Three Applications of Topology to Physics

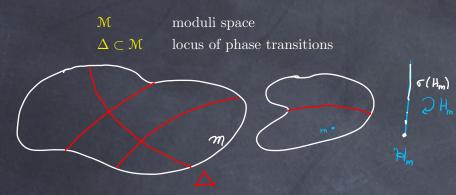
Dan Freed

University of Texas at Austin

January 12, 2018

Fix discrete parameters for quantum system: dimension, symmetry type (Quantum system: QFT, stat mech system, string theory ...)

Fix discrete parameters for quantum system: dimension, symmetry type (Quantum system: QFT, stat mech system, string theory ...)



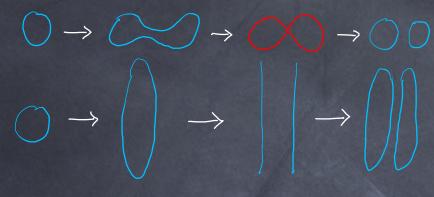
Path components $\pi_0(\mathcal{M} \setminus \Delta)$ are deformation classes = phases

Warning: Often the quantum system, much less M, has no rigorous mathematical definition/construction

Analog in Geometry: ${\Bbb M}$ moduli space of 1d Riemannian manifolds M

Analog in Geometry: ${\Bbb M}$ moduli space of 1d Riemannian manifolds M

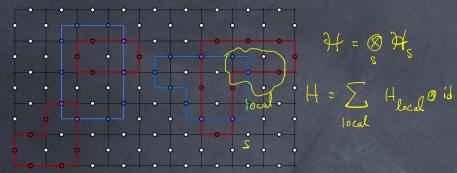
Two paths connecting 1 circle to 2 circles:



The first disallowed because manifolds; $\Delta = \text{noncompact manifolds}$ Then $\pi_0(\mathcal{M} \setminus \Delta) \xrightarrow{\cong} \mathbb{Z}^{\geq 0}$; the map counts the components of M

- d dimension of space
- I global symmetry group

Invertible ("short range entangled") gapped lattice systems:



Invertible: Unique ground state on each compact spatial manifold Y^d

Open Problem: Define moduli space $\mathcal{M}'(d,I)$ and compute π_0

Two physical principles to move to QFT:

- Deformation class of qtm system controlled by low energy physics
- LEP of gapped system well-approximated by topological* field theory

Two physical principles to move to QFT:

- Deformation class of qtm system controlled by low energy physics
- \bullet LEP of gapped system well-approximated by $topological^*$ field theory

Topological*: Energy-momentum tensor is a c-number

Two physical principles to move to QFT:

- Deformation class of qtm system controlled by low energy physics
- \bullet LEP of gapped system well-approximated by $topological^*$ field theory

Topological*: Energy-momentum tensor is a c-number

We imagine a homotopy equivalence

$$\mathcal{M}'(d, I)$$
 – low energy approximation $\to \mathcal{M}(n, H)$

to a moduli space $\mathcal{M}(n, H)$ of invertible field theories

n dimension of spacetime $\rho_n \colon H_n \longrightarrow O_n$ symmetry type (to be explained)

Two physical principles to move to QFT:

- Deformation class of qtm system controlled by low energy physics
- LEP of gapped system well-approximated by topological* field theory

Topological*: Energy-momentum tensor is a c-number

We imagine a homotopy equivalence

$$\mathcal{M}'(d, I)$$
 – low energy approximation $\to \mathcal{M}(n, H)$

to a moduli space $\mathcal{M}(n, H)$ of invertible field theories

n dimension of spacetime $\rho_n \colon H_n \longrightarrow O_n$ symmetry type (to be explained)

Problem we solve: Define $\mathcal{M}(n, H)$ and compute π_0

We investigate in low energy field theory approx: 11d supergravity + quantum correction. Parity invariance = time-reversal symmetry

Problem (Witten): Can we consistently formulate M-theory on unorientable manifolds? (Yes: M2-brane)

We investigate in low energy field theory approx: 11d supergravity + quantum correction. Parity invariance = time-reversal symmetry

Problem (Witten): Can we consistently formulate M-theory on unorientable manifolds? (Yes: M2-brane)

Two anomalies: (i) Rarita-Schwinger field

(ii) cubic term in C field

We investigate in low energy field theory approx: 11d supergravity + quantum correction. Parity invariance = time-reversal symmetry

Problem (Witten): Can we consistently formulate M-theory on unorientable manifolds? (Yes: M2-brane)

Two anomalies: (i) Rarita-Schwinger field (ii) cubic term in C field

Anomaly $\alpha = \alpha_{RS} \otimes \alpha_C$ is an invertible 12-dimensional field theory. In this case both theories are topological. Problem: Trivialize $\alpha_{RS} \otimes \alpha_C$

We investigate in low energy field theory approx: 11d supergravity + quantum correction. Parity invariance = time-reversal symmetry

Problem (Witten): Can we consistently formulate M-theory on unorientable manifolds? (Yes: M2-brane)

Two anomalies: (i) Rarita-Schwinger field (ii) cubic term in C field

Anomaly $\alpha = \alpha_{RS} \otimes \alpha_C$ is an invertible 12-dimensional field theory. In this case both theories are topological. Problem: Trivialize $\alpha_{RS} \otimes \alpha_C$

Determine homotopy type of $\mathfrak{M}(n, H)$ (w/Mike Hopkins) and compute π_0 in relevant cases to address Problems 1 and 2

We investigate in low energy field theory approx: 11d supergravity + quantum correction. Parity invariance = time-reversal symmetry

Problem (Witten): Can we consistently formulate M-theory on unorientable manifolds? (Yes: M2-brane)

Two anomalies: (i) Rarita-Schwinger field (ii) cubic term in C field

Anomaly $\alpha = \alpha_{RS} \otimes \alpha_C$ is an invertible 12-dimensional field theory. In this case both theories are topological. Problem: Trivialize $\alpha_{RS} \otimes \alpha_C$

Determine homotopy type of M(n, H) (w/Mike Hopkins) and compute π_0 in relevant cases to address Problems 1 and 2

Remark: Problems in string theory are more fun than those in condensed matter theory: higher dimensions!

4d QCD is a gauge theory with fermionic fields and internal symmetry group $K=G\times G$ where $G=SU_{N_f}$

4d QCD is a gauge theory with fermionic fields and internal symmetry group $K=G\times G$ where $G=SU_{N_f}$

Low energy theory is a σ -model into $(G \times G)/G \cong G$ (theory of pions)

4d QCD is a gauge theory with fermionic fields and internal symmetry group $K = G \times G$ where $G = SU_{N_f}$

Low energy theory is a σ -model into $(G \times G)/G \cong G$ (theory of pions)

Wess-Zumino: 't Hooft anomaly matching (over \mathbb{R} —local anomaly) for background $G \times G$ gauge field to deduce WZ term in low energy theory

4d QCD is a gauge theory with fermionic fields and internal symmetry group $K=G\times G$ where $G=SU_{N_f}$

Low energy theory is a σ -model into $(G \times G)/G \cong G$ (theory of pions)

Wess-Zumino: 't Hooft anomaly matching (over \mathbb{R} —local anomaly) for background $G \times G$ gauge field to deduce WZ term in low energy theory

Witten: studed on S^4 to normalize coefficient: WZW class in $H^5(G; \mathbb{Z})$

4d QCD is a gauge theory with fermionic fields and internal symmetry group $K = G \times G$ where $G = SU_{N_f}$

Low energy theory is a σ -model into $(G \times G)/G \cong G$ (theory of pions)

Wess-Zumine: 't Hooft anomaly matching (over \mathbb{R} —local anomaly) for background $G \times G$ gauge field to deduce WZ term in low energy theory

Witten: studed on S^4 to normalize coefficient: WZW class in $H^5(G; \mathbb{Z})$

Outstanding Questions:

4d QCD is a gauge theory with fermionic fields and internal symmetry group $K=G\times G$ where $G=SU_{N_f}$

Low energy theory is a σ -model into $(G \times G)/G \cong G$ (theory of pions)

Wess-Zumine: 't Hooft anomaly matching (over \mathbb{R} —local anomaly) for background $G \times G$ gauge field to deduce WZ term in low energy theory

Witten: studed on S^4 to normalize coefficient: WZW class in $H^5(G;\mathbb{Z})$

Outstanding Questions:

• QCD requires spin structure; pion theory does not?

4d QCD is a gauge theory with fermionic fields and internal symmetry group $K=G\times G$ where $G=SU_{N_f}$

Low energy theory is a σ -model into $(G \times G)/G \cong G$ (theory of pions)

Wess-Zumino: 't Hooft anomaly matching (over \mathbb{R} —local anomaly) for background $G \times G$ gauge field to deduce WZ term in low energy theory

Witten: studed on S^4 to normalize coefficient: WZW class in $H^5(G;\mathbb{Z})$

Outstanding Questions:

- QCD requires spin structure; pion theory does not?
- QCD has fermionic states; not manifest in pion theory?

4d QCD is a gauge theory with fermionic fields and internal symmetry group $K=G\times G$ where $G=SU_{N_f}$

Low energy theory is a σ -model into $(G \times G)/G \cong G$ (theory of pions)

Wess-Zumino: 't Hooft anomaly matching (over \mathbb{R} —local anomaly) for background $G \times G$ gauge field to deduce WZ term in low energy theory

Witten: studed on S^4 to normalize coefficient: WZW class in $H^5(G;\mathbb{Z})$

Outstanding Questions:

- QCD requires spin structure; pion theory does not?
- QCD has fermionic states; not manifest in pion theory?
- Anomaly matching over \mathbb{Z} —global anomaly matching?

4d QCD is a gauge theory with fermionic fields and internal symmetry group $K=G\times G$ where $G=SU_{N_f}$

Low energy theory is a σ -model into $(G \times G)/G \cong G$ (theory of pions)

Wess-Zumino: 't Hooft anomaly matching (over \mathbb{R} —local anomaly) for background $G \times G$ gauge field to deduce WZ term in low energy theory

Witten: studed on S^4 to normalize coefficient: WZW class in $H^5(G; \mathbb{Z})$

Outstanding Questions:

- QCD requires spin structure; pion theory does not?
- QCD has fermionic states; not manifest in pion theory?
- Anomaly matching over \mathbb{Z} —global anomaly matching?

Solution introduces a refined WZW factor in exponentiated action

How do we approach definitions/axiom systems in Mathematics?

How do we approach definitions/axiom systems in Mathematics?

Definition/Theorem: There exists a unique complete ordered field

Two constructions of \mathbb{R} : Dedekind cuts, Cauchy sequences (in \mathbb{Q})
The *characterization* is more useful than the *constructions*

How do we approach definitions/axiom systems in Mathematics?

Definition/Theorem: There exists a unique complete ordered field

Two constructions of \mathbb{R} : Dedekind cuts, Cauchy sequences (in \mathbb{Q}) The *characterization* is more useful than the *constructions*

Other examples: the definitions of a smooth manifold in differential geometry or variety and scheme in algebraic geometry

Can often develop theories separately from construction of examples. But examples are important: they are what Mathematics is about!

How do we approach definitions/axiom systems in Mathematics?

Definition/Theorem: There exists a unique complete ordered field

Two constructions of \mathbb{R} : Dedekind cuts, Cauchy sequences (in \mathbb{Q}) The *characterization* is more useful than the *constructions*

Other examples: the definitions of a smooth manifold in differential geometry or variety and scheme in algebraic geometry

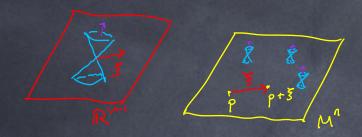
Can often develop theories separately from construction of examples. But examples are important: they are what Mathematics is about!

Need for foundations (definitions and axioms) arose from concrete problems and crises

Symmetry \longrightarrow background fields. No fluctuating fields. No lagrangians. No quantization. Axiomatize quantum structure.

Symmetry \longrightarrow background fields. No fluctuating fields. No lagrangians. No quantization. Axiomatize quantum structure.

Starting point: relativistic QFT on Minkowski spacetime M^n



Symmetry \longrightarrow background fields. No fluctuating fields. No lagrangians. No quantization. Axiomatize quantum structure.

Starting point: relativistic QFT on Minkowski spacetime M^n

$$\mathcal{H}_n \xrightarrow{\rho_n} \mathcal{I}_{1,n-1}^{\uparrow}$$
 unbroken global relativistic symmetry group
$$H_{1,n-1} \qquad \qquad \mathcal{H}_n/\text{translations}$$

$$K := \ker(\rho_n) \qquad \text{internal symmetry group (compact)}$$

$$1 \longrightarrow K \longrightarrow H_{1,n-1} \stackrel{\rho_n}{\longrightarrow} O_{1,n-1}^{\uparrow}$$

Symmetry \longrightarrow background fields. No fluctuating fields. No lagrangians. No quantization. Axiomatize quantum structure.

Starting point: relativistic QFT on Minkowski spacetime M^n

$$\mathcal{H}_n \xrightarrow{\rho_n} \mathcal{I}_{1,n-1}^{\uparrow}$$
 unbroken global relativistic symmetry group
 $H_{1,n-1}$ \mathcal{H}_n /translations
 $K := \ker(\rho_n)$ internal symmetry group (compact)

$$1 \longrightarrow K \longrightarrow H_{1,n-1} \xrightarrow{\rho_n} O_{1,n-1}^{\uparrow}$$

Relativistic invariance + spin-statistics: Image $(\rho_n) = SO_{1,n-1}^{\uparrow}$ or $O_{1,n-1}^{\uparrow}$

Symmetry \longrightarrow background fields. No fluctuating fields. No lagrangians. No quantization. Axiomatize quantum structure.

Starting point: relativistic QFT on Minkowski spacetime M^n

$$\mathcal{H}_n \xrightarrow{\rho_n} \mathcal{I}_{1,n-1}^{\uparrow}$$
 unbroken global relativistic symmetry group

$$H_{1,n-1}$$
 \mathcal{H}_n /translations

$$K := \ker(\rho_n)$$
 internal symmetry group (compact)

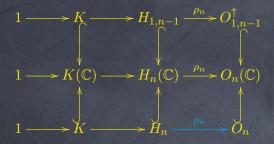
$$1 \longrightarrow K \longrightarrow H_{1,n-1} \xrightarrow{\rho_n} O_{1,n-1}^{\uparrow}$$

Relativistic invariance + spin-statistics: Image $(\rho_n) = SO_{1,n-1}^{\uparrow}$ or $O_{1,n-1}^{\uparrow}$

Remark: The internal symmetry group K can also include supersymmetries and higher symmetries

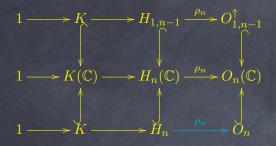
Wick Rotation

Positive energy \Longrightarrow correlation functions are boundary values of holomorphic fins on a complex domain \mathcal{D} . Restrict to Euclidean space \mathbb{E}^n



Wick Rotation

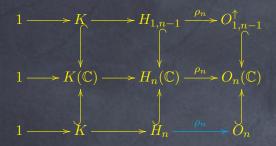
Positive energy \Longrightarrow correlation functions are boundary values of holomorphic fns on a complex domain \mathcal{D} . Restrict to Euclidean space \mathbb{E}^n



Relativistic invariance: Image(ρ_n) = SO_n or O_n

Wick Rotation

Positive energy \Longrightarrow correlation functions are boundary values of holomorphic fns on a complex domain \mathcal{D} . Restrict to Euclidean space \mathbb{E}^n

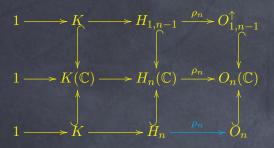


Relativistic invariance: Image(ρ_n) = SO_n or O_n

Definition: The symmetry type is the pair (H_n, ρ_n)

Wick Rotation

Positive energy \Longrightarrow correlation functions are boundary values of holomorphic fns on a complex domain \mathcal{D} . Restrict to Euclidean space \mathbb{E}^n



Relativistic invariance: Image(ρ_n) = SO_n or O_n

Definition: The symmetry type is the pair (H_n, ρ_n)

Schematic notation for Wick rotation: $M^n \longrightarrow \mathcal{D} \longrightarrow \mathbb{E}^n$

- Wick rotation of unitarity is reflection positivity
- Osterwalder-Schrader reconstruction theorem: $\mathbb{E}^n \leadsto \mathcal{D} \leadsto M^n$

- Wick rotation of unitarity is reflection positivity
- Osterwalder-Schrader reconstruction theorem: $\mathbb{E}^n \leadsto \mathcal{D} \leadsto M^n$
- Compactness of Euclidean symmetry group H_n leads to structure theorems about $1 \longrightarrow K \longrightarrow H_n \xrightarrow{\rho_n} O_n$ (arXiv:1604.06527, §2)

- Wick rotation of unitarity is reflection positivity
- Osterwalder-Schrader reconstruction theorem: $\mathbb{E}^n \leadsto \mathcal{D} \leadsto M^n$
- Compactness of Euclidean symmetry group H_n leads to structure theorems about $1 \longrightarrow K \longrightarrow H_n \xrightarrow{\rho_n} O_n$ (arXiv:1604.06527, §2)
 - There is a splitting $\mathfrak{h}_n \cong \mathfrak{o}_n \oplus \mathfrak{k}$ (recall Coleman-Mandula)
 - $(n \ge 3)$ There exists central element $k_0 \in K$ with $(k_0)^2 = 1$ and a canonical homomorphism $\operatorname{Spin}_n \to H_n$ mapping -1 to k_0
 - There exists a canonical stabilization

$$H_{n} \xrightarrow{\iota_{n}} H_{n+1} \xrightarrow{\iota_{n+1}} H_{n+2} \xrightarrow{} \dots$$

$$\downarrow^{\rho_{n}} \qquad \downarrow^{\rho_{n+1}} \qquad \downarrow^{\rho_{n+2}}$$

$$O_{n} \xrightarrow{} O_{n+1} \xrightarrow{} O_{n+2} \xrightarrow{} \dots$$

- Wick rotation of unitarity is reflection positivity
- Osterwalder-Schrader reconstruction theorem: $\mathbb{E}^n \leadsto \mathcal{D} \leadsto M^n$
- Compactness of Euclidean symmetry group H_n leads to structure theorems about $1 \longrightarrow K \longrightarrow H_n \xrightarrow{\rho_n} O_n$ (arXiv:1604.06527, §2)

states/symmetry	H_n	K	k_0
bosons only	SO_n	{1}	1
bosons, time-reversal (T)	O_n	{1}	1
fermions allowed	Spin_n	$\{\pm 1\}$	-1
fermions, $T^2 = (-1)^F$	Pin_n^+	$\{\pm 1\}$	-1
fermions, $T^2 = id$	Pin_n^-	$\{\pm 1\}$	-1

 $\mathbb{E}^n \sim Compact Manifolds$

Including translations the Euclidean symmetry group is an extension

$$1 \longrightarrow \mathbb{R}^n \longrightarrow \mathcal{H}_n \longrightarrow H_n \longrightarrow 1$$

Now pass from global to local symmetries, as in differential geometry: couple to background gravity and background gauge field

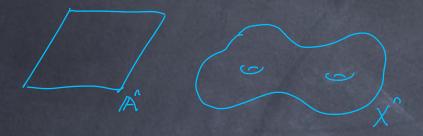
$\mathbb{E}^n \longrightarrow \text{Compact Manifolds}$

Including translations the Euclidean symmetry group is an extension

$$1 \longrightarrow \mathbb{R}^n \longrightarrow \mathcal{H}_n \longrightarrow H_n \longrightarrow 1$$

Now pass from global to local symmetries, as in differential geometry: couple to background gravity and background gauge field

Step 1 (\mathbb{R}^n): Pass from flat affine space to a curved manifold X^n



$\mathbb{E}^n \longrightarrow \text{Compact Manifolds}$

Including translations the Euclidean symmetry group is an extension

$$1 \longrightarrow \mathbb{R}^n \longrightarrow \mathcal{H}_n \longrightarrow H_n \longrightarrow 1$$

Now pass from global to local symmetries, as in differential geometry: couple to background gravity and background gauge field

Step 1 (\mathbb{R}^n): Pass from flat affine space to a curved manifold X^n

$$1 \longrightarrow K \longrightarrow H_n \xrightarrow{\rho_n} O_n$$

Step 2 (O_n) : Riemannian metric on X

$$\mathbb{E}^n \longrightarrow \text{Compact Manifolds}$$

Including translations the Euclidean symmetry group is an extension

$$1 \longrightarrow \mathbb{R}^n \longrightarrow \mathcal{H}_n \longrightarrow H_n \longrightarrow 1$$

Now pass from global to local symmetries, as in differential geometry: couple to background gravity and background gauge field

Step 1 (\mathbb{R}^n): Pass from flat affine space to a curved manifold X^n

$$1 \longrightarrow K \longrightarrow H_n \stackrel{\rho_n}{\longrightarrow} O_n$$

Step 2 (O_n) : Riemannian metric on X

Step 3 (H_n) : Introduce differential H_n -structure on X (E. Cartan)

$$\mathbb{E}^n \longrightarrow \text{Compact Manifolds}$$

Including translations the Euclidean symmetry group is an extension

$$1 \longrightarrow \mathbb{R}^n \longrightarrow \mathcal{H}_n \longrightarrow H_n \longrightarrow 1$$

Now pass from global to local symmetries, as in differential geometry: couple to background gravity and background gauge field

Step 1 (\mathbb{R}^n): Pass from flat affine space to a curved manifold X^n

$$1 \longrightarrow K \longrightarrow H_n \xrightarrow{\rho_n} O_n$$

Step 2 (O_n) : Riemannian metric on X

Step 3 (H_n) : Introduce differential H_n -structure on X (E. Cartan)

Nontrivial step: Restrict to *compact* manifolds. Not at all obvious that we retain IR physics, but will see so in examples

These axioms were introduced by

Graeme Segal (mid 1980's): 2d conformal field theory Michael Atiyah (late 1980's): topological field theory

These axioms were introduced by

Graeme Segal (mid 1980's): 2d conformal field theory Michael Atiyah (late 1980's): topological field theory

With modifications they should apply to scale-dependent theories

These axioms were introduced by

Graeme Segal (mid 1980's): 2d conformal field theory Michael Atiyah (late 1980's): topological field theory

With modifications they should apply to scale-dependent theories

Axioms capture properties of state spaces and correlation functions

These axioms were introduced by

Graeme Segal (mid 1980's): 2d conformal field theory Michael Atiyah (late 1980's): topological field theory

With modifications they should apply to scale-dependent theories

Axioms capture properties of state spaces and correlation functions

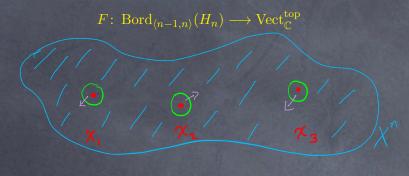
Discrete data: spacetime dimension n symmetry type (H, ρ)

Axiom System

Definition: An n-dimensional field theory is a homomorphism

$$F \colon \operatorname{Bord}_{\langle n-1,n\rangle}(H_n) \longrightarrow \operatorname{Vect}^{\operatorname{top}}_{\mathbb{C}}$$

 $\mathbf{Definition}$: An n-dimensional field theory is a homomorphism



F(X): F(Y) @ F(Y) @ F(Y) -> (Correlation functions **Reconstruction Question:** Reverse $M^n \leadsto \mathcal{D} \leadsto \mathbb{E}^n \leadsto \operatorname{cpt} X^n$? In essence, we assume that the answer is "yes" and work with field theories using this Axiom System.

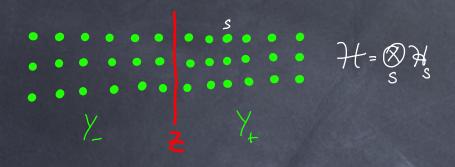
The state space $F(Y^{n-1})$ depends locally on Y

$$F(Y) = F(Y_{-}), F(Y_{+})$$

$$F(2)$$

The state space $F(Y^{n-1})$ depends locally on Y

Expected if F is the effective theory of a lattice model



The state space $F(Y^{n-1})$ depends locally on Y

Expected if F is the effective theory of a lattice model

Extended field theory: invariants for manifolds of dimension $\leq n$ brings in higher categorical ideas

The state space $F(Y^{n-1})$ depends locally on Y

Expected if F is the effective theory of a lattice model

Extended field theory: invariants for manifolds of dimension $\leq n$ brings in higher categorical ideas

Powerful classification theorem for topological theories (Lurie)

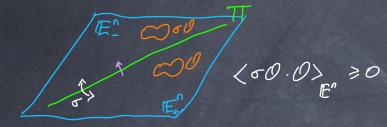
The state space $F(Y^{n-1})$ depends locally on Y

Expected if F is the effective theory of a lattice model

Extended field theory: invariants for manifolds of dimension $\leq n$ brings in higher categorical ideas

Powerful classification theorem for topological theories (Lurie)

Wick-rotated unitarity: reflection positivity



The state space $F(Y^{n-1})$ depends locally on Y

Expected if F is the effective theory of a lattice model

Extended field theory: invariants for manifolds of dimension $\leq n$ brings in higher categorical ideas

Powerful classification theorem for topological theories (Lurie)

Wick-rotated unitarity: reflection positivity

Since *locality* and *unitarity* are the pillars of QFT, we ask:

Open Question: What is *extended* reflection positivity?

The state space $F(Y^{n-1})$ depends locally on Y

Expected if F is the effective theory of a lattice model

Extended field theory: invariants for manifolds of dimension $\leq n$ brings in higher categorical ideas

Powerful classification theorem for topological theories (Lurie)

Wick-rotated unitarity: reflection positivity

Since *locality* and *unitarity* are the pillars of QFT, we ask:

Open Question: What is *extended* reflection positivity?

We propose a solution for invertible topological theories

Invertibility and Homotopy Theory

Field theories have a composition law $F \otimes F'$ and a trivial theory 1

Definition: A field theory F is *invertible* if there exists F' such that $F \otimes F'$ is isomorphic to **1**

 \overline{F} invertible \Longrightarrow dim F(Y) = 1 for all closed Y^{n-1} ($\partial Y = \emptyset$)

Invertibility and Homotopy Theory

Field theories have a composition law $F \otimes F'$ and a trivial theory 1

Definition: A field theory F is *invertible* if there exists F' such that $F \otimes F'$ is isomorphic to $\mathbf{1}$

$$F$$
 invertible \Longrightarrow dim $F(Y) = 1$ for all closed Y^{n-1} ($\partial Y = \emptyset$)

Invertible theories are maps in stable homotopy theory:

(Grothendieck) \widetilde{F} "is" an ∞ -loop map of ∞ -loop spaces (spectra)

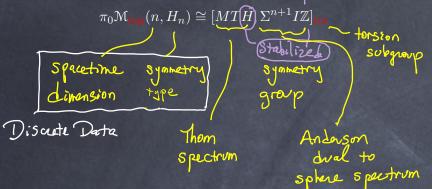
$$\begin{split} \mathfrak{M}_{\text{top}}(n,H_n) := \text{moduli space of } & \text{reflection positive invertible} \\ & n\text{-dimensional } & \text{extended topological field theories} \\ & \text{with symmetry group } H_n \end{split}$$

 $\mathfrak{M}_{\text{top}}(n,H_n) := \text{moduli space of } \mathbf{reflection} \ \mathbf{positive} \ \mathbf{invertible}$ $n\text{-dimensional } \mathbf{extended} \ \mathbf{topological} \ \mathbf{field} \ \mathbf{theories}$ with symmetry group H_n

Theorem (F.-Hopkins): There is a 1:1 correspondence $\pi_0 \mathcal{M}_{\text{top}}(n, H_n) \cong [MTH, \Sigma^{n+1} I \mathbb{Z}]_{\text{tor}}$

 $\mathcal{M}_{\text{top}}(n,H_n) := \text{moduli space of reflection positive invertible}$ n-dimensional extended topological field theorieswith symmetry group H_n

Theorem (F.-Hopkins): There is a 1:1 correspondence



 $\mathfrak{M}_{\text{top}}(n,H_n) := \text{moduli space of } \mathbf{reflection \ positive \ invertible} \\ \text{n-dimensional } \mathbf{extended \ topological} \text{ field theories} \\ \text{with symmetry group } H_n$

Theorem (F.-Hopkins): There is a 1:1 correspondence $\pi_0 \mathcal{M}_{\text{top}}(n, H_n) \cong [MTH, \Sigma^{n+1} I \mathbb{Z}]_{\text{tor}}$

Conjecture (F.-Hopkins): There is a 1:1 correspondence $\pi_0 \mathfrak{M}(n,H_n) \cong [MTH,\Sigma^{n+1}I\mathbb{Z}]$

 $\mathcal{M}_{\text{top}}(n, H_n) := \text{moduli space of reflection positive invertible}$ n-dimensional extended topological field theorieswith symmetry group H_n

Theorem (F.-Hopkins): There is a 1:1 correspondence $\pi_0\mathcal{M}_{\mathsf{top}}(n,H_n) \cong [MTH,\Sigma^{n+1}I\mathbb{Z}]_{\mathsf{tor}}$

Conjecture (F.-Hopkins): There is a 1:1 correspondence $\pi_0 \mathcal{M}(n,H_n) \cong [MTH,\Sigma^{n+1}I\mathbb{Z}]$

Theorem and Conjecture determine entire homotopy type, not just π_0

Now apply Theorem and Conjecture to Problem 1 (Phases of matter) and Problem 2 (Parity invariance of M-theory)

Problem 3 (WZW factor): different application of invertible field theory

Solution 1: arXiv:1604.06527 (revised version soon)

Solution 2: to appear

Solution 3: arXiv:hep-th/0607134

Relativistic 10-fold way

- For electron systems expect $K = U(1) = \mathbb{T}$
- Spin/charge relation: $-1 \in \mathbb{T}$ is central element of $\mathrm{Spin}_n \ (= (-1)^F)$
- Particle-hole symmetry: "breaks" $K=\mathbb{T}$ to $K=\{\pm 1\}$ or $K=SU_2$

Theorem: There are 10 stable symmetry groups H of this type:

$$K = \mathbb{T} \qquad \text{Spin}^c, \, \text{Pin}^c,$$

$$\text{Pin}^{\tilde{c}+} := \text{Pin}^+ \ltimes_{\{\pm 1\}} \mathbb{T}$$

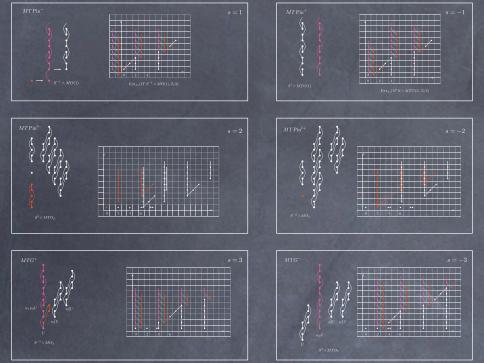
$$\text{Pin}^{\tilde{c}-} := \text{Pin}^- \ltimes_{\{\pm 1\}} \mathbb{T}$$

$$K = \{\pm 1\} \qquad \text{Spin}, \, \text{Pin}^+, \, \text{Pin}^-$$

$$K = SU_2 \qquad \text{Spin} \ltimes_{\{\pm 1\}} SU_2$$

$$\text{Pin}^+ \ltimes_{\{\pm 1\}} SU_2$$

$$\text{Pin}^- \ltimes_{\{\pm 1\}} SU_2$$



Computations

Class DIII (Pin⁺):

n	$\ker \Phi$ —	$\rightarrow FF_n(\operatorname{Pin}^+)$	$\xrightarrow{\Phi} TP_n(\operatorname{Pin}^+)$ —	$ ightarrow$ coker Φ
4	$16\mathbb{Z}$	$\mathbb Z$	$\mathbb{Z}/16\mathbb{Z}$	0
3	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
2	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
1	0	0	0	0
0	$2\mathbb{Z}$	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	0

Class DIII (Pin^+) :

n	$\ker \Phi$ –	$\longrightarrow FF_n(\operatorname{Pin}^+)$ -	$\xrightarrow{\Phi} TP_n(\operatorname{Pin}^+) -$	$ ightarrow$ coker Φ
4	$16\mathbb{Z}$	${\mathbb Z}$	$\mathbb{Z}/16\mathbb{Z}$	0
3	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
2	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
1	0	0	0	0
0	$2\mathbb{Z}$	$\mathbb Z$	$\mathbb{Z}/2\mathbb{Z}$	0

• FF_n is the group of free fermion theories (KO group)

Class DIII (Pin^+) :

n	$\ker \Phi$ —	$\rightarrow FF_n(\operatorname{Pin}^+)$ -	$\xrightarrow{\Phi} TP_n(\operatorname{Pin}^+)$ —	$ ightarrow$ coker Φ
4	$16\mathbb{Z}$	$\mathbb Z$	$\mathbb{Z}/16\mathbb{Z}$	0
3	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
2	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
1	0	0	0	0
0	$2\mathbb{Z}$	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	0

- FF_n is the group of free fermion theories (KO group)
- $TP_n(H) = \pi_0 \mathcal{M}'(n, H_n)$ is group of topological phases (Main Thm)

Class DIII (Pin^+) :

n	$\ker \Phi$ –	$\rightarrow FF_n(\operatorname{Pin}^+)$	$\xrightarrow{\Phi} TP_n(\operatorname{Pin}^+) -$	$ ightarrow$ coker Φ
4	$16\mathbb{Z}$	$\mathbb Z$	$\mathbb{Z}/16\mathbb{Z}$	0
3	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
2	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
1	0	0	0	0
0	$2\mathbb{Z}$	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	0

- FF_n is the group of free fermion theories (KO group)
- $TP_n(H) = \pi_0 \mathcal{M}'(n, H_n)$ is group of topological phases (Main Thm)
- \bullet Φ is the map described above (essentially ABS)

Class DIII (Pin^+) :

n	$\ker \Phi$ —	$\rightarrow FF_n(\operatorname{Pin}^+)$ -	$\xrightarrow{\Phi} TP_n(\operatorname{Pin}^+) -$	$ ightarrow$ coker Φ
4	$16\mathbb{Z}$	$\mathbb Z$	$\mathbb{Z}/16\mathbb{Z}$	0
3	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
2	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
1	0	0	0	0
0	$2\mathbb{Z}$	$\mathbb Z$	$\mathbb{Z}/2\mathbb{Z}$	0

- FF_n is the group of free fermion theories (KO group)
- $TP_n(H) = \pi_0 \mathcal{M}'(n, H_n)$ is group of topological phases (Main Thm)
- \bullet Φ is the map described above (essentially ABS)
- The FF_n groups are well-known. Many TP_n appear in the condensed matter literature (together with Φ) via other methods

Class AII ($Pin^{\tilde{c}+}$):

n	$\ker \Phi$ -	$\longrightarrow FF_n(\operatorname{Pin}^{\tilde{c}+})$ -	$\xrightarrow{\Phi} TP_n(\operatorname{Pin}^{\tilde{c}+})$ -	$\longrightarrow \operatorname{coker} \Phi$
4	0	$\mathbb{Z}/2\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})^3$	$(\mathbb{Z}/2\mathbb{Z})^2$
3	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
2	0	0	0	0
1	0	$\mathbb Z$	$\mathbb Z$	0
0	0	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$

• Topological insulator with time-reversal $T^2 = (-1)^F$

Class AII ($Pin^{\tilde{c}+}$):

n	$\ker \Phi$ -	$\longrightarrow FF_n(\operatorname{Pin}^{\tilde{c}+})$	$\xrightarrow{\Phi} TP_n(\operatorname{Pin}^{\tilde{c}+})$	$\longrightarrow \operatorname{coker} \Phi$
4	0	$\mathbb{Z}/2\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})^3$	$(\mathbb{Z}/2\mathbb{Z})^2$
3	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
2	0	0	0	0
1	0	$\mathbb Z$	$\mathbb Z$	0
0	0	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$

- Topological insulator with time-reversal $T^2 = (-1)^F$
- The free fermion $\mathbb{Z}/2\mathbb{Z}$ are the Kanc-Mele-Fu invariants

Class AII ($Pin^{\tilde{c}+}$):

n	$\ker \Phi$ -	$\longrightarrow FF_n(\operatorname{Pin}^{\tilde{c}+})$	$\xrightarrow{\Phi} TP_n(\operatorname{Pin}^{\tilde{c}+})$	$\longrightarrow \operatorname{coker} \Phi$
4	0	$\mathbb{Z}/2\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})^3$	$(\mathbb{Z}/2\mathbb{Z})^2$
3	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
2	0	0	0	0
1	0	$\mathbb Z$	$\mathbb Z$	0
0	0	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$

- Topological insulator with time-reversal $T^2 = (-1)^F$
- The free fermion $\mathbb{Z}/2\mathbb{Z}$ are the Kane-Mele-Fu invariants
- Metlitski asked about $TP_4(Pin^{\tilde{c}+})$ vs. bordism computation

Class AII ($Pin^{\tilde{c}+}$):

n	$\ker \Phi$ -	$\longrightarrow FF_n(\operatorname{Pin}^{\tilde{c}+})$	$\xrightarrow{\Phi} TP_n(\operatorname{Pin}^{\tilde{c}+})$	$\longrightarrow \operatorname{coker} \Phi$
4	0	$\mathbb{Z}/2\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z})^3$	$(\mathbb{Z}/2\mathbb{Z})^2$
3	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	0
2	0	0	0	0
1	0	$\mathbb Z$	$\mathbb Z$	0
0	0	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$

- Topological insulator with time-reversal $T^2 = (-1)^F$
- The free fermion $\mathbb{Z}/2\mathbb{Z}$ are the Kane-Mele-Fu invariants
- Metlitski asked about $TP_4(\operatorname{Pin}^{\tilde{c}+})$ vs. bordism computation
- The results in 3 dimensions are also known via non-bordism means

Class CI $(G^+ = \operatorname{Pin}^+ \times_{\{\pm 1\}} SU_2)$:

n	$\ker \Phi$ —	$\rightarrow FF_n(G^+)$	$\xrightarrow{\Phi} TP_n(G^+)$ —	$ ightarrow$ coker Φ
4		\mathbb{Z}		
3	0	0	0	0
2	0	0	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$
1	0	0	0	0
0	$2\mathbb{Z}$	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	0

• Computations confirm a conjecture of Wang-Senthil

Class CI $(G^+ = \operatorname{Pin}^+ \times_{\{\pm 1\}} SU_2)$:

n	$\ker \Phi$ —	$\rightarrow FF_n(G^+)$	$\xrightarrow{\Phi} TP_n(G^+)$ —	\rightarrow coker Φ
4	$4\mathbb{Z}$	\mathbb{Z}	$\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$
3	0	0		
2	0	0		
1	0	0	0	0
0	$2\mathbb{Z}$	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	0

- Computations confirm a conjecture of Wang-Senthil
- Unsure if $TP_{2,3}(G^+)$ are in the CM literature (predictions)

Other hty computations: Kapustin et. al., Campbell, Guo-Putrov-Wang

Other hty computations: Kapustin et. al., Campbell, Guo-Putrov-Wang

Axiom System for field theory enables definition/computation of \mathcal{M}

Other hty computations: Kapustin et. al., Campbell, Guo-Putrov-Wang

Axiom System for field theory enables definition/computation of \mathcal{M}

Agreement with known results by very different methods is a test that:

- Axiom System captures some essentials of field theory—first substantial test of Axiom System in physics
- Wick-rotated theory on $compact X^n$ detects long-range behavior
- Extended field theory
- Extended reflection positivity (invertible topological theories)
- Long-range approximation of lattice systems via field theory

Other hty computations: Kapustin et. al., Campbell, Guo-Putrov-Wang

Axiom System for field theory enables definition/computation of \mathcal{M}

Agreement with known results by very different methods is a test that:

- Axiom System captures some essentials of field theory—first substantial test of Axiom System in physics
- Wick-rotated theory on $compact X^n$ detects long-range behavior
- Extended field theory
- Extended reflection positivity (invertible topological theories)
- Long-range approximation of lattice systems via field theory

Open Problems: Extended positivity for general field theories Relation of lattice system and field theory

Problem (Witten): Can we consistently formulate M-theory on unorientable manifolds?

Problem (Witten): Can we consistently formulate M-theory on unorientable manifolds?

Symmetry group H_{11} is a mix of Pin_{11}^+ and $B^3\mathbb{T}$ (higher symmetry), but there is "twisting": pin^+ 11-manifolds with a twisted integral lift of w_4

Problem (Witten): Can we consistently formulate M-theory on unorientable manifolds?

Symmetry group H_{11} is a mix of Pin_{11}^+ and $B^3\mathbb{T}$ (higher symmetry), but there is "twisting": pin^+ 11-manifolds with a twisted integral lift of w_4

Two anomalies: (i) Rarita-Schwinger field (α_{RS}) (ii) cubic term in C field (α_{C})

 α_{RS} and α_{C} are 12-dimensional invertible topological field theories

Problem (Witten): Can we consistently formulate M-theory on unorientable manifolds?

Symmetry group H_{11} is a mix of Pin_{11}^+ and $B^3\mathbb{T}$ (higher symmetry), but there is "twisting": pin^+ 11-manifolds with a twisted integral lift of w_4

Two anomalies: (i) Rarita-Schwinger field (α_{RS}) (ii) cubic term in C field (α_C)

 α_{RS} and α_{C} are 12-dimensional invertible topological field theories

Theorem (FH): The total anomaly $\alpha_{RS} \otimes \alpha_C$ is trivializable.

Problem (Witten): Can we consistently formulate M-theory on unorientable manifolds?

Symmetry group H_{11} is a mix of $\operatorname{Pin}_{11}^+$ and $B^3\mathbb{T}$ (higher symmetry), but there is "twisting": pin^+ 11-manifolds with a twisted integral lift of w_4

Two anomalies: (i) Rarita-Schwinger field (α_{RS}) (ii) cubic term in C field (α_{C})

 α_{RS} and α_{C} are 12-dimensional invertible topological field theories

Theorem (FH): The total anomaly $\alpha_{RS} \otimes \alpha_C$ is trivializable.

Theorem (FH): Trivializations of α form a torsor over $(\mathbb{Z}/2\mathbb{Z})^{\oplus 3}$.

Computer/hand computations (Adams spectral sequence) to find generators of the bordism group and compute partition fns of α_{RS}, α_C

Theorem (FH): Let

$$A = A'_0 \oplus A''_0 \oplus A_1 \oplus A_3 \oplus A_4 \oplus A_5$$

= $\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} /8\mathbb{Z}$

Then there is a surjective homomorphism

$$\rho \colon A \longrightarrow \pi_{12} \mathcal{B}$$

under which the indicated manifolds and twisted integral lifts of w_4 represent images of generators:

$$\begin{split} &\rho(a_0') = [(W_0'\,,\,\tilde{c}_0')] \\ &\rho(a_0'') = [(W_0''\,,\,0)] \\ &\rho(a_1) = [(W_1\,,\,\lambda z)] \\ &\rho(a_3) = [(K \times \mathbb{HP}^2\,,\,\lambda)] \\ &\rho(a_4) = [(\mathbb{RP}^4 \times B\,,\,\tilde{c}_{\mathbb{RP}^4})] \\ &\rho(a_5) = [((\mathbb{RP}^4 \# \mathbb{RP}^4) \times B\,,\,0)] \end{split}$$

4d QCD is a gauge theory with fermionic fields and internal symmetry group $K = G \times G$ where $G = SU_{N_f}$, so $H_4 = \operatorname{Spin}_4 \times G \times G$

4d QCD is a gauge theory with fermionic fields and internal symmetry group $K = G \times G$ where $G = SU_{N_f}$, so $H_4 = \operatorname{Spin}_4 \times G \times G$

Outstanding Questions:

- 1 QCD requires spin structure; pion theory does not?
- 2 QCD has fermionic states; not manifest in pion theory?
- 3 Anomaly matching over \mathbb{Z} —global anomaly matching?
- $N_f = 2?$

4d QCD is a gauge theory with fermionic fields and internal symmetry group $K = G \times G$ where $G = SU_{N_f}$, so $H_4 = \operatorname{Spin}_4 \times G \times G$

Outstanding Questions:

- 1 QCD requires spin structure; pion theory does not?
- 2 QCD has fermionic states; not manifest in pion theory?
- **3** Anomaly matching over \mathbb{Z} —global anomaly matching?
- **4** $N_f = 2?$

Wess-Zumino: 't Hooft anomaly matching (over \mathbb{R} —local anomaly) for background $G \times G$ gauge field to deduce WZ term in low energy theory

4d QCD is a gauge theory with fermionic fields and internal symmetry group $K = G \times G$ where $G = SU_{N_f}$, so $H_4 = \operatorname{Spin}_4 \times G \times G$

Outstanding Questions:

- 1 QCD requires spin structure; pion theory does not?
- 2 QCD has fermionic states; not manifest in pion theory?
- **3** Anomaly matching over \mathbb{Z} —global anomaly matching?
- **4** $N_f = 2?$

Wess-Zumino: 't Hooft anomaly matching (over \mathbb{R} —local anomaly) for background $G \times G$ gauge field to deduce WZ term in low energy theory

Witten: studed on S^4 to normalize coefficient: WZW class in $H^5(G; \mathbb{Z})$

$$0 \longrightarrow H^{5}(SU_{N}; \mathbb{Z}) \longrightarrow E^{5}(SU_{N}) \longrightarrow H^{3}(SU_{N}; \mathbb{Z}/2\mathbb{Z}) \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

$$0 \longrightarrow H^{5}(SU_{N}; \mathbb{Z}) \longrightarrow E^{5}(SU_{N}) \longrightarrow H^{3}(SU_{N}; \mathbb{Z}/2\mathbb{Z}) \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

1 Integration of classes in E requires a spin structure

$$0 \longrightarrow H^{5}(SU_{N}; \mathbb{Z}) \longrightarrow E^{5}(SU_{N}) \longrightarrow H^{3}(SU_{N}; \mathbb{Z}/2\mathbb{Z}) \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \longrightarrow \mathbb{Z}$$

- 1 Integration of classes in E requires a spin structure
- ${f 2}$ Evaluation on $\overline{Y^3}$ naturally leads to a ${\Bbb Z}/2{\Bbb Z}$ -graded Hilbert space

$$0 \longrightarrow H^{5}(SU_{N}; \mathbb{Z}) \longrightarrow E^{5}(SU_{N}) \longrightarrow H^{3}(SU_{N}; \mathbb{Z}/2\mathbb{Z}) \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

- 1 Integration of classes in E requires a spin structure
- 2 Evaluation on Y^3 naturally leads to a $\mathbb{Z}/2\mathbb{Z}$ -graded Hilbert space
- 3 Appropriate determinant line bundle of Dirac computed in E

$$0 \longrightarrow H^{5}(SU_{N}; \mathbb{Z}) \longrightarrow E^{5}(SU_{N}) \longrightarrow H^{3}(SU_{N}; \mathbb{Z}/2\mathbb{Z}) \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

- 1 Integration of classes in E requires a spin structure
- 2 Evaluation on Y^3 naturally leads to a $\mathbb{Z}/2\mathbb{Z}$ -graded Hilbert space
- 3 Appropriate determinant line bundle of Dirac computed in E