Topological symmetry in field theory

Dan Freed
University of Texas at Austin

November 8, 2022

Joint work with Greg Moore and Constantin Teleman
arXiv:2209.07471
Simons Collaboration (https://scgcs.berkeley.edu)

Global Categorical Symmetry
Symmetry in quantum field theory

Symmetry in QFT is a big topic; today’s discussion only scratches the surface.
Symmetry in quantum field theory

Symmetry in QFT is a big topic; today’s discussion only scratches the surface.

Today I will introduce a framework for internal topological symmetries in QFT.
Symmetry in quantum field theory

Symmetry in QFT is a big topic; today’s discussion only scratches the surface.

Today I will introduce a framework for internal topological symmetries in QFT.

Most of our examples are finite symmetries, analogous to finite group symmetry, but with suitable modifications we expect generalizations.
Symmetry in quantum field theory

Symmetry in QFT is a big topic; today’s discussion only scratches the surface.

Today I will introduce a framework for internal topological symmetries in QFT.

Most of our examples are finite symmetries, analogous to finite group symmetry, but with suitable modifications we expect generalizations.

Our framework includes “homotopical symmetries”, such as higher groups, 2-groups, . . .
Symmetry in quantum field theory

Symmetry in QFT is a big topic; today’s discussion only scratches the surface.

Today I will introduce a framework for internal topological symmetries in QFT.

Most of our examples are finite symmetries, analogous to finite group symmetry, but with suitable modifications we expect generalizations.

Our framework includes “homotopical symmetries”, such as higher groups, 2-groups, . . .

It leads to a calculus of topological defects which takes full advantage of well-developed theorems and techniques in topological field theory.
Symmetry in quantum field theory

Our framework makes clear the topological character of symmetry, we exhibit some phenomena that can occur, and we review a bit of recent work from this viewpoint.
Symmetry in quantum field theory

Our framework makes clear the topological character of symmetry, we exhibit some phenomena that can occur, and we review a bit of recent work from this viewpoint.

Symmetry in quantum field theory

Our framework makes clear the topological character of symmetry, we exhibit some phenomena that can occur, and we review a bit of recent work from this viewpoint.

Let’s begin with some motivation from representation theory of Lie groups and Lie algebras.
Computations in... $\mathfrak{sl}_2(\mathbb{R})$

Set

\[h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \]
Set
\[
\begin{align*}
h &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & e &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} & f &= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}
\end{align*}
\]

Simple matrix manipulations verify the identity

\[
\frac{1}{2}h^2 + ef + fe = \frac{1}{2}h^2 + h + 2fe
\]
Set

\[
\begin{align*}
 h &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & e &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} & f &= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}
\end{align*}
\]

Simple matrix manipulations verify the identity

\[
\frac{1}{2}h^2 + ef + fe = \frac{1}{2}h^2 + h + 2fe
\]

Namely, both sides equal

\[
\begin{pmatrix} 3/2 & 0 \\ 0 & 3/2 \end{pmatrix}
\]
In the 3-dimensional representation of $\mathfrak{sl}_2(\mathbb{R})$ we have

\[
\begin{align*}
 h' &= \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \\
 e' &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \\
 f' &= \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.
\end{align*}
\]
In the 3-dimensional representation of $\mathfrak{sl}_2(\mathbb{R})$ we have

\[
\begin{align*}
 h' &= \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \\
 e' &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \\
 f' &= \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}
\end{align*}
\]

Now slightly less simple matrix manipulations verify the identity

\[
\frac{1}{2} (h')^2 + e' f' + f' e' = \frac{1}{2} (h')^2 + h' + 2 f' e'
\]

Namely, both sides equal

\[
\begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}
\]
The Lie group $\text{SL}_2(\mathbb{R})$ acts on the projective line \mathbb{RP}^1 as fractional linear transformations.
The Lie group $\text{SL}_2(\mathbb{R})$ acts on the projective line \mathbb{RP}^1 as fractional linear transformations.

There is an induced action on differentials $\phi(x)(dx)^\lambda$ for each $\lambda \in \mathbb{C}$.
The Lie group $\text{SL}_2(\mathbb{R})$ acts on the projective line \mathbb{RP}^1 as fractional linear transformations.

There is an induced action on differentials $\phi(x)(dx)^\lambda$ for each $\lambda \in \mathbb{C}$.

The infinitesimal action of $\mathfrak{sl}_2(\mathbb{R})$ is:

\[
\begin{align*}
\tilde{h}: \phi & \mapsto -2x\phi' - 2\lambda\phi \\
\tilde{e}: \phi & \mapsto -\phi' \\
\tilde{f}: \phi & \mapsto x^2\phi' + 2\lambda x\phi
\end{align*}
\]
The Lie group $\text{SL}_2(\mathbb{R})$ acts on the projective line \mathbb{RP}^1 as fractional linear transformations.

There is an induced action on differentials $\phi(x)(dx)^\lambda$ for each $\lambda \in \mathbb{C}$.

The infinitesimal action of $\mathfrak{sl}_2(\mathbb{R})$ is:

\[
\begin{align*}
\tilde{h}: \phi &\mapsto -2x\phi' - 2\lambda \phi \\
\tilde{e}: \phi &\mapsto -\phi' \\
\tilde{f}: \phi &\mapsto x^2\phi' + 2\lambda x \phi
\end{align*}
\]

Some calculus manipulations verify the identity

\[
\frac{1}{2} \tilde{h}^2 + \tilde{e}\tilde{f} + \tilde{f}\tilde{e} = \frac{1}{2} \tilde{h}^2 + \tilde{h} + 2\tilde{f}\tilde{e}
\]

Both sides act as multiplication by $4\lambda^2 - 2\lambda$.

Instead of each separate computation, we compute \textit{universally} in an abstract algebra.
Instead of each separate computation, we compute *universally* in an abstract algebra. Each representation defines a module over the *universal enveloping algebra* $A = U(\mathfrak{sl}_2(\mathbb{R}))$. Many recent results about extended notions of symmetry in QFT: Apruzzi, Bah, Benini, Bhardwaj, Bonetti, Bullimore, C´ordova, Choi, Cvetiˇc, Del Zotto, Dumitrescu, Fr¨olich, Fuchs, Gaiotto, Garc´ıa Etxebarria, Gould, Gukov, Heckman, Heidenreich, Hopkins, Hosseini, Hsin, H¨ubner, Intriligator, Ji, Jian, Johnson-Freyd, Jordan, Kaidi, Kapustin, Komargodski, Lake, Lam, McNamara, Minasian, Montero, Ohmari, Pantev, Pei, Plavnik, Reece, Robbins, Roumpedakis, Rudelius, Runkel, Sch¨afer-Nameki, Scheimbauer, Schweigert, Seiberg, Seifnashri, Shao, Sharpe, Tachikawa, Thorngren, Torres, Vandermeulen, Wang, Wen, Willett, ...
Instead of each separate computation, we compute *universally* in an abstract algebra. Each representation defines a module over the *universal enveloping algebra* $A = U(\mathfrak{sl}_2(\mathbb{R}))$. The identity

$$\frac{1}{2} h^2 + ef + fe = \frac{1}{2} h^2 + h + 2fe$$

holds in A, since $[e, f] = ef - fe = h$, hence it holds in every A-module.
Instead of each separate computation, we compute *universally* in an abstract algebra.

Each representation defines a module over the *universal enveloping algebra* $A = U(\mathfrak{sl}_2(\mathbb{R}))$.

The identity
\[
\frac{1}{2} h^2 + ef + fe = \frac{1}{2} h^2 + h + 2fe
\]
holds in A, since $[e, f] = ef - fe = h$, hence it holds in *every* A-module.

Many recent results about extended notions of symmetry in QFT: Apruzzi, Bah, Benini, Bhardwaj, Bonetti, Bullimore, Córdova, Choi, Cvetič, Del Zotto, Dumitrescu, Fröhlich, Fuchs, Gaiotto, García Etxebarria, Gould, Gukov, Heckman, Heidenreich, Hopkins, Hosseini, Hsin, Hübnner, Intriligator, Ji, Jian, Johnson-Freyd, Jordan, Kaidi, Kapustin, Komargodski, Lake, Lam, McNamara, Minasian, Montero, Ohmari, Pantev, Pei, Plavnik, Reece, Robbins, Roumpedakis, Rudelius, Runkel, Schäfer-Nameki, Scheimbauer, Schweigert, Seiberg, Seifnashri, Shao, Sharpe, Tachikawa, Thorngren, Torres, Vandermeulen, Wang, Wen, Willett, ..., ..., ...
Instead of each separate computation, we compute *universally* in an abstract algebra.

Each representation defines a module over the *universal enveloping algebra* $A = U(\mathfrak{sl}_2(\mathbb{R}))$.

The identity

$$\frac{1}{2}h^2 + ef + fe = \frac{1}{2}h^2 + h + 2fe$$

holds in A, since $[e,f] = ef - fe = h$, hence it holds in *every* A-module.

Many recent results about extended notions of symmetry in QFT: Apruzzi, Bah, Benini, Bhardwaj, Bonetti, Bullimore, Córdova, Choi, Cvetič, Del Zotto, Dumitrescu, Fröhlich, Fuchs, Gaiotto, García Etxebarria, Gould, Gukov, Heckman, Heidenreich, Hopkins, Hosseini, Hsin, Hübner, Intriligator, Ji, Jian, Johnson-Freyd, Jordan, Kaidi, Kapustin, Komargodski, Lake, Lam, McNamara, Minasian, Montero, Ohmari, Pantev, Pei, Plavnik, Reece, Robbins, Roumpedakis, Rudelius, Runkel, Schäfer-Nameki, Scheimbauer, Schweigert, Seiberg, Seifnashri, Shao, Sharpe, Tachikawa, Thorngren, Torres, Vandermeulen, Wang, Wen, Willett, ... , ..., ...

Main idea: Make analogous universal computations with symmetries in QFT
The word ‘symmetry’ in mathematics usually refers to *groups* (‘invertible symmetries’) rather than algebras (‘noninvertible symmetries’), but in modern QFT-speak the term ‘symmetry’ is also used for the latter. Algebras of operators, including those that commute with a Hamiltonian, date from the earliest days of quantum mechanics.
Motivation: algebras

Abstract symmetry data (for algebras) is a pair \((A, R)\):

- \(A\) algebra
- \(R\) right regular module

Definition: Let \(V\) be a vector space. An \((A, R)\)-action on \(V\) is a pair \((L, \theta)\) consisting of a left \(A\)-module \(L\) together with an isomorphism of vector spaces

\[
\theta: R \otimes_A L \xrightarrow{\cong} V
\]

Analogy: algebra "B topological field theory element of algebra "B defect in TFT"
Motivation: algebras

Abstract symmetry data (for algebras) is a pair \((A, R)\):

- \(A\) algebra
- \(R\) right regular module

Definition: Let \(V\) be a vector space. An \((A, R)\)-action on \(V\) is a pair \((L, \theta)\) consisting of a left \(A\)-module \(L\) together with an isomorphism of vector spaces

\[
\theta: R \otimes_A L \xrightarrow{\cong} V
\]

\(R\) allows us to recover the vector space underlying \(L\)—a bit pedantic here; crucial later
Motivation: algebras

Abstract symmetry data (for algebras) is a pair \((A, R)\):

- **A** algebra
- **R** right regular module

Definition: Let \(V\) be a vector space. An \((A, R)\)-action on \(V\) is a pair \((L, \theta)\) consisting of a left \(A\)-module \(L\) together with an isomorphism of vector spaces

\[
\theta: R \otimes_A L \xrightarrow{\cong} V
\]

R allows us to recover the vector space underlying \(L\)—a bit pedantic here; crucial later

Elements of \(A\) act on all modules; relations in \(A\) apply (e.g. Casimirs in \(U(\mathfrak{sl}_2(\mathbb{R}))\))
Motivation: algebras

Abstract symmetry data (for algebras) is a pair \((A, R)\):

- \(A\) algebra
- \(R\) right regular module

Definition: Let \(V\) be a vector space. An \((A, R)\)-action on \(V\) is a pair \((L, \theta)\) consisting of a left \(A\)-module \(L\) together with an isomorphism of vector spaces

\[\theta : R \otimes_A L \xrightarrow{\cong} V \]

\(R\) allows us to recover the vector space underlying \(L\)—a bit pedantic here; crucial later

Elements of \(A\) act on all modules; relations in \(A\) apply (e.g. Casimirs in \(U(\mathfrak{sl}_2(\mathbb{R}))\))

Analogy:

- algebra \(\rightsquigarrow\) topological field theory
- element of algebra \(\rightsquigarrow\) defect in TFT
Example: Let G be a finite group. Its group algebra is

$$\mathbb{C}[G] = \left\{ \sum_{g \in G} \lambda_g g \right\}, \quad \lambda_g \in \mathbb{C}$$

Identify $\mathbb{C}[G] = \text{Fun}(G)$; convolution product is pushforward under

$$\text{mult}: G \times G \longrightarrow G$$
Example: Let G be a finite group. Its group algebra is

$$
\mathbb{C}[G] = \left\{ \sum_{g \in G} \lambda_g g \right\}, \quad \lambda_g \in \mathbb{C}
$$

Identify $\mathbb{C}[G] = \text{Fun}(G)$; convolution product is pushforward under

$$\text{mult}: G \times G \rightarrow G$$

Higher Example: $\text{Vect} = \text{category of finite dimensional complex vector spaces}$. Define $\text{Vect}[G]$ as the linear category (Vect-module) of vector bundles over G with tensor product pushforward under mult. It is a *fusion category*

$$
(w_1 \ast w_2)_g = \bigoplus_{g_1 g_2 = g} (w_1)_{g_1} \otimes (w_2)_{g_2}
$$
Field theory

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited
Field theory

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a bordism (multi)category $\text{Bord}_n(\mathcal{F})$

- n dimension of spacetime
- \mathcal{F} background fields (orientation, Riemannian metric, ...)

\[F: \gamma^{n-1} \rightarrow F(\gamma) \]
\[X: \gamma_1 \cup \gamma_2 \cup \gamma_3 \rightarrow \phi^{n-1} \]
\[F(X): F(\gamma_1) \otimes F(\gamma_2) \otimes F(\gamma_3) \rightarrow \mathcal{C} \]
Field theory

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a bordism (multi)category $\text{Bord}_n(\mathcal{F})$

- n dimension of spacetime
- \mathcal{F} background fields (orientation, Riemannian metric, ...)

Fully local theory for *topological* theories; full locality in principle for general theories
Field theory

Analogy: field theory ∼ module over an algebra OR ∼ representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a bordism (multi)category $\text{Bord}_n(\mathcal{F})$

- n dimension of spacetime
- \mathcal{F} background fields (orientation, Riemannian metric, ...)

Fully local theory for *topological* theories; full locality in principle for general theories

Kontsevich-Segal: Axioms for 2-tier nontopological theory $F: \text{Bord}_{n-1,n}(\mathcal{F}) \to t\text{Vect}$
Domain walls, boundary theories, defects

\(\sigma, \sigma_1, \sigma_2 \) \hspace{1cm} (\(n + 1 \))-dimensional theories

\(\delta : \sigma_1 \rightarrow \sigma_2 \) \hspace{1cm} domain wall

\(\rho : \sigma \rightarrow \mathbb{1} \) \hspace{1cm} right boundary theory

\(\tilde{F} : \mathbb{1} \rightarrow \sigma \) \hspace{1cm} left boundary theory

The "sandwich" \(\tilde{F} \) is an (absolute) \(n \)-dimensional theory

More generally, one can put defects on any (stratified) manifold \(D \hookrightarrow M \).
Domain walls, boundary theories, defects

\[\sigma, \sigma_1, \sigma_2 \] \quad (n + 1)-dimensional theories

\[\delta: \sigma_1 \rightarrow \sigma_2 \] \quad domain wall \quad \quad \quad \quad \quad (\sigma_2, \sigma_1)-bimodule

\[\rho: \sigma \rightarrow \mathbb{1} \] \quad right boundary theory \quad \quad \quad \quad \quad right \ \sigma\text{-module}

\[\tilde{F}: \mathbb{1} \rightarrow \sigma \] \quad left boundary theory \quad \quad \quad \quad \quad left \ \sigma\text{-module}

\begin{align*}
\sigma_2 & \quad \delta \quad \sigma_1 \\
\mathbb{1} & \quad \rho \\
\sigma & \quad \tilde{F} \\
\mathbb{1} &
\end{align*}
Domain walls, boundary theories, defects

\(\sigma, \sigma_1, \sigma_2 \) \((n + 1) \)-dimensional theories

\(\delta: \sigma_1 \to \sigma_2 \) domain wall \((\sigma_2, \sigma_1) \)-bimodule

\(\rho: \sigma \to \mathbb{1} \) right boundary theory right \(\sigma \)-module

\(\tilde{F}: \mathbb{1} \to \sigma \) left boundary theory left \(\sigma \)-module

The “sandwich” \(\rho \otimes_{\sigma} \tilde{F} \) is an (absolute) \(n \)-dimensional theory

![Diagram](image_url)
Domain walls, boundary theories, defects

\(\sigma, \sigma_1, \sigma_2 \) \quad (n + 1)\text{-dimensional theories

\(\delta: \sigma_1 \rightarrow \sigma_2 \) \quad \text{domain wall}

\(\rho: \sigma \rightarrow \mathbb{1} \) \quad \text{right boundary theory}

\(\tilde{F}: \mathbb{1} \rightarrow \sigma \) \quad \text{left boundary theory}

The “sandwich” \(\rho \otimes_{\sigma} \tilde{F} \) is an (absolute) \(n \)-dimensional theory

More generally, one can have defects supported on any (stratified) manifold \(D \subset M \)
Composition laws; invertibility

- Given two field theories F_1, F_2 on the same domain $\text{Bord}_n(\mathcal{F})$, there is a composition $F_1 \otimes F_2$. The composition law is sometimes called \textit{stacking}. There is a unit $\mathbf{1}$ for the composition law.
Composition laws; invertibility

- Given two field theories F_1, F_2 on the same domain $\text{Bord}_n(\mathcal{F})$, there is a composition $F_1 \otimes F_2$. The composition law is sometimes called \textit{stacking}. There is a unit 1 for the composition law.

- There is also a composition law on parallel defects, for example the OPE on point defects. In a topological theory one obtains a higher algebra of defects.
Composition laws; invertibility

- Given two field theories F_1, F_2 on the same domain $\text{Bord}_n(\mathcal{F})$, there is a composition $F_1 \otimes F_2$. The composition law is sometimes called stacking. There is a unit $\mathbb{1}$ for the composition law.

- There is also a composition law on parallel defects, for example the OPE on point defects. In a topological theory one obtains a higher algebra of defects.

So a notion of invertible field theory and invertible defect.
Main definition: abstract symmetry data

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

Definition: A *quiche* is a pair (σ, ρ) in which $\sigma: \text{Bord}_{n+1}(\mathcal{F}) \to \mathcal{C}$ is an $(n + 1)$-dimensional topological field theory and ρ is a right topological σ-module.
Main definition: abstract symmetry data

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

Definition: A *quiche* is a pair (σ, ρ) in which $\sigma: \text{Bord}_{n+1}(\mathcal{F}) \to \mathcal{C}$ is an $(n + 1)$-dimensional topological field theory and ρ is a right topological σ-module.

Example: Let G be a finite group. Then for a G-symmetry we let σ be finite gauge theory in dimension $n + 1$. Note this is the *quantum* theory which sums over principal G-bundles.
Main definition: abstract symmetry data

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

Definition: A *quiche* is a pair (σ, ρ) in which $\sigma : \text{Bord}_{n+1}(\mathcal{F}) \to \mathcal{C}$ is an $(n + 1)$-dimensional topological field theory and ρ is a right topological σ-module.

Example: Let G be a finite group. Then for a G-symmetry we let σ be finite gauge theory in dimension $n + 1$. Note this is the *quantum* theory which sums over principal G-bundles.

Regular ρ: Suppose \mathcal{C}' is a symmetric monoidal n-category and σ is an $(n + 1)$-dimensional topological field theory with codomain $\mathcal{C} = \text{Alg}(\mathcal{C}')$. Let $A = \sigma(\text{pt})$. Then A is an algebra in \mathcal{C}' which, as an object in \mathcal{C}, is $(n + 1)$-dualizable. Assume that the right regular module A_A is n-dualizable as a 1-morphism in \mathcal{C}. Then the boundary theory ρ determined by A_A is the *right regular boundary theory* of σ, or the *right regular σ-module*.
Main definition: abstract symmetry data

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

Definition: A *quiche* is a pair (σ, ρ) in which $\sigma: \text{Bord}_{n+1}(\mathcal{F}) \rightarrow \mathcal{C}$ is an $(n + 1)$-dimensional topological field theory and ρ is a right topological σ-module.

Example: Let G be a finite group. Then for a G-symmetry we let σ be finite gauge theory in dimension $n + 1$. Note this is the quantum theory which sums over principal G-bundles

Regular ρ: Suppose \mathcal{C}' is a symmetric monoidal n-category and σ is an $(n + 1)$-dimensional topological field theory with codomain $\mathcal{C} = \text{Alg}(\mathcal{C}')$. Let $A = \sigma(\text{pt})$. Then A is an algebra in \mathcal{C}' which, as an object in \mathcal{C}, is $(n + 1)$-dualizable. Assume that the right regular module A_A is n-dualizable as a 1-morphism in \mathcal{C}. Then the boundary theory ρ determined by A_A is the right regular boundary theory of σ, or the right regular σ-module.

A regular boundary theory is also sometimes called *Dirichlet*
An important generalization

The bulk topological theory σ need not be defined on $(n + 1)$-manifolds; it can be a once-categorified n-dimensional theory.
An important generalization

The bulk topological theory σ need not be defined on $(n + 1)$-manifolds; it can be a once-categorified n-dimensional theory.

Analog of boundary theories: relative field theories (Stolz-Teichner called them twisted field theories).
An important generalization

The bulk topological theory σ need not be defined on $(n + 1)$-manifolds; it can be a once-categorified n-dimensional theory.

Analog of boundary theories: relative field theories (Stolz-Teichner called them twisted field theories)

Defects are also defined in once-categorified theories; the link is a raviolo or UFO.
An important generalization

The bulk topological theory σ need not be defined on $(n + 1)$-manifolds; it can be a once-categorified n-dimensional theory.

Analog of boundary theories: relative field theories (Stolz-Teichner called them twisted field theories).

Defects are also defined in once-categorified theories; the link is a raviolo or UFO.

In this talk we do not pursue these ideas further.
Main definition: concrete realization of symmetry

Definition: Let \((\sigma, \rho)\) be an \(n\)-dimensional quiche. Let \(F\) be an \(n\)-dimensional field theory. A \((\sigma, \rho)\)-module structure on \(F\) is a pair \((\tilde{F}, \theta)\) in which \(\tilde{F}\) is a left \(\sigma\)-module and \(\theta\) is an isomorphism

\[
\theta : \rho \otimes_{\sigma} \tilde{F} \xrightarrow{\cong} F
\]

of absolute \(n\)-dimensional theories.
Main definition: concrete realization of symmetry

Definition: Let \((\sigma, \rho)\) be an \(n\)-dimensional quiche. Let \(F\) be an \(n\)-dimensional field theory. A \((\sigma, \rho)\)-module structure on \(F\) is a pair \((\tilde{F}, \theta)\) in which \(\tilde{F}\) is a left \(\sigma\)-module and \(\theta\) is an isomorphism

\[
\theta : \rho \otimes_{\sigma} \tilde{F} \xrightarrow{\cong} F
\]

of absolute \(n\)-dimensional theories.

- The theory \(F\) and so the boundary theory \(\tilde{F}\) may be topological or nontopological
Main definition: concrete realization of symmetry

Definition: Let \((\sigma, \rho)\) be an \(n\)-dimensional quiche. Let \(F\) be an \(n\)-dimensional field theory. A \((\sigma, \rho)\)-module structure on \(F\) is a pair \((\tilde{F}, \theta)\) in which \(\tilde{F}\) is a left \(\sigma\)-module and \(\theta\) is an isomorphism

\[
\theta : \rho \otimes_\sigma \tilde{F} \xrightarrow{\simeq} F
\]

of absolute \(n\)-dimensional theories.

- The theory \(F\) and so the boundary theory \(\tilde{F}\) may be topological or nontopological.
- The sandwich picture of \(F\) as \(\rho \otimes_\sigma \tilde{F}\) separates out the topological part \((\sigma, \rho)\) of the theory from the potentially nontopological part \(\tilde{F}\) of the theory.
Main definition: concrete realization of symmetry

Definition: Let \((\sigma, \rho)\) be an \(n\)-dimensional quiche. Let \(F\) be an \(n\)-dimensional field theory. A \((\sigma, \rho)\)-module structure on \(F\) is a pair \((\tilde{F}, \theta)\) in which \(\tilde{F}\) is a left \(\sigma\)-module and \(\theta\) is an isomorphism

\[
\theta : \rho \otimes_\sigma \tilde{F} \xrightarrow{\cong} F
\]

of absolute \(n\)-dimensional theories.

- The theory \(F\) and so the boundary theory \(\tilde{F}\) may be topological or nontopological.
- The sandwich picture of \(F\) as \(\rho \otimes_\sigma \tilde{F}\) separates out the topological part \((\sigma, \rho)\) of the theory from the potentially nontopological part \(\tilde{F}\) of the theory.
- Symmetry persists under renormalization group flow, hence a low energy approximation to \(F\) should also be an \((\sigma, \rho)\)-module. If \(F\) is gapped, then we can bring to bear powerful methods and theorems in topological field theory to investigate *topological* left \(\sigma\)-modules. This leads to dynamical predictions.
Example: quantum mechanics with G-symmetry

$n = 1$

\mathcal{F} \{orientation, Riemannian metric\} for F and \tilde{F}

\mathcal{H} Hilbert space

H Hamiltonian

$G \odot \mathcal{H}$ finite group

$S: G \to \text{Aut}(\mathcal{H})$ action on \mathcal{H}

$\sigma(\text{pt})$ $\mathbb{C}[G]$

$F(\text{pt})$ \mathcal{H}

$\tilde{F}(\text{pt})$ $\mathbb{C}[G] \mathcal{H}$ (left module)
Example: quantum mechanics with G-symmetry

$n = 1$

\mathcal{F} \{orientation, Riemannian metric\} for F and \tilde{F}

\mathcal{H} Hilbert space

H Hamiltonian

$G \subset \mathcal{H}$ finite group

$S : G \to \text{Aut}(\mathcal{H})$ action on \mathcal{H}

$\sigma(\text{pt})$ $\mathbb{C}[G]$

$F(\text{pt})$ \mathcal{H}

$\tilde{F}(\text{pt})$ $\mathbb{C}[G] \mathcal{H}$ (left module)

Evaluation of some bordisms:

(a) the left module $\mathbb{C}[G] \mathcal{H}$

(b) $e^{-\tau H/\hbar} : \mathbb{C}[G] \mathcal{H} \to \mathbb{C}[G] \mathcal{H}$

(c) the central function $g \mapsto \text{Tr}_\mathcal{H}(S(g)e^{-\tau H/\hbar})$ on G
Example: gauge theory with BA-symmetry

- n: any dimension
- A: finite abelian group $A = /\mu_2$
- BA: a homotopical/shifted A ("1-form A-symmetry")
- H: Lie group with $A \subset Z(H)$ $H = SU_2$
- $\overline{H} = H/A$: $\overline{H} = SO_3$
- F: H-gauge theory
- \tilde{F}: \overline{H}-gauge theory

A quotient construction allows to recover absolute \overline{H}-gauge theory as a sandwich (later)
Example: gauge theory with BA-symmetry

- n: any dimension
- A: finite abelian group $A = \mu_2$
- BA: a homotopical/shifted A ("1-form A-symmetry")
- H: Lie group with $A \subset Z(H)$ $H = SU_2$
- $\overline{H} = H/A$: $H = SO_3$
- F: H-gauge theory
- \tilde{F}: \overline{H}-gauge theory

A quotient construction allows to recover absolute \overline{H}-gauge theory as a sandwich (later).
Consider a point defect in F. The link of a point in a 1-manifold (imaginary time) is S^0, a 0-sphere of radius ε, and the vector space of defects is $\lim_{\varepsilon \to 0} \text{Hom}_{\text{End} p H q} S^0 \varepsilon$. To focus on formal aspects, we write '$\text{End} p H q$'.

We now consider defects in $p \mapsto F$, which transport to point defects in F. Da) $G \subset \mathcal{H}$, \(H \).
Defects: quantum mechanics

\[n = 1 \]
\[\mathcal{H} \quad \text{Hilbert space} \]
\[H \quad \text{Hamiltonian} \]
\[G \subset \mathcal{H} \quad \text{finite group} \]
\[(\mathcal{H}, \mathcal{H}) \]

Consider a point defect in \(F \). The link of a point in a 1-manifold (imaginary time) is \(S^0 \), a 0-sphere of radius \(\varepsilon \), and the vector space of defects is

\[
\lim_{\varepsilon \to 0} \text{Hom}(1, F(S^0_\varepsilon))
\]

which is a space of singular operators on \(\mathcal{H} \). To focus on formal aspects we write ‘\(\text{End}(\mathcal{H}) \)’
Consider a point defect in F. The link of a point in a 1-manifold (imaginary time) is S^0, a 0-sphere of radius ϵ, and the vector space of defects is

$$\lim_{\epsilon \to 0} \text{Hom}(1, F(S^0))$$

which is a space of singular operators on \mathcal{H}. To focus on formal aspects we write ‘$\text{End}(\mathcal{H})$’

We now consider defects in $(\rho, \sigma, \tilde{F})$ which transport to point defects in F
Point ρ-defects

The link is a closed interval with ρ-colored boundary. It evaluates under (σ, ρ) to the vector space $A = \mathbb{C}[G]$. The “label” of the defect is therefore an element of A. Note $G \subset A$ labels invertible defects.

ρ-defects are topological

$$\text{C}(G) \quad \sigma \quad G \mathbb{C} \mathbb{C} \quad \approx \quad (\mathbb{C}, \mathbb{C})$$
Point \tilde{F}-defects

The link is again a closed interval, but now with \tilde{F}-colored boundary. The value under (σ, \tilde{F}) is $\text{End}_A(\mathcal{H})$, the space of observables that commute with the G-action \tilde{F}-defects are typically not topological
The link is S^1, and the value under σ is the vector space which is the center of the group algebra $A = \mathbb{C}[G]$.

σ-defects are topological
The general point defect

A general point defect in F can be realized by a line defect in $(\rho, \sigma, \tilde{F})$.

Label the defect beginning with the highest dimensional strata and work down in dimension

B (A, A)-bimodule
ξ vector in B
T (A, A)-bimodule map $B \rightarrow \text{End}(\mathcal{H})$
Composition law on defects

Compute using the links of the defects—2 incoming and 1 outgoing

σ-defects: pair of pants

ρ-defects: pair of chaps
Commutation relations among defects

The sandwich realization makes clear that

- ρ-defects (symmetries) commute with \widetilde{F}-defects
- σ-defects (central symmetries) commute with both ρ-defects and with \widetilde{F}-defects

However, ρ-defects do not necessarily commute with each other.

Nor do they commute with the general defect.
Commutation relations among defects

The sandwich realization makes clear that

- ρ-defects (symmetries) commute with \tilde{F}-defects
- σ-defects (central symmetries) commute with both ρ-defects and with \tilde{F}-defects

However, ρ-defects do not necessarily commute with each other
Commutation relations among defects

The sandwich realization makes clear that

- ρ-defects (symmetries) commute with \widetilde{F}-defects
- σ-defects (central symmetries) commute with both ρ-defects and with \widetilde{F}-defects

However, ρ-defects do not necessarily commute with each other

Nor do they commute with the general defect
Finite group symmetries of an \((n = 2)\)-dimensional theory

Let \(G\) be a finite group, and let \(\sigma\) be the 3-dimensional finite \(G\)-gauge theory

\[
\sigma : \text{Bord}_3 \longrightarrow \text{Alg}(\text{Cat})
\]

with \(\sigma(\text{pt}) = \text{Vect}[G]\), and let \(\rho\) be the regular right \(\sigma\)-module with \(\rho(\text{pt}) = \text{Vect}[G]_{\text{Vect}[G]}\).
Finite group symmetries of an \((n = 2)\)-dimensional theory

Let \(G\) be a finite group, and let \(\sigma\) be the 3-dimensional finite \(G\)-gauge theory

\[
\sigma: \text{Bord}_3 \to \text{Alg}(\text{Cat})
\]

with \(\sigma(\text{pt}) = \text{Vect}[G]\), and let \(\rho\) be the regular right \(\sigma\)-module with \(\rho(\text{pt}) = \text{Vect}[G]_{\text{Vect}[G]}\)

Line \(\rho\)-defects are labeled by objects in \(\text{Vect}[G]\); elements \(g \in G\) label invertible defects
Finite group symmetries of an \((n = 2)\)-dimensional theory

Let \(G\) be a finite group, and let \(\sigma\) be the 3-dimensional finite \(G\)-gauge theory

\[\sigma: \text{Bord}_3 \longrightarrow \text{Alg}(\text{Cat})\]

with \(\sigma(\text{pt}) = \text{Vect}[G]\), and let \(\rho\) be the regular right \(\sigma\)-module with \(\rho(\text{pt}) = \text{Vect}[G]_{\text{Vect}[G]}\)

Line \(\rho\)-defects are labeled by objects in \(\text{Vect}[G]\); elements \(g \in G\) label invertible defects

Line \(\sigma\)-defects are central, in fact labeled by elements of \(\sigma(S^1) = \text{Vect}_G(G)\), the Drinfeld center of the fusion category \(\text{Vect}[G]\)
Finite group symmetries of an \((n = 2)\)-dimensional theory

Let \(G\) be a finite group, and let \(\sigma\) be the 3-dimensional finite \(G\)-gauge theory

\[
\sigma: \text{Bord}_3 \longrightarrow \text{Alg(Cat)}
\]

with \(\sigma(\text{pt}) = \text{Vect}[G]\), and let \(\rho\) be the regular right \(\sigma\)-module with \(\rho(\text{pt}) = \text{Vect}[G]_{\text{Vect}[G]}\)

Line \(\rho\)-defects are labeled by objects in \(\text{Vect}[G]\); elements \(g \in G\) label invertible defects

Line \(\sigma\)-defects are central, in fact labeled by elements of \(\sigma(S^1) = \text{Vect}_G(G)\), the Drinfeld center of the fusion category \(\text{Vect}[G]\)

As opposed to \(G\)-symmetry in \(n = 1\), here the center is “bigger”
Line defects in 4-dimensional gauge theory

Our goal is to explain the paper *Reading between the lines of four-dimensional gauge theories* (arXiv:1305.0318) of Aharony-Seiberg-Tachikawa in this framework.
Line defects in 4-dimensional gauge theory

Our goal is to explain the paper *Reading between the lines of four-dimensional gauge theories* (arXiv:1305.0318) of Aharony-Seiberg-Tachikawa in this framework.

The relevant topological theory σ can be realized by a semiclassical construction based in topology, so we first introduce such finite homotopy theories.
Our goal is to explain the paper *Reading between the lines of four-dimensional gauge theories* (arXiv:1305.0318) of Aharony-Seiberg-Tachikawa in this framework.

The relevant topological theory σ can be realized by a semiclassical construction based in topology, so we first introduce such *finite homotopy theories*.

Their paper concerns the gauge theories for compact Lie groups lying between a simply connected group G and its adjoint group \overline{G}. In our context this requires a *quotient* construction (gauging), which we then describe in this context.
Our goal is to explain the paper *Reading between the lines of four-dimensional gauge theories* (arXiv:1305.0318) of Aharony-Seiberg-Tachikawa in this framework.

The relevant topological theory σ can be realized by a semiclassical construction based in topology, so we first introduce such *finite homotopy theories*.

Their paper concerns the gauge theories for compact Lie groups lying between a simply connected group G and its adjoint group \overline{G}. In our context this requires a *quotient* construction (*gauging*), which we then describe in this context.

The main point is a *higher Gauss law*, which is the final prerequisite that we discuss.
Definition: A topological space X is π-finite if (i) $\pi_0 X$ is a finite set, (ii) for all $x \in X$, the homotopy group $\pi_q(X, x)$, $q \geq 1$, is finite, and (iii) there exists $Q \in \mathbb{Z}^{>0}$ such that $\pi_q(X, x) = 0$ for all $q > Q$, $x \in X$.
Finite homotopy theories

Definition: A topological space \mathcal{X} is π-finite if (i) $\pi_0\mathcal{X}$ is a finite set, (ii) for all $x \in \mathcal{X}$, the homotopy group $\pi_q(\mathcal{X}, x)$, $q \geq 1$, is finite, and (iii) there exists $Q \in \mathbb{Z}^+ \cup \{0\}$ such that $\pi_q(\mathcal{X}, x) = 0$ for all $q > Q$, $x \in \mathcal{X}$.

Examples:

1. An Eilenberg-MacLane space $K(\pi, q)$ is π-finite if π is a finite group. Denote $K(G, 1)$ by BG for G a finite group, and if $q \geq 1$ and A is a finite abelian group, we denote $K(A, q)$ by B^qA.

Finite homotopy theories

Definition: A topological space \mathcal{X} is π-finite if (i) $\pi_0\mathcal{X}$ is a finite set, (ii) for all $x \in \mathcal{X}$, the homotopy group $\pi_q(\mathcal{X}, x), q \geq 1$, is finite, and (iii) there exists $Q \in \mathbb{Z}^{>0}$ such that $\pi_q(\mathcal{X}, x) = 0$ for all $q > Q$, $x \in \mathcal{X}$.

Examples:

(1) An Eilenberg-MacLane space $K(\pi, q)$ is π-finite if π is a finite group. Denote $K(G, 1)$ by BG for G a finite group, and if $q \geq 1$ and A is a finite abelian group, we denote $K(A, q)$ by B^qA.

(2) Let G be a finite group, let A be a finite abelian group, and fix a cocycle k for a cohomology class $[k] \in H^3(G; A)$. (One can also include an action of G on A.) Realize k as a map $k: BG \to B^3A$, and form the π-finite space \mathcal{X} as a pullback:

\[
\begin{array}{ccc}
B^2A & \longrightarrow & \mathcal{X} & \longrightarrow & BG \\
\| & & \downarrow & & \downarrow k \\
B^2A & \longrightarrow & * & \longrightarrow & B^3A
\end{array}
\]
Finite homotopy theories were introduced by Kontsevich in 1988, developed later by Quinn, Turaev, and others.
Finite homotopy theories

Finite homotopy theories were introduced by Kontsevich in 1988, developed later by Quinn, Turaev, and others.

Quantization proceeds via the finite path integral, which I introduced in 1992.
Finite homotopy theories

Finite homotopy theories were introduced by Kontsevich in 1988, developed later by Quinn, Turaev, and others.

Quantization proceeds via the *finite path integral*, which I introduced in 1992.

A modern approach uses *ambidexterity* or *higher semiadditivity*, as introduced by Hopkins–Lurie in 2013 with recent developments by Carmeli, Harpaz, Schlank, Yanovsky...
Finite homotopy theories were introduced by Kontsevich in 1988, developed later by Quinn, Turaev, and others.

Quantization proceeds via the finite path integral, which I introduced in 1992.

A modern approach uses ambidexterity or higher semiadditivity, as introduced by Hopkins–Lurie in 2013 with recent developments by Carmeli, Harpaz, Schlank, Yanovsky...

Remark: If we drop the π-finiteness assumption, then we can construct a once-categorified theory from any topological space.
Finite homotopy theories

m (spacetime) dimension
\[X\] \(\pi\)-finite space
\(\lambda\) cocycle of degree \(m\) on \(X\) \([\lambda] \in H^m(X; \mathbb{C}^\times)\)
\(M\) closed manifold
\(\mathcal{X}^M\) \(\text{Map}(M, \mathcal{X})\)
Finite homotopy theories

\(m \) (spacetime) dimension
\(\mathcal{X} \) \(\pi \)-finite space
\(\lambda \) cocycle of degree \(m \) on \(\mathcal{X} \) \([\lambda] \in H^m(\mathcal{X}; \mathbb{C}^\times)\)
\(M \) closed manifold
\(\mathcal{X}^M \) \(\text{Map}(M, \mathcal{X}) \)

For definiteness take \(\mathcal{X} = B^2A \), \(\lambda = 0 \), and \(m = 5 \) ("1-form A-symmetry on a 4d theory")

Denote the resulting topological field theory as \(\sigma \)
Finite homotopy theories

\(m \) (spacetime) dimension

\(X \) \(\pi \)-finite space

\(\lambda \) cocycle of degree \(m \) on \(X \) \(\quad [\lambda] \in H^m(X; \mathbb{C}^\times) \)

\(M \) closed manifold

\(X^M \) \(\text{Map}(M, X) \)

For definiteness take \(X = B^2A, \lambda = 0, \) and \(m = 5 \) ("1-form \(A \)-symmetry on a 4d theory")

Denote the resulting topological field theory as \(\sigma \)

\[
\begin{align*}
\text{For definiteness take } X &= B^2A, \lambda = 0, \text{ and } m = 5 \quad ("1\text{-form } A\text{-symmetry on a 4d theory")} \\
\text{Denote the resulting topological field theory as } \sigma \\
m = 5: \quad \sigma(M) &= \sum_{[\phi] \in \pi_0(X^M)} \frac{\#\pi_2(X^M, \phi)}{\#\pi_1(X^M, \phi)} = \frac{\#H^0(M; A)}{\#H^1(M; A)} \#H^2(M; A)
\end{align*}
\]
Finite homotopy theories

codim 1—the vector space of locally constant complex-valued functions on \mathcal{X}^M:

$m = 4 : \quad \sigma(M) = \text{Fun}(\pi_0(\mathcal{X}^M)) = \text{Fun}(H^2(M; A))$
Finite homotopy theories

codim 1—the vector space of locally constant complex-valued functions on \mathcal{X}^M:

$m = 4$:

$$\sigma(M) = \text{Fun}(\pi_0(\mathcal{X}^M)) = \text{Fun}(H^2(M; A))$$

codim 2—the linear category of flat vector bundles (local systems) over \mathcal{X}^M:

$m = 3$:

$$\sigma(M) = \text{Vect}(\pi_{\leq 1}(\mathcal{X}^M)) = \text{Vect}(H^2(M; A)) \times \text{Rep}(H^1(M; A))$$

$$\simeq \text{Vect}(H^2(M; A) \times H^1(M; A)^\vee)$$
Finite homotopy theories

codim 1—the vector space of locally constant complex-valued functions on \mathcal{X}^M:

$m = 4$: $\sigma(M) = \text{Fun}(\pi_0(\mathcal{X}^M)) = \text{Fun}(H^2(M; A))$

codim 2—the linear category of flat vector bundles (local systems) over \mathcal{X}^M:

$m = 3$: $\sigma(M) = \text{Vect}(\pi_{\leq 1}(\mathcal{X}^M)) = \text{Vect}(H^2(M; A)) \times \text{Rep}(H^1(M; A))$

$\cong \text{Vect}(H^2(M; A) \times H^1(M; A) \wedge)$

The quantization of a bordism $M: N_0 \to N_1$ uses the correspondence of mapping spaces:

```
\mathcal{X}^N_0 \xrightarrow{p_0} \mathcal{X}^M \xrightarrow{p_1} \mathcal{X}^N_1
```
Finite homotopy theories

Semiclassical descriptions of boundaries and defects lead to computable quantizations
Finite homotopy theories

Semiclassical descriptions of boundaries and defects lead to computable quantizations

Fix \((X, \lambda)\) a \(\pi\)-finite space and cocycle
Finite homotopy theories

Semiclassical descriptions of boundaries and defects lead to computable quantizations

Fix \((\mathcal{X}, \lambda)\) a \(\pi\)-finite space and cocycle

Definition: A right semiclassical boundary theory of \((\mathcal{X}, \lambda)\) is a triple \((\mathcal{Y}, f, \mu)\) consisting of a \(\pi\)-finite space \(\mathcal{Y}\), a map \(f: \mathcal{Y} \to \mathcal{X}\), and a trivialization \(\mu\) of \(-f^*\lambda\)

Quantization: Compositions of defects are computed using homotopy fiber products
Finite homotopy theories

Semiclassical descriptions of boundaries and defects lead to computable quantizations

Fix \((\mathcal{X}, \lambda)\) a \(\pi\)-finite space and cocycle

Definition: A right semiclassical boundary theory of \((\mathcal{X}, \lambda)\) is a triple \((\mathcal{Y}, f, \mu)\) consisting of a \(\pi\)-finite space \(\mathcal{Y}\), a map \(f: \mathcal{Y} \to \mathcal{X}\), and a trivialization \(\mu\) of \(-f^*\lambda\)

A *regular* boundary theory has \(\mathcal{Y} = \ast\)
Finite homotopy theories

Semiclassical descriptions of boundaries and defects lead to computable quantizations

Fix \((\mathcal{X}, \lambda)\) a \(\pi\)-finite space and cocycle

Definition: A *right semiclassical boundary theory* of \((\mathcal{X}, \lambda)\) is a triple \((\mathcal{Y}, f, \mu)\) consisting of a \(\pi\)-finite space \(\mathcal{Y}\), a map \(f : \mathcal{Y} \to \mathcal{X}\), and a trivialization \(\mu\) of \(-f^*\lambda\)

A *regular* boundary theory has \(\mathcal{Y} = *\)

Definition: Fix \(m, \ell \in \mathbb{Z}_{>2}\) with \(\ell \leq m\). A *semiclassical local defect* of codimension \(\ell\) for \((\mathcal{X}, \lambda)\) is a \(\pi\)-finite map

\[
\delta : \mathcal{Y} \to \mathcal{L}^{\ell-1}\mathcal{X}
\]

and a trivialization \(\mu\) of \(\delta^*(\tau^{\ell-1}\lambda)\)
Finite homotopy theories

Semiclassical descriptions of boundaries and defects lead to computable quantizations

Fix \mathcal{X}, λ a π-finite space and cocycle

Definition: A right semiclassical boundary theory of (\mathcal{X}, λ) is a triple (\mathcal{Y}, f, μ) consisting of a π-finite space \mathcal{Y}, a map $f : \mathcal{Y} \rightarrow \mathcal{X}$, and a trivialization μ of $-f^*\lambda$

A regular boundary theory has $\mathcal{Y} = *$

Definition: Fix $m, \ell \in \mathbb{Z}^{\geq 2}$ with $\ell \leq m$. A semiclassical local defect of codimension ℓ for (\mathcal{X}, λ) is a π-finite map

$$\delta : \mathcal{Y} \rightarrow \mathcal{L}^{\ell-1}\mathcal{X}$$

and a trivialization μ of $\delta^*(\tau^{\ell-1}\lambda)$

Compositions of defects are computed using homotopy fiber products
Line defects in 4-dimensional gauge theory

Our goal is to explain the paper *Reading between the lines of four-dimensional gauge theories* (arXiv:1305.1308) of Aharony-Seiberg-Tachikawa in this framework.

The relevant topological theory σ can be realized by a semiclassical construction based in topology, so we first introduce such *finite homotopy theories*.

Their paper concerns the gauge theories for compact Lie groups lying between a simply connected group G and its adjoint group \overline{G}. In our context this requires a *quotient construction* (gauging), which we then describe in this context.

The main point is a *higher Gauss law*, which is the final prerequisite that we discuss.
Quotients: augmentations

Definition: An *augmentation* of an algebra A is an algebra homomorphism $\epsilon: A \to \mathbb{C}$.

Use ϵ to give a right A-module structure to \mathbb{C}: $\lambda \cdot a = \lambda \epsilon(a)$, $\lambda \in \mathbb{C}$.
Quotients: augmentations

Definition: An *augmentation* of an algebra A is an algebra homomorphism $\epsilon: A \rightarrow \mathbb{C}$.

Use ϵ to give a right A-module structure to \mathbb{C}: $\lambda \cdot a = \lambda \epsilon(a)$, $\lambda \in \mathbb{C}$

Example: $A = \mathbb{C}[G]$:

$$\epsilon: \mathbb{C}[G] \rightarrow \mathbb{C}$$

$$\sum_{g \in G} \lambda_g g \mapsto \sum_{g \in G} \lambda_g$$
Quotients: augmentations

Definition: An *augmentation* of an algebra A is an algebra homomorphism $\epsilon: A \to \mathbb{C}$.

Use ϵ to give a right A-module structure to \mathbb{C}: $\lambda \cdot a = \lambda \epsilon(a)$, $\lambda \in \mathbb{C}$

Example: $A = \mathbb{C}[G]$:

$$\epsilon: \mathbb{C}[G] \longrightarrow \mathbb{C}$$

$$\sum_{g \in G} \lambda_g g \longmapsto \sum_{g \in G} \lambda_g$$

The “quotient” of a left A-module L is the vector space

$$Q = \mathbb{C} \otimes_A L = \mathbb{C} \otimes_\epsilon L$$
Quotients: augmentations

Definition: An *augmentation* of an algebra A is an algebra homomorphism $\varepsilon : A \to \mathbb{C}$.

Use ε to give a right A-module structure to \mathbb{C}: $\lambda \cdot a = \lambda \varepsilon(a), \, \lambda \in \mathbb{C}$

Example: $A = \mathbb{C}[G]$:

$\varepsilon : \mathbb{C}[G] \longrightarrow \mathbb{C}$

$$\sum_{g \in G} \lambda_g g \longmapsto \sum_{g \in G} \lambda_g$$

The “quotient” of a left A-module L is the vector space

$$Q = \mathbb{C} \otimes_A L = \mathbb{C} \otimes_{\varepsilon} L$$

Example: $A = \mathbb{C}[G], \, S$ a finite G-set, $L = \mathbb{C}\langle S \rangle$: then $Q = \mathbb{C} \otimes_A \mathbb{C}\langle S \rangle \cong \mathbb{C}\langle S/G \rangle$
Definition: An *augmentation* of an algebra A is an algebra homomorphism $\epsilon: A \to \mathbb{C}$.

Use ϵ to give a right A-module structure to \mathbb{C}: $\lambda \cdot a = \lambda \epsilon(a)$, $\lambda \in \mathbb{C}$.

Example: $A = \mathbb{C}[G]$:

$$\epsilon: \mathbb{C}[G] \longrightarrow \mathbb{C}$$

$$\sum_{g \in G} \lambda_g g \longmapsto \sum_{g \in G} \lambda_g$$

The “quotient” of a left A-module L is the vector space

$$Q = \mathbb{C} \otimes_A L = \mathbb{C} \otimes_{\epsilon} L$$

Example: $A = \mathbb{C}[G]$, S a finite G-set, $L = \mathbb{C}\langle S \rangle$: then $Q = \mathbb{C} \otimes_A \mathbb{C}\langle S \rangle \cong \mathbb{C}\langle S / G \rangle$

Augmentations for higher algebras: Φ tensor category $\epsilon: \Phi \to \text{Vect}$ fiber functor
Quotients and quotient defects

We use the yoga of fully local topological field theory: let \mathcal{C}' be a symmetric monoidal n-category and set $\mathcal{C} = \text{Alg}(\mathcal{C}')$, the $(n + 1)$-category whose objects are algebras in \mathcal{C}'.

Definition: An augmentation $\varepsilon_A : A \to 1$ of an algebra $A \in \text{Alg}(\mathcal{C}')$ is an algebra homomorphism from A to the tensor unit $1 \in \mathcal{C}$.

Definition: Let \mathcal{F} be a collection of $(n + 1)$-dimensional fields, and suppose $\sigma : \text{Bord}_{n+1}(\mathcal{F}) \to \mathcal{C}$ is a topological field theory. A right boundary theory ε for σ is an augmentation of σ if $\varepsilon(\text{pt})$ is an augmentation of $\sigma(\text{pt})$.

Augmentations are also called Neumann boundary theories.
Quotients and quotient defects

We use the yoga of fully local topological field theory: let \mathcal{C}' be a symmetric monoidal n-category and set $\mathcal{C} = \text{Alg}(\mathcal{C}')$, the $(n + 1)$-category whose objects are algebras in \mathcal{C}'

Definition: An augmentation $\varepsilon_A : A \to 1$ of an algebra $A \in \text{Alg}(\mathcal{C}')$ is an algebra homomorphism from A to the tensor unit $1 \in \mathcal{C}$

Definition: Let \mathcal{F} be a collection of $(n + 1)$-dimensional fields, and suppose $\sigma : \text{Bord}_{n+1}(\mathcal{F}) \to \mathcal{C}$ is a topological field theory. A right boundary theory e for σ is an augmentation of σ if $e(\text{pt})$ is an augmentation of $\sigma(\text{pt})$

Augmentations are also called Neumann boundary theories

Augmentations do not always exist
Definition: Suppose given finite symmetry data \((\sigma, \rho)\) and a \((\sigma, \rho)\)-module structure \((\tilde{F}, \theta)\) on a quantum field theory \(F\). Suppose \(\varepsilon\) is an augmentation of \(\sigma\). Then the quotient of \(F\) by the symmetry \(\sigma\) is

\[
\frac{F}{\sigma} = \varepsilon \otimes_{\sigma} \tilde{F}
\]
Our goal is to explain the paper *Reading between the lines of four-dimensional gauge theories* (arXiv:1305.1308) of Aharony-Seiberg-Tachikawa in this framework.

The relevant topological theory σ can be realized by a semiclassical construction based in topology, so we first introduce such finite homotopy theories.

Their paper concerns the gauge theories for compact Lie groups lying between a simply connected group G and its adjoint group \overline{G}. In our context this requires a quotient construction (*gauging*), which we then describe in this context.

The main point is a higher Gauss law, which is the final prerequisite that we discuss.
Gauss laws in finite homotopy theories

Begin with the usual Gauss law for quantization in codimension 1

Recall that we have a mapping space $X \rightarrow M$ whose quantization—in an untwisted situation—is the vector space of locally constant functions $\text{Fun}_{\text{flat}}^p X \rightarrow M$. In a twisted situation there is a "flat" complex line bundle $L \rightarrow X \rightarrow M$, or local system, and the quantization is the space of flat sections. More precisely, replace $X \rightarrow M$ by its fundamental groupoid $\pi_1 X \rightarrow M$, and take sections of the line bundle $L \rightarrow \pi_1 X \rightarrow M$. The Gauss law says that sections vanish over components of $X \rightarrow M$ on which π_1 acts by a non-identity character on L. In categorical terms, this is the limit of the map (functor) $L : \pi_1 X \rightarrow M \rightarrow \text{Vect}$.
Gauss laws in finite homotopy theories

Begin with the usual Gauss law for quantization in codimension 1

Recall that we have a mapping space \mathcal{X}^M whose quantization—in an *untwisted* situation—is the vector space of locally constant functions $\text{Fun}_{\text{flat}}(\mathcal{X}^M)$

In a twisted situation there is a "flat" complex line bundle $\mathcal{L} \overset{\pi}{\to} \mathcal{X}^M$, or local system, and the quantization is the space of flat sections $\text{Flat} \mathcal{L}$

More precisely, replace \mathcal{X}^M by its fundamental groupoid $\pi_1(\mathcal{X}^M)$, and take sections of the line bundle $\mathcal{L} \overset{\pi}{\to} \pi_1(\mathcal{X}^M)$

The Gauss law says that sections vanish over components of \mathcal{X}^M on which π_1 acts by a non-identity character on \mathcal{L}

In categorical terms, this is the limit of the map (functor) $\mathcal{L} \overset{\pi}{\to} \text{Vect}$
Gauss laws in finite homotopy theories

Begin with the usual Gauss law for quantization in codimension 1

Recall that we have a mapping space \mathcal{X}^M whose quantization—in an *untwisted* situation—is the vector space of locally constant functions $\text{Fun}_{\text{flat}}(\mathcal{X}^M)$

In a twisted situation there is a “flat” complex line bundle $\mathcal{L} \rightarrow \mathcal{X}^M$, or local system, and the quantization is the space of flat sections
Gauss laws in finite homotopy theories

Begin with the usual Gauss law for quantization in codimension 1

Recall that we have a mapping space \mathcal{X}^M whose quantization—in an *untwisted* situation—is the vector space of locally constant functions $\text{Fun}_{\text{flat}}(\mathcal{X}^M)$.

In a twisted situation there is a “flat” complex line bundle $\mathcal{L} \to \mathcal{X}^M$, or local system, and the quantization is the space of flat sections.

More precisely, replace \mathcal{X}^M by its fundamental groupoid $\pi_{\leq 1} \mathcal{X}^M$, and take sections of the line bundle $\mathcal{L} \to \pi_{\leq 1} \mathcal{X}^M$.

\[\begin{array}{c}
\text{Gauss law says that sections vanish over components of } \pi_{\leq 1} \mathcal{X}^M \text{ on which } \pi_{\leq 1} \text{ acts by a non-identity character on } \mathcal{L}
\end{array} \]

In categorical terms, this is the limit of the map (functor) $\mathcal{L} : \pi_{\leq 1} \mathcal{X}^M \to \text{Vect}$.
Gauss laws in finite homotopy theories

Begin with the usual Gauss law for quantization in codimension 1

Recall that we have a mapping space X^M whose quantization—in an untwisted situation—is the vector space of locally constant functions $\text{Fun}_{\text{flat}}(X^M)$.

In a twisted situation there is a “flat” complex line bundle $\mathcal{L} \to X^M$, or local system, and the quantization is the space of flat sections.

More precisely, replace X^M by its fundamental groupoid $\pi_{\leq 1}X^M$, and take sections of the line bundle $\mathcal{L} \to \pi_{\leq 1}X^M$.

The Gauss law says that sections vanish over components of X^M on which π_1 acts by a non-identity character on \mathcal{L}.
Gauss laws in finite homotopy theories

Begin with the usual Gauss law for quantization in codimension 1.

Recall that we have a mapping space \mathcal{X}^M whose quantization—in an untwisted situation—is the vector space of locally constant functions $\text{Fun}_{\text{flat}}(\mathcal{X}^M)$.

In a twisted situation there is a “flat” complex line bundle $\mathcal{L} \to \mathcal{X}^M$, or local system, and the quantization is the space of flat sections.

More precisely, replace \mathcal{X}^M by its fundamental groupoid $\pi_{\leq 1}\mathcal{X}^M$, and take sections of the line bundle $\mathcal{L} \to \pi_{\leq 1}\mathcal{X}^M$.

The Gauss law says that sections vanish over components of \mathcal{X}^M on which π_1 acts by a non-identity character on \mathcal{L}.

In categorical terms, this is the limit of the map (functor) $\mathcal{L}: \pi_{\leq 1}\mathcal{X}^M \to \text{Vect}$.
We need the analogous Gauss law for quantization in codimension 2.
Gauss laws in finite homotopy theories

We need the analogous Gauss law for quantization in codimension 2

Untwisted case: the quantization is the linear category $\text{Vect}_{\text{flat}}(\mathcal{X}^M)$ of flat vector bundles

Twisted case: there is a "flat" Vect-line bundle $K \rightarrow X^M$, where Vect is the linear category of vector spaces, and the quantization is the space of flat sections

More precisely, replace X^M by its fundamental 2-groupoid $\pi_2(X^M)$, and take sections of the Vect-bundle $K \rightarrow \pi_2(X^M)$

In categorical terms, this is the limit of the map (functor) $K : \pi_2(X^M) \rightarrow \text{Cat}$

Higher Gauss law: At a point $P \in X^M$, if $\pi_1(P)$, then $\pi_2(P)$ acts on K by automorphisms of the identity functor via a character, and sections of $K \rightarrow X^M$ vanish on the component which contains P if that character is not the identity
Gauss laws in finite homotopy theories

We need the analogous Gauss law for quantization in codimension 2

Untwisted case: the quantization is the linear category $\text{Vect}_{\text{flat}}(\mathcal{X}^M)$ of flat vector bundles

In a twisted situation there is a “flat” \mathcal{V}-line bundle $\mathcal{K} \to \mathcal{X}^M$, where $\mathcal{V} = \text{Vect}$ is the linear category of vector spaces, and the quantization is the space of flat sections

$\text{higher Gauss law: At a point } P \in \mathcal{X}^M, \text{ if } \pi_1^1\pi : 1 \to \mathcal{X}^M, \text{ then } \pi_2^2\pi \text{ acts on } K \text{ by automorphisms of the identity functor via a character, and sections of } K \to \mathcal{X}^M \text{ vanish on the component which contains } P \text{ if that character is not the identity}$
Gauss laws in finite homotopy theories

We need the analogous Gauss law for quantization in codimension 2.

Untwisted case: the quantization is the linear category $\text{Vect}_{\text{flat}}(\mathcal{X}^M)$ of flat vector bundles.

In a twisted situation there is a “flat” \mathcal{V}-line bundle $\mathcal{K} \to \mathcal{X}^M$, where $\mathcal{V} = \text{Vect}$ is the linear category of vector spaces, and the quantization is the space of flat sections.

More precisely, replace \mathcal{X}^M by its fundamental 2-groupoid $\pi_{\leq 2} \mathcal{X}^M$, and take sections of the \mathcal{V}-bundle $\mathcal{K} \to \pi_{\leq 2} \mathcal{X}^M$.

Gauss laws in finite homotopy theories

We need the analogous Gauss law for quantization in codimension 2

Untwisted case: the quantization is the linear category $\text{Vect}_{\text{flat}}(\mathcal{X}^M)$ of flat vector bundles

In a twisted situation there is a “flat” \mathbb{V}-line bundle $\mathcal{K} \to \mathcal{X}^M$, where $\mathbb{V} = \text{Vect}$ is the linear category of vector spaces, and the quantization is the space of flat sections

More precisely, replace \mathcal{X}^M by its fundamental 2-groupoid $\pi_{\leq 2}\mathcal{X}^M$, and take sections of the \mathbb{V}-bundle $\mathcal{K} \to \pi_{\leq 2}\mathcal{X}^M$.

In categorical terms, this is the limit of the map (functor) $\mathcal{K}: \pi_{\leq 2}\mathcal{X}^M \to \text{Cat}$.
Gauss laws in finite homotopy theories

We need the analogous Gauss law for quantization in codimension 2

Untwisted case: the quantization is the linear category $\text{Vect}_{\text{flat}}(\mathcal{X}^M)$ of flat vector bundles

In a twisted situation there is a “flat” \mathcal{V}-line bundle $\mathcal{K} \to \mathcal{X}^M$, where $\mathcal{V} = \text{Vect}$ is the linear category of vector spaces, and the quantization is the space of flat sections

More precisely, replace \mathcal{X}^M by its fundamental 2-groupoid $\pi_{\leq 2}\mathcal{X}^M$, and take sections of the \mathcal{V}-bundle $\mathcal{K} \to \pi_{\leq 2}\mathcal{X}^M$

In categorical terms, this is the limit of the map (functor) $\mathcal{K}: \pi_{\leq 2}\mathcal{X}^M \to \text{Cat}$

Higher Gauss law: At a point $\phi \in \mathcal{X}^M$, if $\pi_1(\mathcal{X}^M, \phi) = 0$ then $\pi_2(\mathcal{X}^M, \phi)$ acts on \mathcal{K}_ϕ by automorphisms of the identity functor via a character, and sections of $\mathcal{K} \to \mathcal{X}^M$ vanish on the component which contains ϕ if that character is not the identity
Our goal is to explain the paper *Reading between the lines of four-dimensional gauge theories* ([arXiv:1305.1308](https://arxiv.org/abs/1305.1308)) of Aharony-Seiberg-Tachikawa in this framework.

The relevant topological theory σ can be realized by a semiclassical construction based in topology, so we first introduce such finite homotopy theories.

Their paper concerns the gauge theories for compact Lie groups lying between a simply connected group G and its adjoint group \overline{G}. In our context this requires a quotient construction (*gauging*), which we then describe in this context.

The main point is a higher Gauss law, which is the final prerequisite that we discuss.
BA symmetry

- \(H \): compact Lie group
- \(A \): finite subgroup of center(\(H \))
- \(\overline{H} \): \(H/A \)
- \(\sigma \): 5-dimensional finite homotopy with \(X = B^2A \)
- \(\rho \): right topological boundary theory \(\star \rightarrow B^2A \)
- \(F \): a 4-dimensional \(H \)-gauge theory with \(BA \) symmetry
- \(\tilde{F} \): the corresponding \(\overline{H} \)-gauge theory
Topological right σ-modules

Recall the semiclassical description: $f : Y \to B^2A$ and a trivialization μ of $-f^*\lambda = 0$, so a 4-cocycle μ on Y with coefficients in \mathbb{C}^\times.
Topological right \(\sigma \)-modules

Recall the semiclassical description: \(f : \mathcal{Y} \rightarrow B^2A \) and a trivialization \(\mu \) of \(-f^*\lambda = 0\), so a 4-cocycle \(\mu \) on \(\mathcal{Y} \) with coefficients in \(\mathbb{C}^\times \)

For any subgroup \(A' \subset A \) there is an induced map \(B^2A' \rightarrow B^2A \)
Topological right σ-modules

Recall the semiclassical description: $f : \mathcal{Y} \to B^2 A$ and a trivialization μ of $-f^* \lambda = 0$, so a 4-cocycle μ on \mathcal{Y} with coefficients in \mathbb{C}^\times.

For any subgroup $A' \subset A$ there is an induced map $B^2 A' \to B^2 A$.

Eilenberg-MacLane compute

$$H^4(B^2 A'; \mathbb{C}^\times) \cong \{\text{quadratic functions } q : A' \to \mathbb{C}^\times\}$$
Topological right σ-modules

Recall the semiclassical description: $f: Y \to B^2A$ and a trivialization μ of $-f^*\lambda = 0$, so a 4-cocycle μ on Y with coefficients in \mathbb{C}^\times.

For any subgroup $A' \subset A$ there is an induced map $B^2A' \to B^2A$.

Eilenberg-MacLane compute

$$H^4(B^2A'; \mathbb{C}^\times) \cong \{\text{quadratic functions } q: A' \to \mathbb{C}^\times\}$$

The pair (A', q) determines the right topological boundary theory $R_{A', q}$.
Topological right σ-modules

Recall the semiclassical description: $f: \mathcal{Y} \to B^2A$ and a trivialization μ of $-f^*\lambda = 0$, so a 4-cocycle μ on \mathcal{Y} with coefficients in \mathbb{C}^\times

For any subgroup $A' \subset A$ there is an induced map $B^2A' \to B^2A$

Eilenberg-MacLane compute

$$H^4(B^2A'; \mathbb{C}^\times) \cong \{\text{quadratic functions } q: A' \to \mathbb{C}^\times\}$$

The pair (A', q) determines the right topological boundary theory $R_{A', q}$

The quadratic form q gives rise to the Pontrjagin square cohomology operation

$$\mathcal{P}_q: H^2(X; A') \to H^4(X; \mathbb{C}^\times)$$

which enters the formula for the partition function in the theory $R_{A', q} \otimes_{\sigma} \tilde{F}$, which is an H/A'-gauge theory
Line defects in the H/A'-gauge theory $R_{A',q} \otimes_\sigma \tilde{F}$

M \quad 4-manifold

$C \subset M$ \quad 1-dimensional submanifold

$[0, 1] \times C$ \quad 2-dimensional submanifold of $[0, 1] \times M$

\[
\sigma = \int_{S^2} \hat{F}
\]

Recall + compare:
Line defects in the H/A'-gauge theory $R_{A',q} \otimes \sigma \tilde{F}$

M 4-manifold

$C \subset M$ 1-dimensional submanifold

$[0, 1] \times C$ 2-dimensional submanifold of $[0, 1] \times M$

Label in $(0, 1) \times C$ is an object in the 2-category $\text{Hom}(1, \sigma(S^2))$, so we compute $\sigma(S^2)$:

$\pi_0(\text{Map}(S^2, B^2A)) = H^2(S^2; A) \cong A$

$\pi_1(\text{Map}(S^2, B^2A)) = H^1(S^2; A) = 0$

$\pi_2(\text{Map}(S^2, B^2A)) = H^0(S^2; A) \cong A$
Line defects in the H/A'-gauge theory $R_{A',q} \otimes \sigma \tilde{F}$

M 4-manifold

$C \subset M$ 1-dimensional submanifold

$[0,1] \times C$ 2-dimensional submanifold of $[0,1] \times M$

Label in $(0,1) \times C$ is an object in the 2-category $\text{Hom}(1, \sigma(S^2))$, so we compute $\sigma(S^2)$:

$$
\begin{align*}
\pi_0(\text{Map}(S^2, B^2A)) &= H^2(S^2; A) \cong A \\
\pi_1(\text{Map}(S^2, B^2A)) &= H^1(S^2; A) = 0 \\
\pi_2(\text{Map}(S^2, B^2A)) &= H^0(S^2; A) \cong A
\end{align*}
$$

2-category of local systems of linear categories over the indicated 2-groupoid, so for $m \in H^2(S^2; A) \cong A$ we have a linear category \mathcal{K}_m equipped with an action of $\pi_2 \cong A$ by automorphisms of the identity functor, hence \mathcal{K}_m decomposes as

$$
\mathcal{K}_m = \bigoplus_e \mathcal{K}_{m,e} \cdot e, \quad e \in H^0(S^2; A)^\vee \cong A^\vee
$$
The line defect $[0, 1) \times C$ in $(\sigma, R_{A', q})$

First, fix a pair $(m_0, e_0) \in A \times A^\vee$ and choose the interior label \mathcal{K} to be the “δ-function” supported at (m_0, e_0):

$$\mathcal{K}_{m,e} = \begin{cases}
\text{Vect}, & (m, e) = (m_0, e_0); \\
0, & (m, e) \neq (m_0, e_0).
\end{cases}$$
The line defect $[0, 1) \times C$ in $(\sigma, R_{A',q})$

First, fix a pair $(m_0, e_0) \in A \times A^{\vee}$ and choose the interior label \mathcal{K} to be the “δ-function” supported at (m_0, e_0):

$$\mathcal{K}_{m,e} = \begin{cases} \text{Vect}, & (m,e) = (m_0, e_0); \\ 0, & (m,e) \neq (m_0, e_0). \end{cases}$$

The quantization of the link D^3 at the $R_{A',q}$ boundary is a 1-category

Claim: This 1-category vanishes unless (m_0, e_0) obeys a selection rule
The line defect \([0, 1) \times C\) in \((\sigma, R_{A',q})\)

First, fix a pair \((m_0, e_0) \in A \times A^\vee\) and choose the interior label \(\mathcal{K}\) to be the “\(\delta\)-function” supported at \((m_0, e_0)\):

\[
\mathcal{K}_{m,e} = \begin{cases}
\text{Vect}, & (m, e) = (m_0, e_0); \\
0, & (m, e) \neq (m_0, e_0).
\end{cases}
\]

The quantization of the link \(D^3\) at the \(R_{A',q}\) boundary is a 1-category

Claim: This 1-category vanishes unless \((m_0, e_0)\) obeys a selection rule

The selection rule is an assertion in the *topological* field theory \((\sigma, R_{A',q})\)
The selection rule

From the quadratic function $q: A' \to \mathbb{C}^\times$ we obtain a bihomomorphism

$$b: A' \times A' \longrightarrow \mathbb{C}^\times$$

which induces a perfect pairing

$$H^2(S^2; A') \times H^0(S^2; A') \longrightarrow \mathbb{C}^\times$$

and so too an isomorphism

$$e': H^2(S^2; A') \longrightarrow H^0(S^2; A')^\vee$$
The selection rule

From the quadratic function $q: A' \to \mathbb{C}^\times$ we obtain a bihomomorphism

$$b: A' \times A' \longrightarrow \mathbb{C}^\times$$

which induces a perfect pairing

$$H^2(S^2; A') \times H^0(S^2; A') \longrightarrow \mathbb{C}^\times$$

and so too an isomorphism

$$e': H^2(S^2; A') \longrightarrow H^0(S^2; A')^\vee$$

Selection rule:

$$\begin{align*}
m &\in A' \\
e|_{A'} &= e'(m)^{-1}
\end{align*}$$
Sketch proof of the selection rule

Compute the homotopy limit of the diagram:

\[(\text{Map}(S^2, B^2A'), \tau^2(\mu_q)) \rightarrow \text{Map}(S^2, B^2A) \rightarrow \text{Map}(D^3 \setminus B^3, B^2A) \rightarrow (B^2A, e)\]

\[m \in A'\]
\[e|_{A'} = e'(m)^{-1}\]