The purpose of the present paper is to
record tho\(‘ pmhloms prosented at the conference which concern dltTer('ntlaMe,

’lln- Riemann- Rmh lhoorom of ulg-hmu gomotrv 7t makes it rather
natural to consider the mu]llp] ative sequence of polynomials in the p; which
belongs to the power

“Vaz

sequence of polynomials by {A:} and define the A-genus of an

AM™) = Aupy, -+, pi) [M™]. For e
AMY) = — 3pIMY)
AM®) = &(—4p: + Tp)M°)

ProBLE
with vanishing

s T amples show that b(k) = 4/. + 1. Rul\|1n> thoorom states b(1) = 5

2.1 of this report we shall point out that Problem 7 is related to
certain problems concerning the Todd arithmetic gen
We have menh()nod above that the A-genus of an M™ is ¢ 1 integer.
Actually this is a special case of a more gom-ml theorem [2a] which is motivated
by the Riemann-Roch theorem (M, ,)."

ProBLEM 16. Is the Todd genus T(M,) an inleger for every almost-complex
manifold M, ?




Characteristic Classes and Homogeneous Spaces, II

A. Borel; F. Hirzebruch

American Journal of Mathematics, Vol. 81, No. 2. (Apr., 1959), pp. 31

CHARACTERISTIC CLASSES AND HOMOGENEOUS SPACES, IIL*

By A. Boren and F. HIRZEBRUCH.

American Journal of Mathematics, Jul., 1960, Vol. 82, No. 3 (Jul., 1960)

We do not know how far in 25.5 “integral exc 2 could be replaced by
“integral.” We can only dare the following conjectures which are motivated
by the theorem of Riemann-Roch (see [18]). Let X be a compact oriented
differentiable manifold and # a principal U(k)-bundle over X.
econd Stiefel-Whitney class of X, (w, € H*(X, Z,)).

,7) is an integer.

Let w, denote the
If de H (X, Z) reduced mod 2 is w., then A(X,

4 (mod 8), then A(X) is an even integer.

Milnor [8] (see also [12]) has established a complex analogue of
cobordism theory, and has proved that the Todd genus of a weakly almost

complex manifold is an integer. This (and 2.5) yield the

be a compact weakly almost complex manifold.
Then f Z), the number T (X,d) is an integer.
3. Integrality theorems for differentiable manifolds. For the defini-

nition of 4 (X, d) and 4 (X, d,n) we refer to [1,§§ 25.4,

3.1. TurorEM. Let X be a compact oriented differentiable mamfold
and d an element of H?(X,Z) whose restriction mod2 is equal to w.(

Then A(X,4d) is an integer.



We do not know how far in 25.5 “integral exc 2 could be replaced by

“integral.” We can only dare the following conjectures which are motivated

Characteristic Classes and Homogeneous Spaces, II by the theorem of Riemann-Roch (see [18]). Let X be a compact oriented
differentiable manifold and » a principal U(k)-bundle over X.

A. Borel; F. Hirzebruch Let w, denote the second Stief, f X, (w, € HX(X, Z,)).
. If de H (X, Z) reduced mod 2 i y d/2,7) is an integer.
American Journal of Mathematics, Vol. 81, No. 2. (Apr., 1959), pp. 315-3 i i : .
If wy =0 and dim (mod 8), then : ) 18 an even integer.
If wy =0, dim X ==4 (mod 8) and if the structural group of 4 can
be reduced to SO(k), then A(X,0,7) is an even integer.

These conjectures would be generalizations of Rohlin’s theorem [24] that the

Milnor [8] (see also [12]) has established a complex analogue of
cobordism theory, and has proved that the Todd genus of a weakly almost
complex manifold is an integer. This (and 2.5) yield the

CHARACTERISTIC CLASSES AND HOMOGENEOUS SPACES, IIL*

By A. BoreL and F. HIRZEBRUCH. ProrositioN. L be a compact weakly almost complex manifold.
Then for every d€ H*(X,Z), the number T(X,d) is an integer.

American Journal of Mathematies, Jul., 1960, Vol. 82, No. 3 3. Integrality theorems for differentiable manifolds. For the defini-
nition of 4 (X, d) and 4 (X, d,n) we refer to [1,8§ 25.4,25.5].

3.1. THrorEM. Let X be a compact oriented differentiable manifold
and d an element of H*(X,Z) whose restriction mod 2 is equal to w,(X).
Then A(X,}d) is an integer.

What is the integer A(X)[X]? (X spin)



Grothendieck’s Riemann-Roch theorem

¢ Introduction of K-theory

* Geometry over a base
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Grothendieck’s Riemann-Roch theorem

¢ Introduction of K-theory

* Geometry over a base

X smooth projective variety
K(X) free abelian group on sheaves ¥ modulo F ~ F + ¥ if 0 > F - F > F" -0

f: X— S proper morphism of nonsingular varieties

fi: Fr—s Z DIRIf(F) e K(S)  Rf.(F) sheafification of U — HI(f~(U),F)
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Grothendieck’s Riemann-Roch theorem

¢ Introduction of K-theory

* Geometry over a base

X smooth projective variety
K(X) free abelian group on sheaves ¥ modulo F ~ F + ¥ if 0 > F - F > F" -0

f: X— S proper morphism of nonsingular varieties

fi: Fr—s Z DIRIf(F) e K(S)  Rf.(F) sheafification of U — HI(f~(U),F)

Theorem (Grothendieck 1957): For n € K(X) we have
Todd(Y) ch(fi(n)) = f«(Todd(X) ch(n))



Stable homotopy of the orthogonal group

Theorem (Bott 1957): The homotopy groups of the stable orthogonal group O are:

Z n=0 (mod 8)
727 = 1 (mod 8)
727 n=2 (mod 8)
7Tn—10%<0 n=3 (mod 8)
Z = (mod 8)
0 =5 (mod 8)
0 n=6 (mod 8)
0 n (mod 8)




Stable homotopy of the orthogonal group

Theorem (Bott 1957): The homotopy groups of the stable orthogonal group O are:

Z n=0 (mod 8)

727 = 1 (med 8)

727 n=2 (mod 8)

0 n=3 (mod38

g S £ Emod si
0 =5 (mod 8)

0 n=6 (mod 8)

0 n (mod 8)

Atiyah-Hirzebruch used this as the cornerstone of topological K-theory, which is modeled
on Grothendieck’s Riemann-Roch theorem and K-theory in algebraic geometry



Topological K-theory
Let X be a nice compact topological space

Vect(X) = {isomorphism classes of real vector bundles £ — X }, W == &
N —

O vedte [gdni(g_,
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Why does Vect(X) lead to a topological invariant?
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Topological K-theory
Let X be a nice compact topological space
Vect(X) = {isomorphism classes of real vector bundles £ — X }, W == &
Why does Vect(X) lead to a topological invariant?
KO(X) = Grothendieck group of Vect(X) (commutative monoid ~~ abelian group)
[?O(X) = KO(X)/KO(pt) reduced K O-group
Link to Bott periodicity: I?O(S”) =710

KO™(X) = KO(X"X,), n e Z>° half of a cohomology theory

Bott periodicity: | KO™"(pt) = KO(S") = m,_10| and |KO"™3(X) =~ KO"(X)




Riemann-Roch theorem

X, 8

7 X

wg(X) = f*we(S) (2=1,2)

ARKOLE0) — KOG

ch: KO*(X) — H(S;@[uv*l])‘

fer HX;Qu,v™ ') — H(S; Qv v™'])* ™"

RIEMANN-ROCH THEOREMS FOR DIFFERENTIABLE
MANIFOLDS

BY M. F. ATIYAH AND F. HIRZEBRUCH

Communicated by Hans Samelson, May 11, 1959

1. Introduction. The Riemann-Roch Theorem for an algebraic
variety Y (see [7]) led to certain divisibility conditions for the Chern
classes of V. It was natural to ask whether these conditions held more
generally for any compact almost complex manifold. This question,

for smooth manifolds

compact C* manifolds, dim X — dim S = n
C* map

“orientation” condition data

induced umkehr map in K O-theory

Chern character, degv = 4

induced umkehr map in rational cohomology




Riemann-Roch theorem for smooth manifolds

2,8 compact C* manifolds, dim X — dim S = n
f: X— S C® map

we(X) =4S S “orientation” condition data

fi: KO*(X) — KO*™™(S) induced umkehr map in K O-theory

ch: KO*(X) — H(S;Q[v,v"'])* Chern character, degv = 4

fe: H(X;Q[v,v™])® — H(S;Q[v,v ])*™" induced umkehr map in rational cohomology

Theorem (Atiyah-Hirzebruch): For all n € KO*(X) we have

A(S)ch[fi(n)] = f[A(X) ch(n)]



Riemann-Roch theorem for smooth manifolds

2,8 compact C* manifolds, dim X — dim S = n
f: X— S C® map

we(X) =4S S “orientation” condition data

fi: KO*(X) — KO*™™(S) induced umkehr map in K O-theory

ch: KO*(X) — H(S;Q[v,v"'])* Chern character, degv = 4

fe: H(X;Q[v,v™])® — H(S;Q[v,v ])*™" induced umkehr map in rational cohomology

Theorem (Atiyah-Hirzebruch): For all n € KO*(X) we have

A(S)ch[fi(n)] = f[A(X) ch(n)]

Take S = pt, n = 1 to deduce the integrality of A(X)[X] for a spin manifold X



Compare:

~

A genus and spin representation

1959] RIEMANN-ROCH THEOREMS 281

This is done by a universal construction on the classifying space of
Spin(2n), using the difference between the two spinor representations
A+ and A~ of Spin(2n). The formula for chy is a consequence of the
character formula:

chat — cha~ = JJ (et2 — e—=in),
i1

2k

h Yi/2
A(X) = —e
(X) H sinh y;/2
e sinh y; /2

chS? — ch St = H

e 1/2



What is the integer A(X)[X]? (Analytic interpretation?)

X compact Riemannian manifold of dimension n

d d d d
QX)) = QHX) e QA = LT
a* a* * d*
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X compact Riemannian manifold of dimension n

d d d d
QX)) = QHX) e QA = LT
a* a* * d*

A = (dd* + d*d) Hodge-Laplace operator
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Euler(X Z )9 dim Euler number
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X(X,V)=Todd(X) ch(V)[X] = ) (~1)? dim X Kéhler



What is the integer A(X)[X]? (Analytic interpretation?)

X compact Riemannian manifold of dimension n

d d d d
QX)) = QHX) e QA = LT
a* a* * d*

A = (dd* + d*d) Hodge-Laplace operator

space of solutions to , w € QYX) forms
Euler(X Z )9 dim Euler number
q=0
Sign(X)=L(X)[X] = dim — dim signature
x(X,V)=Todd(X Z )% dim X Kéhler

Question: Does A(X )[X] count solutions to a differential equation?









The Dirac operator

The Quantum Theory of the Electron.

y P. A. M. Dirac, St. John's College, Cambridge.

and pg.  Our wave equation is

4)

known about the dynamical variables or

(Po + oy
where for the present all that

operators o, oy, oy, § is that they are independent of p,, p,, that they
commute with #, Since we are considering particle

teceived January 2, 1

Tf we put g

agme, these conditions

become
0 (w#v)

ed as mat

(TR

in some matri

(6)

scheme,
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Atiyah-Bott-Shapiro, Clifford modules (1963)

The Clifford algebras: Cliff1, : 797 +497% = —269 (Cliffx,, = Cliff%,, ® Cliff},,)
The spin group: Spin,, Cliff(_)_m

® The restriction of a (left) Clifford module to Spin,, is a spinor representation

e The regular module CIliff ., is a canonical left module with a commuting right action:

Spin,, < Cliff,, ¢ Cliff,, D

o {left Cliff _,-modules} — KO™"(pt) = I/(\O(S")
5 e'ec
Z 'yt —>iI80 (B B (G e
i=1




The Atiyah-Singer Dirac operator (1962)

X Riemannian spin manifold
OX)— X bundle of orthonormal frames

Gise 58 oG tautological horizontal vector fields
Spin(X) — O(X) — X lift to principal Spin,-bundle
Sy (Cfliitas (" Cliiin, O left regular Cliff ,,-module

S0 O(x)




The Atiyah-Singer Dirac operator (1962)

X Riemannian spin manifold
OX)— X bundle of orthonormal frames
Gise 58 oG tautological horizontal vector fields
Spin(X) — O(X) — X lift to principal Spin,-bundle
Sy (Cfliitas (" Cliiin, O left regular Cliff ,,-module

J

OxXT

Vs Lk Cle, 2 e ey
n )
lE Dx! \I] 5'[-‘"‘"
=Ty - T ><

0 0

En % D = L pao’c o < 3 En T T IH ’IL)

X D=v'3 +--+70 G (¢:Spin(X) —> Cliff4n) 2



Recall:

Analytic interpretation of A(X)[X]

HI(X) space of solutions to Aw = 0, w e QI(X)

n

Euler(X) = ) (=1)?dim #‘(X)

Q
Il

(0]
Sign(X)=L(X)[X] = dim 5" (X) — dim  (X)

X,V)=Todd(X) ch(V)[X] = ) (~1)?dim H**(X)

)

harmonic forms
Euler number

signature

X Kahler



Analytic interpretation of A(X)[X]

Recall: H9(X) space of solutions to Aw = 0, w e QI(X) harmonic forms
Euler(X) = i( 1)2dim H9(X) Euler number
q=0
Sign(X)=L(X)[X] = dim H"(X) — dim H (X) signature
x(X,V)=Todd(X)c z"] )2 dim F%9(X) X Kéihler
q=0

Define: HS%!'(X) solutions to D) = 0, ¥: Spin(X) — Cliff?;}l harmonic spinors



Recall:

Define:

Conjecture: | A(X)[X] = dim F(8Y( Xo) =i TS0

Analytic interpretation of A(X)[X]

HIU(X) space of solutions to Aw = 0, w e QI(X)

Euler(X =Z 1)?dim H?(X)
q=0
Sign(X)=L(X)[X] = dim H"(X) — dim H (X)
X(X,V)=Todd(X) ¢ = ) (-1)dim H*(X)
q=0

HS®(X)  solutions to Dy = 0, ¢: Spin(X) — Clifi%;,

A~

harmonic forms

Euler number

signature

X Kahler

harmonic spinors



Fredholm operators

HO H! Hilbert spaces
Fred(H°, H') c Hom(H®, H') Fredholm operators T: H° — H!
ind: mo Fred(H®, H') => Z ind7T = dimker T" — dim coker T’
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HO H! Hilbert spaces
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Tr = moMyot Toeplitz operator (compression of My)



Fredholm operators

HO H! Hilbert spaces

Fred(H°, H') c Hom(H®, H') Fredholm operators T: H° — H!

ind: mo Fred(H®, H') => Z ind7T = dimker T" — dim coker T’

=€ unit disk

Rl

H'= L2 4O 7 L2(81,€) L? holomorphic functions  L? functions
s

Mg: H— H multiplication by f e C®(S*,C*)

Tr = moMyot Toeplitz operator (compression of My)

Fritz Noether (1920): T} is Fredholm and ind Ty equals minus the winding number of f



Elliptic differential operators

An elliptic differential operator P: C*(X, EY) — C*(X, E') has the local form

e oMy
Py = gitt2tm— — — + lower order terms
ox"10x™2 . .. 0zlm

[

Y



Elliptic differential operators

An elliptic differential operator P: C*(X, EY) — C*(X, E') has the local form

Y @
Py = gitt2tm— — — + lower order terms
ox"10x™2 . .. 0zlm

The highest order term is a global tensor field, the symbol,
a(B)+ Syth? (TEX) R B~k

which is an isomorphism o(P)(4,...,0): EQ — E! for all 870 e T* X




Elliptic differential operators

An elliptic differential operator P: C*(X, EY) — C*(X, E') has the local form

192-im 0"u
1P = @) L . — + lower order terms
OTLOT 2 . 11T ™

The highest order term is a global tensor field, the symbol,
o P): oythy (T sk
which is an isomorphism o(P)(4,...,0): EQ — E! for all 870 e T* X

An elliptic differential operator P is Fredholm and its index depends only on o(P)



Elliptic differential operators

An elliptic differential operator P: C*(X, E°) — C®(X, E') has the local form

1)

Py = g2t ———— — + lower order terms
O WOT*2 . JioEm

The highest order term is a global tensor field, the symbol,
o P): oythy (T sk
which is an isomorphism o(P)(4,...,0): EQ — E! for all 870 e T* X

An elliptic differential operator P is Fredholm and its index depends only on o(P)

‘The main idea of the paper is contained in § 2, where we pose the problem
of describing linear elliptic equations and their boundary problems in .
Thus there are two important questions here: firstly to find all homotopy

topological terms. The most important of the properties in the large of the b
solutions of these equations and problems are preserved under small deforma- [jinvariants of ellipti ms (i.e. equations with boundary conditions) and,
tions of the problem and must therefore be, in some sense, homotopy invariants, [ secondly, to discov ¢ these invariants mean in terms of the solutions of the
The discovery and study of these invariants is the right way to sort out the  [ilequations.
whole multiplicity of boundary problems for elliptic equations and to classi-

ON ELLIPTIC EQUATIONS

I.M. GEL’FAND

£y these problems.



The - index theorem (1963)

THE INDEX OF ELLIPTIC OPERATORS ON
COMPACT MANIFOLDS

N THEOREM 1. For any elliptic differential operator D on a compact

oriented differentiable manifold X the index (D) is given by the formula

Communicated by Raoul Bott, February 1, 1963

Introduction. In his paper [16] Gel'fand posed the general problem ¥(D) = { ch (D)-3(X) } [ X].

of investigating the relationship between topological and analytical

invariants of elliptic differential operators. In particular he suggested
that it should be possible to express the index of an elliptic operator
(see §1 for the definition) in topological terms. This problem has 95 —9;
been taken up by Agranovic [2; 3], Dynin [3; 14; 15], Seeley [20;21] 3(x) =] ————
and Vol'pert [22] who have solved it in special cases. The purpose of j 1—evil—eY
this paper is to give a general formula for the index of an elliptic
operator on any compact oriented differentiable manifold

Analytic index: [o(P)] —> ind P
Topological index: [O’(P)] € JO(T> XN Pl SRR

The index of elliptic operators: I*

By M. F. ATivAH and L. M. SINGER

Introduction

This is the first of a series of papers which will be devoted to a study of
the index of elliptic operators on compact manifolds. The main result was : 2 " . Zeda
announced in [6] and, for manifolds with boundary', in [5]. The long delay THEOREM (6.7). The analytical index and the topological index coicide
between these announcements and the present paper is due to several factors. ;
On the one hand, a fairly detailed exposition has already appeared in [14]. as homomorphisms K, (TX)— R(G).
On the other hand, our original proof, reproduced with minor modifications
in [14], had a number of drawbacks. In the first place the use of cobordism,
and the computational checking associated with this, were not very enlighten-
ing. More seriously, however, the method of proof did not lend itself to
certain natural generalizations of the problem where appropriate cobordism
groups were not known, The reader who is familiar with the Riemann-Roch
theorem wil realize that our original proof of the index theore
closely on Hirzebruch’s proof of the 2 theorem.
enough we were led to look for & proof modelled more on that of Grothendiec




Remarks

® A key analytic ingredient in the first proof is an elliptic boundary value problem with
local boundary conditions to prove the bordism invariance of the index



Remarks

® A key analytic ingredient in the first proof is an elliptic boundary value problem with
local boundary conditions to prove the bordism invariance of the index

* Psuedodifferential elliptic operators play a crucial role throughout the theory



Remarks

® A key analytic ingredient in the first proof is an elliptic boundary value problem with
local boundary conditions to prove the bordism invariance of the index

* Psuedodifferential elliptic operators play a crucial role throughout the theory

e If X is an n-dimensional spin manifold, Bott periodicity implies that every elliptic
symbol class is represented by a Dirac operator twisted by a real vector bundle
E — X, and the topological index reduces to f,[E], where f: X — pt and

fi: KO°(X) — KO™"(pt)

is the umkehr map



1952-1963: Hirzebruch Riemann-Roch, Bott periodicity, Atiyah-Hirzebruch K-theory,
Atiyah-Singer index theorem

Global topological invariants ~~ local geometric invariants (of Dirac operators)

An application to physics
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fi: B
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vector bundles
linear lifts of f

elliptic differential operator
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Atiyah-Bott fixed point theorem

f: X—X diffeomorphism with isolated fixed points
S8 D B vector bundles
Fits o et linear lifts of f

P, CR(X, EY-= ey elliptic differential operator

Tr( /gy ) = (1 15)
‘det(l - dfm)‘

Theorem: Tr<f0’kerp> - Tr(fl'cokerp) = Z

zeFix(f)

® Weyl character formula for representations of compact Lie groups

® Let X be a connected closed complex manifold with H4(X;Ox) = 0 for ¢ > 0; then
any holomorphic map f: X — X has a fixed point

e Hirzebruch-Zagier: cotangent sums, Dedekind 7, modular forms, real quadratic fields
by studying lens spaces, projective spaces, Brieskorn varieties, and algebraic surfaces
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Atiyah-Bott-Singer index theorem on manifolds with boundary

Classical Dirichlet problem: Aw =0 on ) c E"
u’m = for prescribed f: 02 - R

Local elliptic boundary conditions (Lopatinski) interpreted in K-theory: a lift of an elliptic
symbol o(P) in absolute K-theory of X to the relative K-theory of (X,0X)

Lifts do not necessarily exist: no local elliptic boundary conditions for basic Dirac operator

The index is the umkehr map applied to the relative symbol
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Atiyah-Singer index theorem for families

* Geometry over a base (Grothendieck)
For simplicity Dirac operators in place of general elliptic pseudodifferential operators

f: X—S proper Riemannian spin fiber bundle of relative dimension n

F— X real vector bundle with covariant derivative

Analytic index: Dx /g family of Dirac operators parametrized by S
Topological index: f,: KO%(X) — KO™"(S)

Theorem: ind Dy /g = f,([E])
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Zeta functions and heat kernels

¢ kernel only ~~~»> complete spectrum

A > 0 self-adjoint second-order elliptic operator on sections of £ — X:

H, = e 4, (t e R>9) heat operator

Cals) = TrAT3, (s e C, Re(s) »0) zeta function

Asymptotic expansion of the heat kernel (Minakshisundarum-Pleijel, Seeley):
tA E A*LM
ht<x7y) S0 (ei 5y)(1)7 xayexa ¢

o0
hi(z, ) ~ 72 2 Ap(2)t'| ast—0

Equivalent to meromorphic continuation of (,(s) to s € C (com[mcf)
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The Atiyah-Bott formula

X closed n-dimensional Riemannian manifold
TR DRSS 0 vector bundles
P: C%° (X ED) = G first-order elliptic operator

S=ERX, BY) A-eigenspace of P*P (i = 0) and PP* (i = 1)

For A > 0 the operator P defines an isomorphism

Pl £ 5 ¢l gt Ak
leg : €X — €}

Index formulas: el Rty el
ind P'= TR (s)s= Jic St (5] 5
T, AR

= JX tr [A?L/Q(x) R A}L/Q(x)] ||
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The local index theorem

Mark Kac: What do the eigenvalues of A(@ ¢ Q% determine of Riemannian n-manifold X?

o0
B (z,2) ~ 72 Y. Ap(a)t

Weyl: SX (z) |dz| = (47)~"/2 Vol(X) McKean-Singer: Ago) (z) = (47)~"2R(z)/3

Kac A ﬁjaﬂ - EDT(
M kean - o ‘”(//L



The local index theorem

Mark Kac: What do the eigenvalues of A(@ ¢ Q% determine of Riemannian n-manifold X?

h(‘l) A n/2 Z Ak

Weyl: SX (z) |dz| = (47)~"/2 Vol(X) McKean-Singer: Ago) (z) = (47)~"2R(z)/3

For n = 2 they proved and conjectured in general

n n

: (9) AN ()
%1_{1% 0( BEE S (T —Z qtrAnq/2 x)
g= :

exists and equals the Gauss-Bonnet-Chern integrand for the Euler number of X

Existence of limit <= > (—1)%tr A,({q) Ry k <%  (cancellation for all x € X)
G=



Patodi proved the conjecture and analog for Riemann-Roch on Kéhler manifolds
Gilkey thesis: same for twisted signature operators

Atiyah-Bott-Patodi: exposition of Gilkey and general local index theorem

\ 46 196 7 1%70 -7 (47

|
: R ARy | t“(e
Kac /J\ﬁjdw Dot ?01{"04 { Pj"ﬂ /B%T\'/PM;
ek 57 G\
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Patodi proved the conjecture and analog for Riemann-Roch on Ké&hler manifolds
Gilkey thesis: same for twisted signature operators

Atiyah-Bott-Patodi: exposition of Gilkey and general local index theorem

Man,, Category of smooth n-manifolds and local diffeomorphisms
Met: Man;? — Set Riemannian metrics

7: Man? — Set differential g-forms

w: Met — QF g-form constructed naturally from Riemannian metric

w homogeneous of weight k: w(M\%g) = Mw(g)

finite n

o3 A e[ A 4
w regular: wilg it = ; V. leﬁja(:n) %5:% G - AL
(6% 17]:

Theorem: A natural differential form which is regular and homogeneous of nonnegative
weight is a polynomial in the Chern-Weil forms of the Pontrjagin classes



Analytic insights into A genus

e Dirac operators; cancellation using Clifford algebra symmetry

Cetzler: scaling argument, A from heat kernel of the harmonic oscillator (Mehler’s formula)

Witten, Alvarez-Gaumé, Friedan-Windey, Atiyah: supersymmetric quantum mechanics,
A from infinite product and Duistermaat-Heckman formula

Bismut: Wiener measure and Malliavin calculus, A from Lévy formula

Berline-Vergne: heat kernel on frame bundle, A from differential of exponential map on O,

L6l 167 %70 -71] St 8% 1985 @l 485 (1%
; | J | . J i |
SOL - ) Ll 1 Gllka Wit Aleaz- Fredan - Bulie- Getzlor
"Che Angd,- HotT Pato & g%r,%mi: cwgé Wikt g 7
s~ B

f\/tckéﬁﬂ 2 5”(/’“ /\VJ @ismuT



The signature defect

Gauss-Bonnet: X compact Riemannian 2-manifold

K
Euler(X) = | — du X (X closed, K Gauss curvature)

J — dux + J i dusx (K geodesic curvature of 0X)
0X 27
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The signature defect

Gauss-Bonnet: X compact Riemannian 2-manifold

Euler(X f —dux (X closed, K Gauss curvature)

f — dux + J o dusx (K geodesic curvature of 0X)
0X

Signature theorem: X closed oriented Riemannian 4-manifold

Sign{ X f w (Chern-Weil 4-form of p;/3)
X

X compact with boundary, product metric near boundary

a(Y) = Sign(X) — JX w (signature defect) 2 T

Hirzebruch (1973): Hilbert modular surfaces, Shimizu L-functions
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Atiyah-Patodi-Singer global boundary conditions

Qcc, St=0d0 unit disk
A P !
Hol(Q2,C) . e O3 (STAC e pe infinite dimensional kernel of ¢ operator

span{z"} _ -, < span{z"}, _, Fourier series

For a € R\Z let H, = C®(S!,C) be the f: S! — C with vanishing Fourier coef of 2™, n > a

} P S
Dx (dt)% + Dy Dirac on X
Ay = v(dt)"' Dy self-adjoint Dirac on Y e
(‘B i spectral decomposition of Ay @c g :A
Aespec(Ay) ) 4

APS boundary condition for a € R\ spec(Ay): {w spinor field on X : w|Ye Ei—),\<aE,\}
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Atiyah-Patodi-Singer n-invariant

Split spec(Ay) at a = 0 and use meromorphic continuation to define

n(s) = N (sign A) A7, ny =n(0)
Aespec(Ay)\{0}

For the signature operator, the n-invariant is (minus) the signature defect:

Sign(X) =J W — Ny
b

Dk A
pe. oy
This is a special case of a general index theorem for Dirac operators: \
y - 1y + dimker Ay
ind Dx :J AQx) = &, e 3 .
X X
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Secondary geometric invariants

K
f —dux = —J id,u,y + Euler(X)
X27T y27T

- fy % duy (mod 1)

Chern-Simons invariants are secondary invariants of Chern-Weil invariants

D A

n-invariants are secondary invariants in K-theory:

X
_ 7Ny +dimker Ay Y= DX

f AQx) = 3% 5 (mod 1)
X




Y — S

Dy s

ind Dy /5 € K~"(S)
KBl B (S

Secondary invariants in families

proper Riemannian spin fiber bundle of odd relative dimension n
family of Dirac operators parametrized by S
index in complex K-theory

“lowest” piece of K-theory: homotopy class of maps S — R/Z




Secondary invariants in families

Y — S proper Riemannian spin fiber bundle of odd relative dimension n
Dy s family of Dirac operators parametrized by S
ind Dy/g € K™ "(S5) index in complex K-theory

KA H (S0 “lowest” piece of K-theory: homotopy class of maps S — R/Z

Geometric refinement: Sy /s (mod 1): S — R/Z

€y /g = L/s A(Qy/s)



Secondary invariants in families

Y — S proper Riemannian spin fiber bundle of odd relative dimension n
Dy s family of Dirac operators parametrized by S
ind Dy/g € K™ "(S5) index in complex K-theory

KA H (S0 “lowest” piece of K-theory: homotopy class of maps S — R/Z

Geometric refinement: Sy /s (mod 1): S — R/Z

€y /g = L/s A(Qy/s)

X — S of even relative dimension: K°"(S) — H?(S;Z) numerical index
IOt (2 (S ) determinant line bundle



X— S

Dx/s

ind Dy /g € K~"(S)
Ko (S) — H2(S;7Z)

Determinant line bundle

proper Riemannian spin fiber bundle of even relative dimension n
family of Dirac operators parametrized by S
index in complex K-theory

isomorphism class of line bundles £L — §




Determinant line bundle

X— S proper Riemannian spin fiber bundle of even relative dimension n
Dx/s family of Dirac operators parametrized by S
ind Dx /s € K™"(5) index in complex K-theory

K08 H2(8:37) isomorphism class of line bundles £ — S

Geometric refinement: Det Dy /g — S metric (Quillen), covariant derivative (Bismut-F)

curv Det Dy /g(V) =

2mi AQy / 5)] curvature
X/S )
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Determinant line bundle

X— S proper Riemannian spin fiber bundle of even relative dimension n
Dx/s family of Dirac operators parametrized by S
ind Dx /s € K™"(5) index in complex K-theory

K08 H2(8:37) isomorphism class of line bundles £ — S

Geometric refinement: Det Dy /g — S metric (Quillen), covariant derivative (Bismut-F)

curv Det Dy ,s(V') = | 2mi A(QX/S)] curvature
X/S )
. —2mi€ il
hol, Det Dx /g = 111%6 Xep() holonomy about ¢: S* — S
[

Inspired by Witten’s global anomaly formula (1985)



Bismut Riemann-Roch formula

f: X— S proper Riemannian spin fiber bundle of even relative dimension n
Dx /s family of Dirac operators parametrized by S
ind Dx /s € K7"(5) index in complex K-theory

chind Dy /g € H*¥(S;Q) Chern character of the index
chind Dy /g = f« [A(X )] Riemann-Roch/index formula




Bismut Riemann-Roch formula

f: X— S proper Riemannian spin fiber bundle of even relative dimension n
Dx/s family of Dirac operators parametrized by S
ind Dx /s € K7"(5) index in complex K-theory

chind Dy /g € H*¥(S;Q) Chern character of the index
chind Dy /g = f« [A(X )] Riemann-Roch/index formula

Geometric refinement: Bismut (after Quillen) superconnection V; on H° @ H' — S

A~

lim Ch(vt) b J A(QX/S)
e X/8
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Index theorem in differential K-theory

Differential K-theory K*(X) (Hopkins-Singer, ...) combines K*(X) and Q°*(X)

X — S8 proper Riemannian spin fiber bundle of even relative dimension n
EF— X hermitian vector bundle with covariant derivative

[E] € K°(X) differential K-theory class

Dx,s(E) family of Dirac operators parametrized by S

Analytic index (using Bismut superconnection): ind®": [\vf 'X) — IE' 369
Topological index (using Atiyah-Hirzebruch):  ind*P: K%(X) — K

Theorem (F-Lott): ind®® = ind*P
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Quantum theory is projective

We say a Hilbert space H is the “state space” of a quantum system, but

PH space of (pure) states
End 3 algebra of observables

A symmetry group G acts projectively: A

G —— AutPH

Projectivity (central extension) measured by a cohomology class in H?(G;C*)

e Higher dimensional, nonabelian Aut H ~~~> 1-dimensional, abelian Aut C = C*

. obstruction class in H®(G :C*) <~~~ l-dimensional representation in H@(G; (e
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Projectivity in quantum field theory

Fix a dimension n € Z~° of (Wick-rotated) spacetime
Fields are local “quantities” F: Man,, — Set

Segal-Atiyah-Kontsevich Axiom System for quantum field theory:

F': Bord,(¥F) — tVect

But F' is a quantum system, so is projective
Projectivity (anomaly) is a 1-dimensional theory in dimension n + 1:

a: Bord,+1(F) — Line



Anomaly of spinor fields

The relationship between anomalies of spinor fields and the index theorem was pioneered in
a 1984 paper of -

USA
ol. 81, pp. . April 1984
Mathematic:

Dirac operators coupled to vector potentials
(elliptic operators/index theory/characteristic classes/anomalies/gauge fields)
M. F. Ativau® anp 1. M. SINGER}

fMathematical Institute, University of Oxford, Oxford, England; and Department of Mathematics, University of California, Berkeley, CA 94720

Contributed by 1. M. Singer, January 6, 1984

tive and negative chirality, respectively. In local coordinates

One interpretation for this anomaly involves determi-

da = Z Va0 + Ty + A) (l 5.4 ‘/‘) nants. Consider the operator T, = #jfsa: C*(S* @ E) —

2 C*(S§* ® E), when g, and gz have no zero frequency modes.

where I, is the Riemannian connection and acts on spinorial The operator Ty is a Laplacian plus loqur-order term. I,l has
indices, while A, acts on lhc scalar indices 1, ..., N. We have pure point spectrum {A;}, and all but a finite number of eigen-
¢ 'Hrd values lie inside a wedge about the positive real axis. Hence,

The analytic index of the I)mu. family {#4}sen, which we SATS s sen: t for a finite number of eigenvalues
denote by dyg is the formal difference {ker gs}aeq — {ker Tod Dunkes Beiise Bxcepe Ko £

#4taeu. Each term is not a vector bundle over 9 because the lying on the negative real axis.
dimensions of ker g, and ker g} can jump (the same amount)
as A varies over . Nevertheless, the formal difference is
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Let S be a representation of the Lorentz group Spin, ,,_4
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Let S be a representation of the Lorentz group Spin, ,,_4

Formula for deformation class of anomaly theory (F-Hopkins):

ABSA[S]

[a]: MTSpin KOV S0 ) e T80 e 17,

¢ Thom bordism spectrum

o >"t217 is morally X" tLIC

Atiyah-Hirzebruch K O-theory

Atiyah-Bott-Shapiro map

Atiyah-Singer index theorem used implicitly

refinement to differential K O-theory



