A time-reversal anomaly, bordism, and index theory

Dan Freed

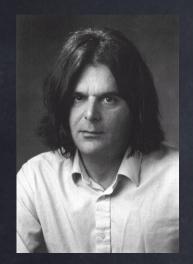
University of Texas at Austin

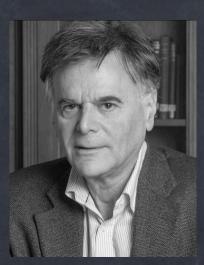
September 29, 2022

Joint work with Mike Hopkins arXiv:1908.09916

The ideas in this talk touch on many periods of Graeme's mathematics:

Topological K-Theory ---> Geometric Quantum Theory





Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_C$ of M-theory is trivializable

M-theory is a form of string theory; we treat it in a quantum field theoretic context

Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_C$ of M-theory is trivializable

M-theory is a form of string theory; we treat it in a quantum field theoretic context. The main work goes into the proof of the following bordism computation

Theorem B: The following six \mathfrak{m}_c -manifolds generate the group $\pi_{12}M\mathfrak{m}_c\otimes\mathbb{Z}_2$:

$$(W_0', \tilde{c}_0'), \quad (W_0'', 0), \quad (W_1, \lambda)$$
$$(K \times \mathbb{HP}^2, \lambda), \quad (\mathbb{RP}^4, \tilde{c}_{\mathbb{DP}^4}') \times B, \quad (\mathbb{RP}^4 \# \mathbb{RP}^4, 0) \times B$$

Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_C$ of M-theory is trivializable

M-theory is a form of string theory; we treat it in a quantum field theoretic context.

The main work goes into the proof of the following bordism computation

Theorem B: The following six \mathfrak{m}_c -manifolds generate the group $\pi_{12}M\mathfrak{m}_c\otimes\mathbb{Z}_2$:

$$(W_0', \tilde{c}_0'), \quad (W_0'', 0), \quad (W_1, \lambda)$$
$$(K \times \mathbb{HP}^2, \lambda), \quad (\mathbb{RP}^4, \tilde{c}_{\mathbb{RP}^4}') \times B, \quad (\mathbb{RP}^4 \# \mathbb{RP}^4, 0) \times B$$

I will explain how to pass from Theorem A to Theorem B and a bit more...

Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_C$ of M-theory is trivializable

M-theory is a form of <u>string theory</u>; we treat it in a quantum field theoretic context

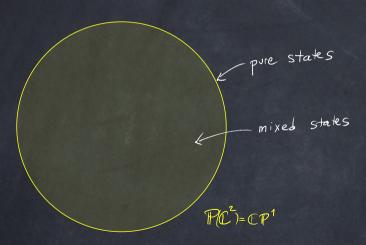
The main work goes into the proof of the following bordism computation

Theorem B: The following six \mathfrak{m}_c -manifolds generate the group $\pi_{12}M\mathfrak{m}_c\otimes\mathbb{Z}_2$:

$$\begin{split} (W_0',\tilde{c}_0'),\quad (W_0'',0),\quad (W_1,\lambda)\\ (K\times\mathbb{HP}^2,\lambda),\quad (\mathbb{RP}^4,\tilde{c}_{\mathbb{RP}^4}')\times B,\quad (\mathbb{RP}^4\#\mathbb{RP}^4,0)\times B \end{split}$$

I will explain how to pass from Theorem A to Theorem B and a bit more...

Space of (pure) states of a quantum system: the projectivization $\mathbb{P}\mathcal{H}$ of a Hilbert space



Space of (pure) states of a quantum system: the projectivization $\mathbb{P}\mathcal{H}$ of a Hilbert space

It is equipped with a symmetric function which encodes transition probabilities:

$$p: \mathbb{PH} \times \mathbb{PH} \longrightarrow [0,1]$$
 $L_1, L_2 \in \mathbb{PH}$
$$L_1, L_2 \longmapsto |\langle \psi_1, \psi_2 \rangle|^2 \qquad \psi_i \in L_i \quad \text{unit vector}$$

Space of (pure) states of a quantum system: the projectivization $\mathbb{P}\mathcal{H}$ of a Hilbert space

It is equipped with a symmetric function which encodes transition probabilities:

$$p: \mathbb{PH} \times \mathbb{PH} \longrightarrow [0,1]$$
 $L_1, L_2 \in \mathbb{PH}$
$$L_1, L_2 \longmapsto |\langle \psi_1, \psi_2 \rangle|^2 \qquad \psi_i \in L_i \quad \text{unit vector}$$

 $d: \mathbb{PH} \times \mathbb{PH} \to \mathbb{R}^{\geqslant 0}$ distance function associated to the Fubini-Study metric

$$\cos(d) = 2p - 1$$

Space of (pure) states of a quantum system: the projectivization $\mathbb{P}\mathcal{H}$ of a Hilbert space

It is equipped with a symmetric function which encodes transition probabilities:

$$p: \mathbb{PH} \times \mathbb{PH} \longrightarrow [0,1]$$
 $L_1, L_2 \in \mathbb{PH}$
$$L_1, L_2 \longmapsto |\langle \psi_1, \psi_2 \rangle|^2 \qquad \psi_i \in L_i \quad \text{unit vector}$$

 $d: \mathbb{PH} \times \mathbb{PH} \to \mathbb{R}^{\geqslant 0}$ distance function associated to the Fubini-Study metric

$$\cos(d) = 2p - 1$$

So quantum geometry (\mathbb{PH}, p) is Fubini-Study geometry (\mathbb{PH}, d) of projective space

A complex projective representation of a group G gives rise to a central extension

$$1 \longrightarrow \mathbb{C}^{\times} \longrightarrow \widetilde{G} \longrightarrow G \longrightarrow 1$$

and a \overline{linear} representation of \widetilde{G}

A complex projective representation of a group G gives rise to a central extension

$$1 \longrightarrow \mathbb{C}^{\times} \longrightarrow \widetilde{G} \longrightarrow G \longrightarrow 1$$

and a linear representation of \widetilde{G}

The "projectivity" of the representation is the isomorphism class of the central extension in

$$H^2(G;\mathbb{C}^\times)$$

It is the *obstruction* to splitting the central extension

A complex projective representation of a group G gives rise to a central extension

$$1 \longrightarrow \mathbb{C}^{\times} \longrightarrow \widetilde{G} \longrightarrow G \longrightarrow 1$$

and a linear representation of \widetilde{G}

The "projectivity" of the representation is the isomorphism class of the central extension in

$$H^2(G; \mathbb{C}^{\times})$$

It is the *obstruction* to splitting the central extension

Splittings, if they exist, form a torsor over

$$H^1(G;\mathbb{C}^\times)$$

These are invertible complex linear representations of G

A complex *projective* representation of a group G gives rise to a central extension

$$1 \longrightarrow \mathbb{C}^{\times} \longrightarrow \widetilde{G} \longrightarrow G \longrightarrow 1$$

and a linear representation of \widetilde{G}

The "projectivity" of the representation is the isomorphism class of the central extension in

$$H^2(G; \mathbb{C}^{\times})$$

It is the *obstruction* to splitting the central extension

Splittings, if they exist, form a torsor over

$$H^1(G;\mathbb{C}^\times)$$

These are invertible complex linear representations of G

A beautiful paper of Graeme tells what cohomology is appropriate for Lie groups G

Graeme (mid 1980's): Wick-rotated QFT is a representation of a bordism category

Graeme (mid 1980's): Wick-rotated QFT is a representation of a bordism category

There are two "discrete parameters" that specify the species of bordism category: n, \mathcal{F}

Graeme (mid 1980's): Wick-rotated QFT is a representation of a bordism category

There are two "discrete parameters" that specify the species of bordism category: n, \mathcal{F}

 ${\color{red}n}$ is the dimension of "spacetime"

Graeme (mid 1980's): Wick-rotated QFT is a representation of a bordism category

There are two "discrete parameters" that specify the species of bordism category: n, \mathcal{F}

 ${\color{red}n}$ is the dimension of "spacetime"

 Man_n category of smooth n-manifolds and local diffeomorphisms

sSet category of simplicial sets

Definition: A Wick-rotated field is a sheaf

 $\mathcal{F} \colon \operatorname{Man}_n^{\operatorname{op}} \longrightarrow \operatorname{sSet}$

Graeme (mid 1980's): Wick-rotated QFT is a representation of a bordism category

There are two "discrete parameters" that specify the species of bordism category: n, \mathcal{F}

n is the dimension of "spacetime"

 Man_n category of smooth n-manifolds and local diffeomorphisms

sSet category of simplicial sets

Definition: A Wick-rotated field is a sheaf

 $\mathcal{F} \colon \operatorname{Man}_n^{\operatorname{op}} \longrightarrow \operatorname{sSet}$

Examples: Riemannian metrics, G-connections, \mathbb{R} -valued functions, orientations, spin structures, gerbes, ...

Graeme (mid 1980's): Wick-rotated QFT is a representation of a bordism category

There are two "discrete parameters" that specify the species of bordism category: n, \mathcal{F}

 ${\color{red}n}$ is the dimension of "spacetime"

 Man_n category of smooth n-manifolds and local diffeomorphisms

sSet category of simplicial sets

Definition: A Wick-rotated field is a sheaf

 $\mathcal{F} \colon \operatorname{Man}_n^{\operatorname{op}} \longrightarrow \operatorname{sSet}$

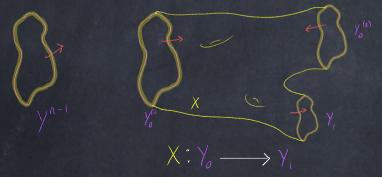
Examples: Riemannian metrics, G-connections, \mathbb{R} -valued functions, orientations, spin structures, gerbes, ...

 \mathcal{F} can be a *collection* of fields; $\mathcal{F}(M)$ is the simplicial set of fields on an *n*-manifold M

 $F \colon \operatorname{Bord}_{\langle n-1,n\rangle}(\mathfrak{F}) \longrightarrow t\operatorname{Vect}$

$$F \colon \operatorname{Bord}_{(n-1,n)}(\mathfrak{F}) \longrightarrow t\operatorname{Vect}$$

• Bord $\langle n-1,n\rangle$ (\mathcal{F}) has objects closed (n-1)-manifolds embedded in a germ of an n-manifold, morphisms are n-dimensional bordisms, all n-manifolds M equipped with objects in $\mathcal{F}(M)$



$$F \colon \operatorname{Bord}_{\langle n-1,n\rangle}(\mathcal{F}) \longrightarrow t\operatorname{Vect}$$

- Bord $\langle n-1,n\rangle$ ($\mathfrak F$) has objects closed (n-1)-manifolds embedded in a germ of an n-manifold, morphisms are n-dimensional bordisms, all n-manifolds M equipped with objects in $\mathfrak F(M)$
- \bullet tVect is an appropriate category of topological vector spaces

$$F \colon \operatorname{Bord}_{\langle n-1,n\rangle}(\mathfrak{F}) \longrightarrow t\operatorname{Vect}$$

- Bord $\langle n-1,n\rangle$ ($\mathfrak F$) has objects closed (n-1)-manifolds embedded in a germ of an n-manifold, morphisms are n-dimensional bordisms, all n-manifolds M equipped with objects in $\mathfrak F(M)$
- \bullet tVect is an appropriate category of topological vector spaces
- These ideas are developed in a fairly recent paper of Kontsevich-Segal

$$F \colon \operatorname{Bord}_{\langle n-1,n\rangle}(\mathfrak{F}) \longrightarrow t\operatorname{Vect}$$

- Bord $\langle n-1,n\rangle$ ($\mathfrak F$) has objects closed (n-1)-manifolds embedded in a germ of an n-manifold, morphisms are n-dimensional bordisms, all n-manifolds M equipped with objects in $\mathfrak F(M)$
- \bullet tVect is an appropriate category of topological vector spaces
- These ideas are developed in a fairly recent paper of Kontsevich-Segal
- Strong *locality* is captured by a *fully local* field theory

$$F \colon \operatorname{Bord}_n(\mathcal{F}) \longrightarrow \mathcal{C},$$

a notion most developed for topological field theories

$$F \colon \operatorname{Bord}_{\langle n-1,n\rangle}(\mathcal{F}) \longrightarrow t\operatorname{Vect}$$

- Bord $\langle n-1,n\rangle$ ($\mathfrak F$) has objects closed (n-1)-manifolds embedded in a germ of an n-manifold, morphisms are n-dimensional bordisms, all n-manifolds M equipped with objects in $\mathfrak F(M)$
- \bullet tVect is an appropriate category of topological vector spaces
- These ideas are developed in a fairly recent paper of Kontsevich-Segal
- Strong *locality* is captured by a *fully local* field theory

$$F \colon \operatorname{Bord}_n(\mathcal{F}) \longrightarrow \mathcal{C},$$

a notion most developed for topological field theories

• Unitarity is an additional structure not included in the Axiom System

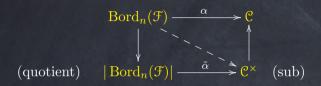
$$F \colon \operatorname{Bord}_{\langle n-1,n\rangle}(\mathcal{F}) \longrightarrow t\operatorname{Vect}$$

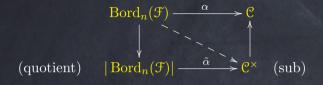
- Bord $\langle n-1,n\rangle$ ($\mathfrak F$) has objects closed (n-1)-manifolds embedded in a germ of an n-manifold, morphisms are n-dimensional bordisms, all n-manifolds M equipped with objects in $\mathfrak F(M)$
- \bullet tVect is an appropriate category of topological vector spaces
- These ideas are developed in a fairly recent paper of Kontsevich-Segal
- Strong *locality* is captured by a *fully local* field theory

$$F \colon \operatorname{Bord}_n(\mathcal{F}) \longrightarrow \mathcal{C},$$

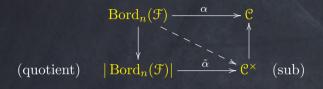
a notion most developed for topological field theories

- Unitarity is an additional structure not included in the Axiom System
- Field theories have a composition law (tensoring, stacking) with unit \implies invertibility





 $|\operatorname{Bord}_n(\mathfrak{F})|$ is (\approx) a bordism $\operatorname{spectrum}$, derived from the bordism $\operatorname{category} \operatorname{Bord}_n(\mathfrak{F})$ as determined by theorems of Galatius-Madsen-Tillmann-Weiss, Bökstedt-Madsen, Ayala-Francis, and Schommer-Pries



 $|\operatorname{Bord}_n(\mathfrak{F})|$ is (\approx) a bordism $\operatorname{spectrum}$, derived from the bordism $\operatorname{category} \operatorname{Bord}_n(\mathfrak{F})$ as determined by theorems of Galatius-Madsen-Tillmann-Weiss, Bökstedt-Madsen, Ayala-Francis, and Schommer-Pries

Universal choice for the spectrum \mathfrak{C}^{\times} : the character dual $\Sigma^{n}I\mathfrak{C}^{\times}$ to the sphere spectrum

 $|\operatorname{Bord}_n(\mathfrak{F})|$ is (\approx) a bordism $\operatorname{spectrum}$, derived from the bordism $\operatorname{category} \operatorname{Bord}_n(\mathfrak{F})$ as determined by theorems of Galatius-Madsen-Tillmann-Weiss, Bökstedt-Madsen, Ayala-Francis, and Schommer-Pries

Universal choice for the spectrum \mathcal{C}^{\times} : the character dual $\Sigma^{n}I\mathbb{C}^{\times}$ to the sphere spectrum

Takeaways: An invertible field theory is modeled as a spectrum map with domain a bordism spectrum (introduced by F-Hopkins-Teleman in arXiv:0711.1909)

An invertible field theory is a generalized "cocycle" on a bordism spectrum

The Axiom System captures a linear representation, but quantum theory is projective

The Axiom System captures a linear representation, but quantum theory is projective

Recall for a projective representation of a group G we measure:

```
H^2(G; \mathbb{C}^{\times}) abelian group of "projectivities" (obstruction to existence of splitting)
H^1(G; \mathbb{C}^{\times}) abelian group of invertible representations (uniqueness of splitting)
```

The Axiom System captures a linear representation, but quantum theory is projective

Recall for a projective representation of a group G we measure:

$$H^2(G; \mathbb{C}^{\times})$$
 abelian group of "projectivities" (obstruction to existence of splitting)
 $H^1(G; \mathbb{C}^{\times})$ abelian group of invertible representations (uniqueness of splitting)

The analogs for a representation of $\operatorname{Bord}_n(\mathcal{F})$ (a field theory) are:

$$\mathcal{I}^{n+1}\big(\mathrm{Bord}_n(\mathfrak{F})\big) = \big[|\operatorname{Bord}_n(\mathfrak{F})|, \Sigma^{n+1} I \mathbb{C}^{\times} \big] \qquad \text{abelian group of "anomalies"}$$
$$\mathcal{I}^n\big(\mathrm{Bord}_n(\mathfrak{F})\big) = \big[|\operatorname{Bord}_n(\mathfrak{F})|, \quad \Sigma^n I \mathbb{C}^{\times} \big] \qquad \text{abelian group of invertible theories (up to \cong)}$$

The Axiom System captures a linear representation, but quantum theory is projective

Recall for a projective representation of a group G we measure:

$$H^2(G; \mathbb{C}^{\times})$$
 abelian group of "projectivities" (obstruction to existence of splitting)
 $H^1(G; \mathbb{C}^{\times})$ abelian group of invertible representations (uniqueness of splitting)

The analogs for a representation of $\operatorname{Bord}_n(\mathfrak{F})$ (a field theory) are:

$$\mathcal{I}^{n+1}\big(\mathrm{Bord}_n(\mathcal{F})\big) = \big[\, |\operatorname{Bord}_n(\mathcal{F})| \,, \, \Sigma^{n+1} I \mathbb{C}^{\times} \big] \qquad \text{abelian group of "anomalies"}$$

$$\mathcal{I}^n\big(\mathrm{Bord}_n(\mathcal{F})\big) = \big[\, |\operatorname{Bord}_n(\mathcal{F})| \,, \quad \Sigma^n I \mathbb{C}^{\times} \big] \qquad \text{abelian group of invertible theories (up to \cong)}$$

Note that $\mathcal{I}^{n+1}(\operatorname{Bord}_n(\mathfrak{F}))$ consists of *n*-dimensional *once-categorifield theories*: a closed *n*-manifold maps to a complex line, the "categorification" of an invertible complex number

$$\mathcal{I}^{n+1}\big(\mathrm{Bord}_n(\mathcal{F})\big) = \left[\,|\,\mathrm{Bord}_n(\mathcal{F})|\,,\Sigma^{n+1}I\mathbb{C}^\times\right] \qquad \text{abelian group of anomalies}$$

Typically an n-dimensional "once-categorifield" (anomaly) theory extends to a full (n+1)-dimensional invertible theory:

$$\mathcal{I}^{n+1}\big(\mathrm{Bord}_n(\mathcal{F})\big) = \left[\,|\, \mathrm{Bord}_n(\mathcal{F})|\,, \Sigma^{n+1} I\mathbb{C}^\times\right] \qquad \text{abelian group of anomalies}$$

Typically an n-dimensional "once-categorifield" (anomaly) theory extends to a full (n+1)-dimensional invertible theory:

By a result of Freed-Hopkins, unitary theories map out of Thom bordism spectra

$$\mathcal{I}^{n+1} ig(\operatorname{Bord}_n(\mathfrak{F}) ig) = ig[\left| \operatorname{Bord}_n(\mathfrak{F}) \right|, \Sigma^{n+1} I \mathbb{C}^{\times} ig]$$
 abelian group of anomalies

Typically an n-dimensional "once-categorifield" (anomaly) theory extends to a full (n+1)-dimensional invertible theory:

By a result of Freed-Hopkins, unitary theories map out of Thom bordism spectra

Universal property of $I\mathbb{C}^{\times}$: a full (n+1)-d topological invertible theory is determined up to iso by its values on closed (n+1)-manifolds: a bordism invariant $\hat{\alpha} : \pi_{n+1} M \tilde{\mathfrak{F}} \to \mathbb{C}^{\times}$

$$\mathcal{I}^{n+1}\big(\mathrm{Bord}_n(\mathcal{F})\big) = \left[\, |\operatorname{Bord}_n(\mathcal{F})| \, , \Sigma^{n+1} I\mathbb{C}^\times \right] \qquad \text{abelian group of anomalies}$$

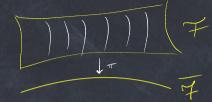
Typically an n-dimensional "once-categorifield" (anomaly) theory extends to a full (n+1)-dimensional invertible theory:

By a result of Freed-Hopkins, unitary theories map out of Thom bordism spectra

Universal property of $I\mathbb{C}^{\times}$: a full (n+1)-d topological invertible theory is determined up to iso by its values on closed (n+1)-manifolds: a bordism invariant $\hat{\alpha} \colon \pi_{n+1} M \widetilde{\mathcal{F}} \to \mathbb{C}^{\times}$

These are called 't Hooft anomalies; their deformation classes contain powerful information

 $\pi \colon \mathcal{F} \longrightarrow \overline{\mathcal{F}}$ fiber bundle of collection of fields fibers of π fluctuating fields background fields



 $\pi \colon \mathcal{F} \longrightarrow \overline{\mathcal{F}}$ fiber bundle of collection of fields

fibers of π fluctuating fields

 $\overline{\mathcal{F}}$ background fields

Quantization: passage from a theory \overline{F} on \overline{F} to a theory \overline{F} on \overline{F} via integration over π

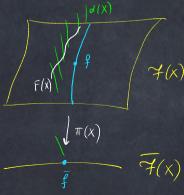
 $\pi \colon \mathcal{F} \longrightarrow \overline{\mathcal{F}}$ fiber bundle of collection of fields

fibers of π fluctuating fields

 $\overline{\mathfrak{F}}$ background fields

Quantization: passage from a theory F on F to a theory \overline{F} on \overline{F} via integration over π

Closed n-manifold X: Feynman path integral



 $\pi \colon \mathcal{F} \longrightarrow \overline{\mathcal{F}}$ fiber bundle of collection of fields

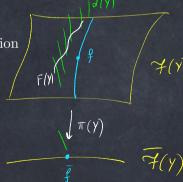
fibers of π fluctuating fields

 $\overline{\mathcal{F}}$ background fields

Quantization: passage from a theory \overline{F} on \overline{F} to a theory \overline{F} on $\overline{\overline{F}}$ via integration over π

Closed n-manifold X: Feynman path integral

Closed (n-1)-manifold Y: canonical quantization



 $\pi \colon \mathcal{F} \longrightarrow \overline{\mathcal{F}}$ fiber bundle of collection of fields

fibers of π fluctuating fields

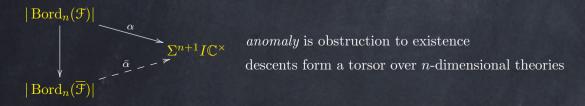
5 background fields

Quantization: passage from a theory \overline{F} on \overline{F} to a theory \overline{F} on $\overline{\overline{F}}$ via integration over π

Closed n-manifold X: Feynman path integral

Closed (n-1)-manifold Y: canonical quantization

To carry out quantization we must descend the projectivity/anomaly α :



• Quantum theory is projective—the 't Hooft anomaly expresses the projectivity

- Quantum theory is projective—the 't Hooft anomaly expresses the projectivity
- Quantization is linear—the anomaly obstructs quantization

- Quantum theory is projective—the 't Hooft anomaly expresses the projectivity
- Quantization is linear—the anomaly obstructs quantization
- If the obstruction vanishes, one must specify descent data, which is a torsor over the abelian group of invertible field theories

- Quantum theory is projective—the 't Hooft anomaly expresses the projectivity
- Quantization is linear—the anomaly obstructs quantization
- If the obstruction vanishes, one must specify descent data, which is a torsor over the abelian group of invertible field theories
- There is a well-developed theory of invertible field theories, so this part of quantum field theory is accessible using geometric and topological tools

Theorems (joint with Hopkins)

Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_C$ of M-theory is trivializable

M-theory is a form of <u>string theory</u>; we treat it in a quantum field theoretic context

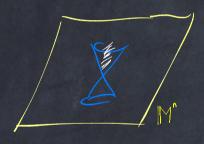
The main work goes into the proof of the following bordism computation

Theorem B: The following six \mathfrak{m}_c -manifolds generate the group $\pi_{12}M\mathfrak{m}_c\otimes\mathbb{Z}_2$:

$$(W_0', \tilde{c}_0'), \quad (W_0'', 0), \quad (W_1, \lambda)$$
$$(K \times \mathbb{HP}^2, \lambda), \quad (\mathbb{RP}^4, \tilde{c}_{\mathbb{RP}^4}') \times B, \quad (\mathbb{RP}^4 \# \mathbb{RP}^4, 0) \times B$$

I will explain how to pass from Theorem A to Theorem B and a bit more...

The arena for relativistic quantum field theory is Minkowski spacetime \mathbb{M}^n : affine space with a Lorentz metric and time orientation



The arena for relativistic quantum field theory is Minkowski spacetime \mathbb{M}^n : affine space with a Lorentz metric and time orientation

The time-orientation-preserving isometry group $\mathcal{I}_{1,n-1}^{\uparrow}$ has two components distinguished by the action on the orientations of \mathbb{M}^n

The arena for relativistic quantum field theory is Minkowski spacetime \mathbb{M}^n : affine space with a Lorentz metric and time orientation

The time-orientation-preserving isometry group $\mathcal{I}_{1,n-1}^{\uparrow}$ has two components distinguished by the action on the orientations of \mathbb{M}^n

The symmetry group of a theory has a homomorphism onto either (1) the identity component of $\mathcal{I}_{1,n-1}^{\uparrow}$ (no time-reversal), or (2) onto all of $\mathcal{I}_{1,n-1}^{\uparrow}$ (time-reversal)

The arena for relativistic quantum field theory is Minkowski spacetime \mathbb{M}^n : affine space with a Lorentz metric and time orientation

The time-orientation-preserving isometry group $\mathcal{I}_{1,n-1}^{\uparrow}$ has two components distinguished by the action on the orientations of \mathbb{M}^n

The symmetry group of a theory has a homomorphism onto either (1) the identity component of $\mathcal{I}_{1,n-1}^{\uparrow}$ (no time-reversal), or (2) onto all of $\mathcal{I}_{1,n-1}^{\uparrow}$ (time-reversal)

The CPT theorem tells that time-orientation-reversing symmetries act (antilinearly)

The arena for relativistic quantum field theory is Minkowski spacetime \mathbb{M}^n : affine space with a Lorentz metric and time orientation

The time-orientation-preserving isometry group $\mathcal{I}_{1,n-1}^{\uparrow}$ has two components distinguished by the action on the orientations of \mathbb{M}^n

The symmetry group of a theory has a homomorphism onto either (1) the identity component of $\mathcal{I}_{1,n-1}^{\uparrow}$ (no time-reversal), or (2) onto all of $\mathcal{I}_{1,n-1}^{\uparrow}$ (time-reversal)

The CPT theorem tells that time-orientation-reversing symmetries act (antilinearly)

Wick rotation: the theory is defined on (1) oriented manifolds, or (2) unoriented manifolds

M-Theory from 11d supergravity

Fields in M-theory (\mathfrak{F}) :

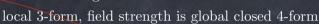
 ρ pin

pin⁺ structure

g

Riemannian metric

Rarita-Schwinger field



SUPERGRAVITY THEORY IN 11 DIMENSIONS

E. CREMMER, B. JULIA and J. SCHERK

Jaboratoire de Physique Théorique de l'Ecole Normale Supérieure[†] Paris, France

Abstract: We present the action and transformation laws of supergravity in 11 dimensions which is expected to be closely related to the O(8) theory in 4 dimensions after dimensional reduction.

> LPTENS 78/10 March 1978

 $J = -\frac{V}{4\kappa^2}R\omega - \frac{i}{2}\sqrt{\psi}\int_{\Gamma^{MV}}^{\Gamma^{MV}}D_V(\omega+\omega)\Psi_{\rho} - \frac{V}{48}E_{Ver}F^{MV}$ $+\frac{KV}{192}(\overline{\Psi}_{M}\Gamma^{MV})^{AB} + \frac{i}{2}\nabla^{A}\Gamma^{VS}\Psi^{A}(F_{AB})^{AB} + \frac{i}{2}\nabla^{A}\Gamma^{VS}\Psi^{A}(F_{AB})^{AB}$ $+\frac{i}{2}\nabla^{A}\sigma_{\sigma}^{A} + \frac{i}{2}\nabla^{A}\sigma_{\sigma}^{A} + \frac{i}{2}\nabla^{A}\sigma_{\sigma$

The Lagrangian we find is the following :

F=JA

• Wick rotation: $time-reversal\ symmetry$ if the theory is defined on unoriented manifolds. The Rarita-Schwinger field ψ is a form of spinor field; in this case we need a pin⁺ structure

- Wick rotation: time-reversal symmetry if the theory is defined on unoriented manifolds. The Rarita-Schwinger field ψ is a form of spinor field; in this case we need a pin⁺ structure
- There is an additional term from string theory: in total an inhomogeneous cubic form

$$\kappa(c) = \underbrace{c^3 - p \cdot c}_{48}$$

which is skew-symmetric: $\kappa(-c) = -\kappa(c)$

The Lagrangian we find is the following:
$$\vec{A} = -\frac{V}{4\kappa^2}R(\omega) - \frac{iV}{2}\overline{V}_{\mu}\Gamma^{\mu\nu\rho}D_{\nu}(\underline{\omega+\dot{\omega}})\Psi_{\rho} - \frac{V}{48}\overline{F}_{\mu\nu\rho\sigma}F^{\mu\nu\rho\sigma} \\
+ \frac{KV}{\sqrt{92}}(\overline{V}_{\mu}\Gamma^{\mu\nu}\alpha_{\beta}^{\alpha}x^{5}\Psi_{\nu} + 12\overline{\Psi}^{\alpha}\Gamma^{\alpha}\delta\Psi^{\alpha})(F_{\alpha\beta}^{\alpha}x^{5} + \widehat{F}_{\alpha\beta}^{\alpha}x^{5}) \\
+ \frac{2K}{(144)^2}\xi^{\alpha}(\overline{V}_{\mu}\Gamma^{\mu\nu}\alpha_{\beta}^{\alpha}x^{3}\Psi_{\mu}^{\alpha}\beta_{\alpha}\beta_{\beta}\beta_{\alpha}\mu\nu\rho}F_{\alpha}^{\alpha}\alpha_{\alpha}^{\alpha}\alpha_{\beta}^{\alpha}\Psi_{\mu}^{\alpha}F_{\alpha}\beta_{\alpha}\beta_{\alpha}\Psi_{\alpha}^{\alpha}}+ A_{\mu\nu\rho}$$

- Wick rotation: time-reversal symmetry if the theory is defined on unoriented manifolds. The Rarita-Schwinger field ψ is a form of spinor field; in this case we need a pin⁺ structure
- There is an additional term from string theory: in total an inhomogeneous cubic form

$$\kappa(c) = \frac{c^3 - p \cdot c}{48}$$

which is skew-symmetric: $\kappa(-c) = -\kappa(c)$

• Dirac quantization (Witten): C-field gives a w_1 -twisted integral lift of w_4

- Wick rotation: time-reversal symmetry if the theory is defined on unoriented manifolds. The Rarita-Schwinger field ψ is a form of spinor field; in this case we need a pin⁺ structure
- There is an additional term from string theory: in total an inhomogeneous cubic form

$$\kappa(c) = \frac{c^3 - p \cdot c}{48}$$

which is skew-symmetric: $\kappa(-c) = -\kappa(c)$

• Dirac quantization (Witten): C-field gives a w_1 -twisted integral lift of w_4

Definition: Let M be a pin⁺ manifold. An \mathfrak{m}_c structure on M is a w_1 -twisted integer lift of $w_4(M)$. Compare: spin^c structure = integer lift of $w_2(M)$

- n = 11, \mathcal{F} consists of: ρ pin⁺ structure
 - g Riemannian metric
 - ψ Rarita-Schwinger field
 - ${\it C}$ local 3-form, field strength is global closed 4-form

• n = 11, \mathcal{F} consists of: ρ pin⁺ structure

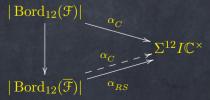
g Riemannian metric

 ψ Rarita-Schwinger field

C local 3-form, field strength is global closed 4-form

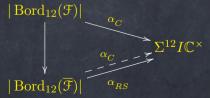
• The cubic form κ on C has an anomaly $\alpha_C \colon |\operatorname{Bord}_{12}(\mathfrak{F})| \to \Sigma^{12} I\mathbb{C}^{\times}$ of order 2

- n = 11, \mathcal{F} consists of: ρ pin⁺ structure
 - g Riemannian metric
 - ψ Rarita-Schwinger field
 - C local 3-form, field strength is global closed 4-form
- The cubic form κ on C has an anomaly $\alpha_C \colon |\operatorname{Bord}_{12}(\mathfrak{F})| \to \Sigma^{12} I\mathbb{C}^{\times}$ of order 2
- Integrate out ψ : π : $\mathfrak{F} \longrightarrow \overline{\mathfrak{T}} = \{\rho, g, C\}$



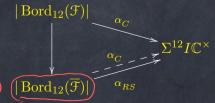
- n = 11, \mathcal{F} consists of: ρ pin⁺ structure
 - g Riemannian metric
 - ψ Rarita-Schwinger field
 - C local 3-form, field strength is global closed 4-form
- The cubic form κ on C has an anomaly $\alpha_C \colon |\operatorname{Bord}_{12}(\mathfrak{F})| \to \Sigma^{12} I\mathbb{C}^{\times}$ of order 2
- Integrate out $\psi \colon \pi \colon \mathfrak{F} \longrightarrow \overline{\mathfrak{F}} = \{\rho, g, C\}$

Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_C$ of M-theory is trivializable



- n = 11, \mathcal{F} consists of: ρ pin⁺ structure
 - g Riemannian metric
 - ψ Rarita-Schwinger field
 - C local 3-form, field strength is global closed 4-form
- The cubic form κ on C has an anomaly $\alpha_C \colon |\operatorname{Bord}_{12}(\mathfrak{F})| \to \Sigma^{12} I\mathbb{C}^{\times}$ of order 2
- Integrate out ψ : $\pi : \mathcal{F} \longrightarrow \overline{\mathcal{F}} = \{\rho, g, C\}$

Fact: Anomaly theories α_{RS} , α_{C} are topological and unitary, so factor through $\mathcal{F}_{top} = \{pin^{+}, \mathfrak{m}_{c}\}$ and hence through the Thom spectrum $M\mathfrak{m}_{c}$



Theorems (joint with Hopkins)

Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_{C}$ of M-theory is trivializable

M-theory is a form of string theory; we treat it in a quantum field theoretic context

The main work goes into the proof of the following bordism computation

Theorem B: The following six \mathfrak{m}_c -manifolds generate the group $\pi_{12}M\mathfrak{m}_c\otimes\mathbb{Z}_2$:

$$(W_0', \tilde{c}_0'), \quad (W_0'', 0), \quad (W_1, \lambda)$$
$$(K \times \mathbb{HP}^2, \lambda), \quad (\mathbb{RP}^4, \tilde{c}_{\mathbb{RP}^4}') \times B, \quad (\mathbb{RP}^4 \# \mathbb{RP}^4, 0) \times B$$

I will explain how to pass from Theorem A to Theorem B and a bit more...

Atiyah-Singer pioneered the relationship to index theory of Dirac operators (1984)

Atiyah-Singer pioneered the relationship to index theory of Dirac operators (1984)

A fermionic field in n-dimensions is defined by algebraic data in Lorentz signature; the associated (n + 1)-dimensional anomaly theory is on Riemannian (s)pin manifolds

Atiyah-Singer pioneered the relationship to index theory of Dirac operators (1984)

A fermionic field in n-dimensions is defined by algebraic data in Lorentz signature; the associated (n+1)-dimensional anomaly theory is on Riemannian (s)pin manifolds

General formula for the anomaly theory:

$$\alpha_{\mathbb{S}} \colon MT\mathrm{Spin} \xrightarrow{\phi_{\mathrm{ABS}} \wedge [\mathbb{S}]} KO \wedge \Sigma^{n-2}KO \xrightarrow{\mu} \Sigma^{n-2}KO \xrightarrow{\mathrm{Pfaff}} \Sigma^{n+2}I\mathbb{Z}$$

Atiyah-Singer pioneered the relationship to index theory of Dirac operators (1984)

A fermionic field in n-dimensions is defined by algebraic data in Lorentz signature; the associated (n+1)-dimensional anomaly theory is on Riemannian (s)pin manifolds

General formula for the anomaly theory:

$$\alpha_{\mathbb{S}} \colon MT\mathrm{Spin} \xrightarrow{\phi_{\mathrm{ABS}} \wedge [\mathbb{S}]} KO \wedge \Sigma^{n-2}KO \xrightarrow{\mu} \Sigma^{n-2}KO \xrightarrow{\mathrm{Pfaff}} \Sigma^{n+2}I\mathbb{Z}$$

The partition function is an exponentiated Atiyah-Patodi-Singer η -invariant

Atiyah-Singer pioneered the relationship to index theory of Dirac operators (1984)

A fermionic field in n-dimensions is defined by algebraic data in Lorentz signature; the associated (n+1)-dimensional anomaly theory is on Riemannian (s)pin manifolds

General formula for the anomaly theory:

$$\alpha_{\mathbb{S}} \colon MT\mathrm{Spin} \xrightarrow{\phi_{\mathrm{ABS}} \wedge [\mathbb{S}]} KO \wedge \Sigma^{n-2}KO \xrightarrow{\mu} \Sigma^{n-2}KO \xrightarrow{\mathrm{Pfaff}} \Sigma^{n+2}I\mathbb{Z}$$

The partition function is an exponentiated Atiyah-Patodi-Singer η -invariant

The isomorphism class is a differential refinement; the formula is for the deformation class

Index theory on pin manifolds

Use the embeddings

$$\operatorname{Pin}_n^+ \longleftrightarrow \operatorname{Spin}_{n,1}$$

 $\operatorname{Pin}_n^- \longleftrightarrow \operatorname{Spin}_{n+1}$

and the Clifford linear Dirac operator to see shift by one in index invariants

Index theory on pin manifolds

Use the embeddings

$$\operatorname{Pin}_n^+ \longleftrightarrow \operatorname{Spin}_{n,1}$$

 $\operatorname{Pin}_n^- \longleftrightarrow \operatorname{Spin}_{n+1}$

and the Clifford linear Dirac operator to see shift by one in index invariants

Thus index invariants on a pin^+ 12-mfld behave like index invariants on a pin^+ 12-mfld

Index theory on pin manifolds

Use the embeddings

$$\operatorname{Pin}_n^+ \longleftrightarrow \operatorname{Spin}_{n,1}$$

 $\operatorname{Pin}_n^- \longleftrightarrow \operatorname{Spin}_{n+1}$

and the Clifford linear Dirac operator to see shift by one in index invariants

Thus index invariants on a pin^+ 12-mfld behave like index invariants on a pin^+ 12-mfld

Proposition: $\tau_W := \exp(2\pi i \eta(W)/4)$ on a closed pin⁺ 12-manifold W is (i) independent of the metric on W, (ii) a pin⁺ bordism invariant, and (iii) a root of unity

Index theory on pin manifolds

Use the embeddings

$$\operatorname{Pin}_n^+ \longleftrightarrow \operatorname{Spin}_{n,1}$$

 $\operatorname{Pin}_n^- \longleftrightarrow \operatorname{Spin}_{n+1}$

and the Clifford linear Dirac operator to see shift by one in index invariants

Thus index invariants on a pin⁺ 12-mfld behave like index invariants on a spin 11-mfld

Proposition: $\tau_W := \exp(2\pi i \eta(W)/4)$ on a closed pin⁺ 12-manifold W is (i) independent of the metric on W, (ii) a pin⁺ bordism invariant, and (iii) a root of unity

 \mathbb{RP}^{12} generates the first summand of tangential pin⁺ bordism

$$\pi_{12}MT$$
Pin⁺ $\cong \mathbb{Z}/2^8\mathbb{Z} \oplus \mathbb{Z}/2^4\mathbb{Z} \oplus \mathbb{Z}/2^2\mathbb{Z}$

and (Gilkey-Stolz)
$$\tau_{\mathbb{RP}^{12}} = \exp\left(\frac{2\pi i}{2^8}\right)$$

More generally, for $V \to W$ a real vector bundle over a closed pin⁺ 12-manifold set

$$\tau_W(V) = \exp\left(2\pi i \; \frac{\eta_W(V)}{4}\right)$$

More generally, for $V \to W$ a real vector bundle over a closed pin⁺ 12-manifold set

$$\tau_W(V) = \exp\left(2\pi i \; \frac{\eta_W(V)}{4}\right)$$

Proposition: The ratio $\tau_W(V^0)/\tau_W(V^1)$ of exponentiated η -invariants depends only on the class of the virtual bundle $[V^0] - [V^1] \in KO^0(W)$

More generally, for $V \to W$ a real vector bundle over a closed pin⁺ 12-manifold set

$$\tau_W(V) = \exp\left(2\pi i \; \frac{\eta_W(V)}{4}\right)$$

Proposition: The ratio $\tau_W(V^0)/\tau_W(V^1)$ of exponentiated η -invariants depends only on the class of the virtual bundle $[V^0] - [V^1] \in KO^0(W)$

Theorem (Zhang): Let $V \to W$ be a real vector bundle over a closed pin⁺ 12-manifold W. Let $L \to W$ be the orientation real line bundle, $H \to \mathbb{RP}^{20}$ the tautological line bundle, and $\gamma \colon W \to \mathbb{RP}^{20}$ a map such that $\gamma^*H \cong L$. Then

$$\gamma_*([V]) = 2^{11} \frac{\eta_W(V)}{4} (1 - [H]) \quad \text{in } \widetilde{KO}^0(\mathbb{RP}^{20})$$

The group $\widetilde{KO}^0(\mathbb{RP}^{20})$ is cyclic of order 2^{11} with generator 1-[H]

The Rarita-Schwinger anomaly: summary

• The partition function $\hat{\alpha}_{RS} \colon \pi_{12}MT\mathrm{Pin}^+ \to \mathbb{C}^{\times}$ of $\alpha_{RS} \colon MT\mathrm{Pin}^+ \to \Sigma^{12}I\mathbb{C}^{\times}$ is

$$\hat{\alpha}_{RS}(W) = \tau_W(TW - 2) = \exp\left(2\pi i \; \frac{\eta(TW - 2)}{4}\right)$$

The Rarita-Schwinger anomaly: summary

• The partition function $\hat{\alpha}_{RS} \colon \pi_{12} MT \mathrm{Pin}^+ \to \mathbb{C}^{\times}$ of $\alpha_{RS} \colon MT \mathrm{Pin}^+ \to \Sigma^{12} I \mathbb{C}^{\times}$ is

$$\hat{\alpha}_{RS}(W) = \tau_W(TW - 2) = \exp\left(2\pi i \, \frac{\eta(TW - 2)}{4}\right)$$

• There are several formulas/techniques to compute this topological invariant

The Rarita-Schwinger anomaly: summary

• The partition function $\hat{\alpha}_{RS} \colon \pi_{12}MT\mathrm{Pin}^+ \to \mathbb{C}^{\times}$ of $\alpha_{RS} \colon MT\mathrm{Pin}^+ \to \Sigma^{12}I\mathbb{C}^{\times}$ is

$$\hat{\alpha}_{RS}(W) = \tau_W(TW - 2) = \exp\left(2\pi i \, \frac{\eta(TW - 2)}{4}\right)$$

- There are several formulas/techniques to compute this topological invariant
- It turns out that the composition

$$\pi_{12}M\mathfrak{m}_c \longrightarrow \pi_{12}MT\mathrm{Pin}^+ \stackrel{\hat{\alpha}_{RS}}{\longrightarrow} \mathbb{C}^\times$$

factors through $\mu_2 = \{\pm 1\} \subset \mathbb{C}^{\times}$

Theorems (joint with Hopkins)

Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_C$ of M-theory is trivializable

M-theory is a form of <u>string theory</u>; we treat it in a quantum field theoretic context

The main work goes into the proof of the following bordism computation

Theorem B: The following six \mathfrak{m}_c -manifolds generate the group $\pi_{12}M\mathfrak{m}_c\otimes\mathbb{Z}_2$:

$$(W_0', \tilde{c}_0'), \quad (W_0'', 0), \quad (W_1, \lambda)$$
$$(K \times \mathbb{HP}^2, \lambda), \quad (\mathbb{RP}^4, \tilde{c}_{\mathbb{RP}^4}') \times B, \quad (\mathbb{RP}^4 \# \mathbb{RP}^4, 0) \times B$$

I will explain how to pass from Theorem A to Theorem B and a bit more...

The anomalous term in the action

The anomaly $\alpha_C \colon M\mathfrak{m}_c \to \Sigma^{12}I\mathbb{C}^{\times}$ is of order 2

It arises from the inhomogeneous skew-symmetric cubic form

$$\kappa(c) = \frac{c^3 (p \cdot c)}{48}$$

in the action—the division by 24 is not anomalous

The Lagrangian we find is the following:

$$\begin{split} \vec{\mathcal{A}} &= -\frac{V}{4\kappa^2} \, R(\omega) - \frac{i \, V}{2} \, \vec{\Psi}_{\omega} \, \Gamma^{\mu\nu\rho} D_{\nu} (\underbrace{\omega + \underline{\omega}}_{2}) \, \Psi_{\rho} - \frac{V}{48} \, \underbrace{F}_{\mu\nu\rho\sigma} \, F^{\mu\nu\rho\sigma} \\ &+ \frac{K \, V}{\sqrt{92}} \, (\, \vec{\Psi}_{\omega} \, \Gamma^{\mu\nu\nu} \, \alpha_{\rho} \, \kappa^{5} \, \Psi_{\nu} + 12 \, \vec{\Psi}^{\alpha} \, \Gamma^{35} \Psi^{\alpha}) (\, \vec{F}_{\alpha\rho\sigma} \, \kappa^{5} + \, \vec{F}_{\alpha\rho\nu} \, \kappa^{5}) \\ &+ \frac{2 \, K}{2} \, \underbrace{\epsilon^{\lambda_{1} \lambda_{2}} \, \alpha_{3} \, \lambda_{4} \, (\beta_{\alpha} \beta_{2} \beta_{3} \beta_{4} \, \mu\nu\rho}_{\rho \, \alpha_{1} \, \alpha_{3} \, \lambda_{4} \, F_{\alpha_{1} \, \beta_{2} \beta_{3} \beta_{4}} \, A_{\mu\nu\rho}}_{\rho \, \alpha_{1} \, \alpha_{2} \, \alpha_{3} \, \lambda_{4} \, G_{\alpha} \, \alpha_{3} \, \alpha_{4} \, F_{\alpha_{1} \, \beta_{2} \beta_{3} \beta_{4}} \, A_{\mu\nu\rho}} \end{split}$$

ELEVEN DIMENSIONAL ORIGIN OF STRING/STRING DUALITY: A ONE LOOP TEST[®]

M. J. Duff, James T. Liu and R. Minasian

Thus membrane/fivebrane duality predicts a spacetime correction to the D=11 supermembrane action

$$I_{11}(\text{Lorentz}) = T_3 \int C_3 \wedge \frac{1}{(2\pi)^4} \left[-\frac{1}{768} (\text{tr}R^2)^2 + \frac{1}{192} \text{tr}R^4 \right].$$
 (3.14)

Unfortunately, since the correct quantization of the supermembrane is unknown, this prediction is difficult to check. However, by simultaneous dimensional reduction [33] of (d=3,D=

Recollection: algebraic theory of a quadratic form

 $\begin{array}{ll} L & \text{finitely generated free abelian group} \\ \langle -, - \rangle \colon L \times L \to \mathbb{Z} & \text{nondegenerate (i.e., unimodular) symmetric bilinear form} \\ & \downarrow \\ \bar{c} \in L \otimes \mathbb{Z}/2\mathbb{Z} & \text{unique element such that } \langle \bar{x}, \bar{x} \rangle \equiv \langle \bar{c}, \bar{x} \rangle \pmod{2}, \qquad \bar{x} \in L \otimes \mathbb{Z}/2\mathbb{Z} \end{array}$

Recollection: algebraic theory of a quadratic form

$$\begin{array}{ll} L & \text{finitely generated free abelian group} \\ \langle -, - \rangle \colon L \times L \to \mathbb{Z} & \text{nondegenerate (i.e., unimodular) symmetric bilinear form} \\ & \downarrow \\ \bar{c} \in L \otimes \mathbb{Z}/2\mathbb{Z} & \text{unique element such that } \langle \bar{x}, \bar{x} \rangle \equiv \langle \bar{c}, \bar{x} \rangle \pmod{2}, \quad \bar{x} \in L \otimes \mathbb{Z}/2\mathbb{Z} \end{array}$$

An element $c \in L$ with $c \equiv \overline{c} \pmod{2}$ is called *characteristic*

Recollection: algebraic theory of a quadratic form

$$\begin{array}{ll} L & \text{finitely generated free abelian group} \\ \langle -, - \rangle \colon L \times L \to \mathbb{Z} & \text{nondegenerate (i.e., unimodular) symmetric bilinear form} \\ & \downarrow \\ \bar{c} \in L \otimes \mathbb{Z}/2\mathbb{Z} & \text{unique element such that } \langle \bar{x}, \bar{x} \rangle \equiv \langle \bar{c}, \bar{x} \rangle \pmod{2}, \quad \bar{x} \in L \otimes \mathbb{Z}/2\mathbb{Z} \end{array}$$

An element $c \in L$ with $c \equiv \bar{c} \pmod{2}$ is called *characteristic*

 $\langle c, c \rangle$ (mod 8) is independent of $c \in L_{\text{char}}$, so for any integer lift $\sigma \in \mathbb{Z}$ of $\langle c, c \rangle$ (mod 8),

$$\kappa_2(c) = \frac{\langle c, c \rangle - \sigma}{8}$$

is an integer $(\sigma \text{ may be chosen to be the signature of } \langle -, - \rangle \text{ on } L \otimes \mathbb{Q})$

Algebraic theory of a cubic form

L

$$\langle -, -, - \rangle \colon L \times L \to \mathbb{Z}$$

 $\bar{c} \in L \otimes \mathbb{Z}/2\mathbb{Z}$

finitely generated free abelian group symmetric trilinear form

satisfies $\langle \bar{c}, \bar{x}, \bar{y} \rangle \equiv \langle \bar{x}, \bar{x}, \bar{y} \rangle + \langle \bar{x}, \bar{y}, \bar{y} \rangle \pmod{2}, \quad \bar{x}, \bar{y} \in L \otimes \mathbb{Z}/2\mathbb{Z}$

Algebraic theory of a cubic form

L

$$\langle -, -, - \rangle \colon L \times L \to \mathbb{Z}$$

 $\bar{c} \in L \otimes \mathbb{Z}/2\mathbb{Z}$

finitely generated free abelian group

symmetric trilinear form

satisfies $\langle \bar{c}, \bar{x}, \bar{y} \rangle \equiv \langle \bar{x}, \bar{x}, \bar{y} \rangle + \langle \bar{x}, \bar{y}, \bar{y} \rangle \pmod{2}, \quad \bar{x}, \bar{y} \in L \otimes \mathbb{Z}/2\mathbb{Z}$

Lemma 1: There exists a unique $\hat{p} \in L^* \otimes \mathbb{Z}/24\mathbb{Z}$ such that

$$\hat{p} \cdot \hat{x} \equiv 4\hat{x}^3 + 6\hat{c}\hat{x}^2 + 3\hat{c}^2\hat{x} \pmod{24}$$

for all $\hat{x} \in L \otimes \mathbb{Z}/24\mathbb{Z}$ and mod 24 reductions \hat{c} of characteristic elements c.

Algebraic theory of a cubic form

finitely generated free abelian group

 $\langle -, -, - \rangle \colon L \times L \to \mathbb{Z}$ symmetric trilinear form

 $\bar{c} \in L \otimes \mathbb{Z}/2\mathbb{Z} \qquad \text{satisfies } \langle \bar{c}, \bar{x}, \bar{y} \rangle \equiv \langle \bar{x}, \bar{x}, \bar{y} \rangle + \langle \bar{x}, \bar{y}, \bar{y} \rangle \pmod{2}, \quad \bar{x}, \bar{y} \in L \otimes \mathbb{Z}/2\mathbb{Z}$

Lemma 2: Let $p \in L^*$ satisfy $p \equiv \hat{p} \pmod{24}$. Then

$$\frac{c^3 - p \cdot c}{24} \pmod{2}$$

lies in $\mathbb{Z}/2\mathbb{Z}$ and is independent of $e \in L_{\text{char}}$. Furthermore, there exist lifts $p \in L^*$ of \hat{p} such that this invariant vanishes, in which case

$$\kappa_3(c) = \frac{c^3 - p \cdot c}{48}$$

is an integer. Also, $\kappa_3(-c) = -\kappa_3(c)$.

Cubic form on a closed \mathfrak{m}_c 12-manifold W

$$L = H^{4}(W; \mathbb{Z}_{w_{1}})/\text{torsion}$$

$$L^{*} = H^{8}(W; \mathbb{Z})/\text{torsion}$$

$$\langle x, y, z \rangle = (x \smile y \smile z)[W]$$

$$\bar{c} = w_{4}(W)$$

Cubic form on a closed \mathfrak{m}_c 12-manifold W

$$L = H^{4}(W; \mathbb{Z}_{w_{1}})/\text{torsion}$$

$$L^{*} = H^{8}(W; \mathbb{Z})/\text{torsion}$$

$$\langle x, y, z \rangle = (x \smile y \smile z)[W]$$

$$\bar{c} = w_{4}(W)$$

Proposition 1: In $BPin^+$ there is a unique characteristic class $\bar{p} \in H^8(BPin^+; \mathbb{Z})/\text{torsion}$ whose lift to BSpin satisfies

$$2p = p_2 - \lambda^2$$

where $2\lambda = p_1$. Then \bar{c} and $\bar{p} \pmod{24}$ satisfy the previous conditions

Cubic form on a closed \mathfrak{m}_c 12-manifold W

$$L = H^{4}(W; \mathbb{Z}_{w_{1}})/\text{torsion}$$

$$L^{*} = H^{8}(W; \mathbb{Z})/\text{torsion}$$

$$\langle x, y, z \rangle = (x \smile y \smile z)[W]$$

$$\bar{c} = w_{4}(W)$$

Proposition 2: Let W be a closed \mathfrak{m}_c 12-manifold and $\tilde{c} \in H^4(W; \mathbb{Z})$ a w_1 -twisted integer lift of $w_4(W)$. Then

$$\frac{\tilde{c}^3 - \bar{p}(W)\tilde{c}}{48} \pmod{\mathbb{Z}}$$

lies in $\frac{1}{2}\mathbb{Z}/\mathbb{Z}$, is independent of the choice of \tilde{c} , and is a bordism invariant of \mathfrak{m}_c -manifolds

The C-field anomaly: summary

• The partition function $\hat{\alpha}_C \colon \pi_{12} M \mathfrak{m}_c \to \mathbb{C}^{\times}$ of $\alpha_C \colon M \mathfrak{m}_c \to \Sigma^{12} I \mathbb{C}^{\times}$ is

$$\hat{\alpha}_C(W) = \exp\left(2\pi i \, \frac{\tilde{c}^3 - \bar{p}(W)\tilde{c}}{48}\right)$$

It takes values in $\mu_2 = \{\pm 1\} \subset \mathbb{C}^{\times}$

The C-field anomaly: summary

• The partition function $\hat{\alpha}_C \colon \pi_{12} M \mathfrak{m}_c \to \mathbb{C}^{\times}$ of $\alpha_C \colon M \mathfrak{m}_c \to \Sigma^{12} I \mathbb{C}^{\times}$ is

$$\hat{\alpha}_C(W) = \exp\left(2\pi i \; \frac{\tilde{c}^3 - \bar{p}(W)\tilde{c}}{48}\right)$$

It takes values in $\mu_2 = \{\pm 1\} \subset \mathbb{C}^{\times}$

• $\hat{\alpha}_C$ is a very easy invariant to compute

Theorems (joint with Hopkins)

Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_{C}$ of M-theory is trivializable

M-theory is a form of string theory; we treat it in a quantum field theoretic context

The main work goes into the proof of the following bordism computation

Theorem B: The following six \mathfrak{m}_c -manifolds generate the group $\pi_{12}M\mathfrak{m}_c\otimes\mathbb{Z}_2$:

$$(W_0', \tilde{c}_0'), \quad (W_0'', 0), \quad (W_1, \lambda)$$
$$(K \times \mathbb{HP}^2, \lambda), \quad (\mathbb{RP}^4, \tilde{c}_{\mathbb{RP}^4}') \times B, \quad (\mathbb{RP}^4 \# \mathbb{RP}^4, 0) \times B$$

I will explain how to pass from Theorem A to Theorem B and a bit more...

1n 1996, Witten gave a conceptual argument for spin manifolds

1n 1996, Witten gave a conceptual argument for spin manifolds

He used the fact that $\overline{BE_8}$ is an Eilenberg-MacLane space $K(\mathbb{Z},4)$ through the 15-skeleton

1n 1996, Witten gave a conceptual argument for spin manifolds

He used the fact that BE_8 is an Eilenberg-MacLane space $K(\mathbb{Z},4)$ through the 15-skeleton

W closed spin 12-manifold

 \overline{x} class in $H^4(W; \mathbb{Z})$

 $V(x) \longrightarrow W$ real adjoint vector bundle to principal E_8 -bundle with characteristic class

 $c = \lambda(W) + 2x$ chosen integer lift of $w_4(W)$

1n 1996, Witten gave a conceptual argument for spin manifolds

He used the fact that BE_8 is an Eilenberg-MacLane space $K(\mathbb{Z},4)$ through the 15-skeleton

W closed spin 12-manifold

 \mathbf{z} class in $H^4(W; \mathbb{Z})$

 $V(x) \longrightarrow W$ real adjoint vector bundle to principal E_8 -bundle with characteristic class

 $c = \lambda(W) + 2x$ chosen integer lift of $w_4(W)$

Basic identity:

$$\left\langle \frac{c^3 - pc}{48} + \frac{1}{2}\hat{A}(W)\operatorname{ch}V(x) + \frac{1}{4}\hat{A}(W)\operatorname{ch}(TW - 4), [W] \right\rangle = 0$$

1n 1996, Witten gave a conceptual argument for spin manifolds

He used the fact that BE_8 is an Eilenberg-MacLane space $K(\mathbb{Z},4)$ through the 15-skeleton

$$W$$
 closed spin 12-manifold
$$x$$
 class in $H^4(W; \mathbb{Z})$
$$V(x) \longrightarrow W$$
 real adjoint vector bundle to principal E_8 -bundle with characteristic class

$$c = \lambda(W) + 2x$$
 chosen integer lift of $w_4(W)$

Basic identity:

$$\left\langle \frac{c^3 - pc}{48} + \frac{1}{2}\hat{A}(W)\operatorname{ch}V(x) + \frac{1}{4}\hat{A}(W)\operatorname{ch}(TW - 4), [W] \right\rangle = 0$$

We could not find a conceptual proof for the pin case, so we turned to computation

Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_C$ of M-theory is trivializable

Recall that each anomaly theory α is determined by a bordism invariant $\hat{\alpha} : \pi_{12} M \mathfrak{m}_c \to \mathbb{C}^{\times}$

Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_C$ of M-theory is trivializable

Recall that each anomaly theory α is determined by a bordism invariant $\hat{\alpha} : \pi_{12} M \mathfrak{m}_c \to \mathbb{C}^{\times}$

Therefore, it suffices to compute generators of $\pi_{12}M\mathfrak{m}_c$ and compute the invariants on them

Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_C$ of M-theory is trivializable

Recall that each anomaly theory α is determined by a bordism invariant $\hat{\alpha} \colon \pi_{12} M \mathfrak{m}_c \to \mathbb{C}^{\times}$

Therefore, it suffices to compute generators of $\pi_{12}M\mathfrak{m}_c$ and compute the invariants on them

Since the invariants take values in $\exp 2\pi i \left(\frac{1}{2^j}\mathbb{Z}/\mathbb{Z}\right)$, it suffices to work at the prime 2

Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_C$ of M-theory is trivializable

Recall that each anomaly theory α is determined by a bordism invariant $\hat{\alpha} : \pi_{12} M \mathfrak{m}_c \to \mathbb{C}^{\times}$

Therefore, it suffices to compute generators of $\pi_{12}M\mathfrak{m}_c$ and compute the invariants on them

Since the invariants take values in $\exp 2\pi i \left(\frac{1}{2^j}\mathbb{Z}/\mathbb{Z}\right)$, it suffices to work at the prime 2

We apply the Adams spectral sequence together with much computer aid, in particular using a program by Rob Bruner as well as Mathematica

Theorem A: The total anomaly $\alpha_{RS} \otimes \alpha_C$ of M-theory is trivializable

Recall that each anomaly theory α is determined by a bordism invariant $\hat{\alpha} : \pi_{12} M \mathfrak{m}_c \to \mathbb{C}^{\times}$

Therefore, it suffices to compute generators of $\pi_{12}M\mathfrak{m}_c$ and compute the invariants on them

Since the invariants take values in $\exp 2\pi i \left(\frac{1}{2^j}\mathbb{Z}/\mathbb{Z}\right)$, it suffices to work at the prime 2

We apply the Adams spectral sequence together with much computer aid, in particular using a program by Rob Bruner as well as Mathematica

Then we searched for 12-dimensional \mathfrak{m}_c -manifolds which represent the algebraic generators

Generators of the \mathfrak{m}_c bordism group

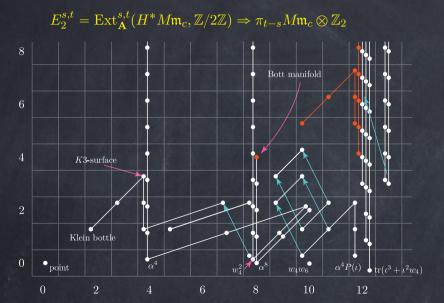
Theorem B: The following six \mathfrak{m}_c -manifolds generate the group $\pi_{12}M\mathfrak{m}_c\otimes\mathbb{Z}_2$:

$$(W_0',c_0),\quad (W_0'',0),\quad (W_1,\lambda)$$

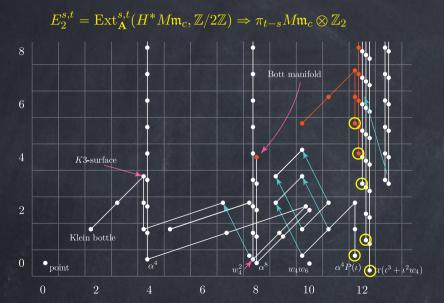
$$(K\times\mathbb{HP}^2,\lambda),\quad (\mathbb{RP}^4,c_{\mathbb{RP}^4})\times B,\quad (\mathbb{RP}^4\#\mathbb{RP}^4,0)\times B.$$

$$K$$
 $K3$ surface B quaternionic projective plane B Bott manifold $\mathbb{HP}^2 \# \mathbb{HP}^2 \longrightarrow W_0' \longrightarrow \mathbb{RP}^4$ $S^4 \times (\mathbb{HP}^2 \# \mathbb{HP}^2) \xrightarrow{2:1} W_0'$ $\mathbb{RP}^8 \longrightarrow W_0'' = \mathbb{P}(K_{\mathbb{R}}^{\oplus 2} \oplus \mathbb{R}) \xrightarrow{\rho} S^4$ $K_{\mathbb{R}} \to S^4$ generating \mathbb{H} -line bundle $\mathbb{HP}^2 \longrightarrow W_1 \longrightarrow \mathbb{CP}^1 \times \mathbb{CP}^1$ $\mathcal{B}_{SO}(\mathcal{O}(1,1)_{\mathbb{R}} \oplus \mathbb{R} \to \mathbb{CP}^1 \times \mathbb{CP}^1)$ $SO_3 \cong \mathbb{P} \operatorname{Sp}_1 \subset \mathbb{HP}^2$

Adams spectral sequence



Adams spectral sequence



The invariants on the generators

(W, \tilde{c})	$\alpha_{RS}(W)$	$\alpha_C(W)$
(W_0', \tilde{c}_0')	+1	+1
$(W_0'',0)$	+1	+1
(W_1,λ)	+1	+1
$(K \times \mathbb{HP}^2, \lambda)$	-1	-1
$(\mathbb{RP}^4, ilde{c}'_{\mathbb{RP}^4})$	+1	+1
$(\mathbb{RP}^4 \# \mathbb{RP}^4, 0)$	+1	+1

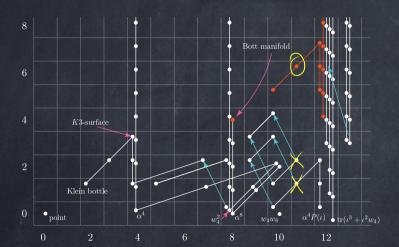
Uniqueness

Trivializations of $\alpha_{RS} \otimes \alpha_C$ form a torsor over 11-dimensional invertible theories

Uniqueness

Trivializations of $\alpha_{RS} \otimes \alpha_C$ form a torsor over 11-dimensional invertible theories

Theorem (Guo–Hopkins): There are two trivializations of $\alpha_{RS} \otimes \alpha_C$



Theorems (joint with Hopkins)

Theorem A: The total anomaly $\underline{\alpha_{RS}} \otimes \underline{\alpha_C}$ of M-theory is trivializable

M-theory is a form of string theory; we treat it in a quantum field theoretic context

The main work goes into the proof of the following bordism computation

Theorem B: The following six \mathfrak{m}_c -manifolds generate the group $\pi_{12}M\mathfrak{m}_c\otimes\mathbb{Z}_2$:

$$\begin{split} (W_0',\tilde{c}_0'),\quad (W_0'',0),\quad (W_1,\lambda)\\ (K\times\mathbb{HP}^2,\lambda),\quad (\mathbb{RP}^4,\tilde{c}_{\mathbb{RP}^4}')\times B,\quad (\mathbb{RP}^4\#\mathbb{RP}^4,0)\times B \end{split}$$

I will explain how to pass from Theorem A to Theorem B and a bit more...

Why work on a problem in String Theory?

Why work on a problem in String Theory?

Same ideas/techniques are used in Quantum Field Theory and Condensed Matter Theory

Why work on a problem in String Theory?

Same ideas/techniques are used in Quantum Field Theory and Condensed Matter Theory

What is Quantum Field Theory?

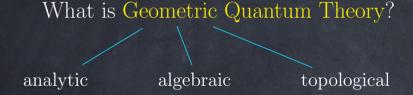
Why work on a problem in String Theory?

Same ideas/techniques are used in Quantum Field Theory and Condensed Matter Theory

What is Geometric Quantum Theory?

Why work on a problem in String Theory?

Same ideas/techniques are used in Quantum Field Theory and Condensed Matter Theory



Happy Birthday, Graeme!