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Abstract. We derive identities for general �ows of Riemannian metrics that
may be regarded as local mean-value, monotonicity, or Lyapunov formulae.
These generalize previous work of the �rst author for mean curvature �ow and
other nonlinear di¤usions. Our results apply in particular to Ricci �ow, where
they yield a local monotone quantity directly analogous to Perelman�s reduced
volume ~V and a local identity related to Perelman�s average energy F .

1. Introduction

To motivate the local formulas we derive in this paper, consider the following
simple but quite general strategy for �nding monotone quantities in geometric �ows,
whose core idea is simply integration by parts. Let (Mn; g(t)) be a smooth one-
parameter family of complete Riemannian manifolds evolving for t 2 [a; b] by

(1.1)
@

@t
g = 2h:

Observe that the formal conjugate of the time-dependent heat operator @
@t �� on

the evolving manifold (Mn; g(t)) is �( @@t +�+trgh). If '; :M
n� [a; b]! R are

smooth functions for which the divergence theorem is valid (e.g. ifMn is compact
or if ' and  and their derivatives decay rapidly enough at in�nity), one has 1

(1.2)
d

dt

Z
Mn

' d� =

Z
Mn

f [( @
@t
��)'] + '[( @

@t
+�+ trgh) ]g d�:

If ' solves the heat equation and  solves the adjoint heat equation, it follows that
the integral

R
Mn ' d� is independent of time. More generally, if  [( @@t ��)'] and

'[( @@t +�+ trgh) ] both have the same sign, then
R
Mn ' d� will be monotone in

t. If the product ' is geometrically meaningful, this can yield useful results. Here
are but a few examples.

Example 1. The simplest example uses the heat equation on Euclidean space. Let

(1.3)  (x; t) =
1

[4�(s� t)]n=2 e
� jy�xj2

4(s�t) (x 2 Rn; t < s)

denote the backward heat kernel with singularity at (y; s) 2 Rn�R. If ' solves the
heat equation and neither it nor its derivatives grow too fast at in�nity, then

'(y; s) = lim
t%s

Z
Rn
'(x; t) (x; t) dx:

Because d
dt

R
Rn '(x; t) (x; t) dx = 0, one has '(y; s) =

R
Rn '(x; t) (x; t) dx for all

y 2 Rn and t < s, which illustrates the averaging property of the heat operator.

1Here and throughout this paper, d� denotes the volume form associated to g(t).
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Example 2. Let Ft : Mn ,! Mn
t � Rn+1 be a one-parameter family of hyper-

surfaces evolving by mean curvature �ow, @
@tFt = �H�, where H is the mean

curvature and � the outward unit normal of the hypersurface Mn
t . This corre-

sponds to h = �HA in (1.1), where A is the second fundamental form. De�ne  
by formula (1.3) applied to x 2 Rn+1 and t < s. Using trgh = �H2, one calculates
that

(
@

@t
+��H2) = �

���� (x� y)?2 (s� t) �H�
����2  :

Hence by (1.2),

d

dt

Z
Mn

t

' d� =

Z
Mn

t

[(
@

@t
��)'] d��

Z
Mn

t

���� (x� y)?2 (s� t) �H�
����2 ' d�:

This is established for ' � 1 by Huisken [20, Theorem 3.1] and generalized by
Huisken and the �rst author [8, §1] to any smooth ' for which the integrals are
�nite and integration by parts is permissible.
Hence

R
Mn

t
 d� is monotone nonincreasing in time and is constant precisely

on homothetically shrinking solutions. The monotonicity implies that the density
�MCFO := limt%0

R
Mn

t
 d� of the limit point O = (0; 0) is well de�ned. Another

consequence is that supMn
b
' � supMn

a
' if ( @@t ��)' � 0 for t 2 [a; b].

Example 3. A compact Riemannian manifold (Mn; g(t)) evolving by Ricci �ow
corresponds to h = �Rc in (1.1), so that trgh = �R. If 2

' � 1 and  =
�
�(2�f � jrf j2 +R) + f � n

�
(4��)�n=2e�f ;

then Perelman�s entropy may be written as W (g(t); f(t); �(t)) =
R
Mn ' d�. If

d�=dt = �1 and ( @@t +�)f = jrf j
2 �R� n

2� , then

(
@

@t
+��R) = 2� jRc+rrf � 1

2�
gj2(4��)�n=2e�f :

In this case, (1.2) becomes

d

dt
W(g(t); f(t); �(t)) =

Z
Mn

2� jRc+rrf � 1

2�
gj2(4��)�n=2e�f d�;

which is formula (3.4) of [31]. In particular, W is monotone increasing and is
constant precisely on compact shrinking gradient solitons.

Example 4. Again for (Mn; g(t)) evolving smoothly by Ricci �ow for t 2 [a; b],
let ` denote Perelman�s reduced distance [31] from an origin (y; b). Take ' � 1 and
choose  � v to be the reduced-volume density 3

v(x; t) =
1

[4�(b� t)]n=2 e
�`(x;b�t) (x 2Mn; t < b):

Then Perelman�s reduced volume is given by ~V (t) =
R
Mn ' d�. By [31, §7],

( @@t + � � R)v � 0 holds in the barrier sense, hence in the distributional sense.4

2Throughout this paper, r represents the spatial covariant derivative, and � = trgrr.
3The formula used here and throughout this paper di¤ers from Perelman�s by the constant

factor (4�)�n=2. This normalization is more convenient for our applications.
4It is a standard fact that a suitable barrier inequality implies a distributional inequality. See

[4] for relevant de�nitions and a proof. A direct proof for v is found in [38, Lemma 1.12].
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Thus one obtains monotonicity of the reduced volume if Mn is compact or if its
Ricci curvature is bounded.
More generally, one gets monotonicity of

R
Mn ' d� for any nonnegative super-

solution ' of the heat equation. In particular, taking '(x; t) = R(x; t) � Rmin(0)
on a compact manifold and noting that ( @@t ��)' � 0 holds pointwise, one veri�es
that

R
Mn [R�Rmin(0)]v d� is nondecreasing in time.

In [12], Feldman, Ilmanen, and the third author introduce an expanding en-
tropy and a forward reduced volume for compact manifolds evolving by Ricci �ow.
Monotonicity of these quantities may also be derived from (1.2) with ' � 1.
Similar ideas play important roles in Perelman�s proofs of di¤erential Harnack

estimates [31, §9] and pseudolocality [31, §10].

The strategy of integration by parts can be adapted to yield local monotone
quantities for geometric �ows. We shall present a rigorous derivation in Section 2
when we prove our main result, Theorem 7. Before doing so, however, we will
explain the underlying motivations by a purely formal argument. Suppose for the
purposes of this argument that 
 =

S
a�t�b
t is a smooth, precompact subset of

Mn � [a; b]. Assume that @
t is smooth with outward unit normal �, and let d�
denote the measure on @
t induced by g(t). If the product ' vanishes on @
,
then Z




f [( @
@t
��)'] + '[( @

@t
+�+ trgh) ]g d� dt(1.4)

=

Z b

a

�
d

dt

Z

t

' d�

�
dt+

Z
@


(' hr ; �i �  hr'; �i) d� dt:

This formula may be regarded as a space-time analog of Green�s second identity.
In the special case that 
 is the super-level set f(x; t) :  (x; t) > 0g and both 
a
and 
b are empty, then � = �jr j�1r , whence (1.4) reduces to

(1.5)
Z
f >0g

f [( @
@t
��)']+'[( @

@t
+�+trgh) ]g d� dt+

Z
f =0g

'jr j d� dt = 0:

Formula (1.5) enables a strategy for the construction of local monotone quantities.
Here is the strategy, again presented as a purely formal argument. Let ' and

	 > 0 be given. De�ne  = log	, and for r > 0, let  (r) = log(rn	). Notice that
r (r) = r for all r > 0. Take 
 to be the set Er de�ned for r > 0 by
(1.6) Er := f(x; t) : 	(x; t) > r�ng = f(x; t) :  (r) > 0g:
(When 	 is a fundamental solution 5 of a backward heat equation, the set Er is often
called a �heatball�.) Assume for the sake of this formal argument that the outward
unit normal to the time slice Er(t) := Er\(Mn�ftg) is � = �jr j�1r . Observe
that

(1.7) (
@

@t
+�) = 	�1(

@

@t
+�+ trgh)	� jr j2 � trgh:

Applying the coarea formula to each time slice Er(t), followed by an integration in
t, one obtains

(1.8)
d

dr

Z
Er

jr j2'd�dt = n

r

Z
@Er

jr j'd� dt:

5See Section 5 below.
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Similarly, one has
d

dr

Z
Er

(trgh) (r)'d�dt =

Z
Er

(trgh)[
@

@r
log(rn	)]'d�dt(1.9a)

=
n

r

Z
Er

(trgh)'d�dt;(1.9b)

because the boundary integral vanishes in this case. Now by rearranging (1.5) and
using (1.7)�(1.9), one getsZ

Er

f (r)[(
@

@t
��)'] + 	�1[( @

@t
+�+ trgh)	]'g d� dt

=

Z
Er

�
jr j2 � (trgh) (r)

	
'd�dt�

Z
@Er

'jr j d� dt+
Z
Er

(trgh)'d�dt

=

Z
Er

�
jr j2 � (trgh) (r)

	
'd�dt� r

n

d

dr

Z
Er

�
jr j2 � (trgh) (r)

	
'd�dt:

De�ning

(1.10) P';	(r) :=

Z
Er

�
jr log	j2 � (trgh) log(rn	)

	
'd�dt

and applying an integrating factor, one obtains the following formal identity. Since
log(rn	) =  (r) > 0 in Er, this identity produces a local monotone quantity
whenever ( @@t ��)' and '(

@
@t +�+ trgh)	 have the same sign.

Proto-theorem. Whenever the steps above can be rigorously justi�ed and all in-
tegrals in sight make sense, the identity
(1.11)
d

dr

�
P';	(r)

rn

�
= � n

rn+1

Z
Er

�
log(rn	)(

@

@t
��)'+	�1[( @

@t
+�+ trgh)	]'

�
d� dt

will hold in an appropriate sense.

In spirit, (1.11) is a parabolic analogue of the formula

d

dr

 
1

rn

Z
jx�yj<r

'(x) d�

!
=

1

2rn+1

Z
jx�yj<r

(r2 � jx� yj2)�'d�;

which for harmonic ' (i.e. �' = 0) leads to the classical local mean-value repre-
sentation formulae

'(y) =
1

!nrn

Z
jx�yj<r

'(x) d� =
1

n!nrn�1

Z
jx�yj=r

'(x) d�:

The main result of this paper, Theorem 7, is a rigorous version of the motivational
proto-theorem above. We establish Theorem 7 in a su¢ ciently robust framework
to provide new proofs of some classical mean-value formulae (Examples 5�8), to
generate several new results (Corollaries 13, 15, 18, 19, 23, 26, 27) and to permit
generalizations for future applications. Our immediate original results are organized
as follows: in Section 4, we study Perelman�s reduced volume for manifolds evolving
by Ricci �ow; in Section 5, we discuss heat kernels on evolving Riemannian mani-
folds (including �xed manifolds as an interesting special case); and in Section 6, we
consider Perelman�s average energy for manifolds evolving by Ricci �ow. In [27],
the third author applies some of these results to obtain local regularity theorems
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for Ricci �ow. Potential future generalizations that we have in mind concern vari-
fold (Brakke) solutions of mean curvature �ow, solutions of Ricci �ow with surgery,
and fundamental solutions in the context of �weak�(Bakry�Émery) Ricci curvature,
e.g. [23].

As noted above, Theorem 7 allows new proofs of several previously known local
monotonicity formulae, all of which should be compared with (1.11). To wit:

Example 5. Consider the Euclidean metric on Mn = Rn with h = 0. If 	 is
the backwards heat kernel (1.3) centered at (y; s) and the heatball Er � Er(y; s) is
de�ned by (1.6), then (1.10) becomes

P';	(r) =

Z
Er(y;s)

'(x; t)
jy � xj2
4(s� t)2 d� dt:

Thus (1.11) reduces to

(1.12)
d

dr

�
P';	(r)

rn

�
= � n

rn+1

Z
Er(y;s)

log(rn	)(
@

@t
��)'d�dt:

Since
R
Er(y;s)

jy�xj2
4(s�t)2 d� dt = 1, this implies the mean value identity

(1.13) '(y; s) =
1

rn

Z
Er(y;s)

'(x; t)
jy � xj2
4(s� t)2 d� dt

for all ' satisfying ( @@t ��)' = 0. This localizes Example 1.
To our knowledge, Pini [28, 29, 30] was the �rst to prove (1.13) in the case n = 1.

This was later generalized to n > 1 by Watson [35]. The general formula (1.12)
appears in Evans�Gariepy [9]. There are many similar mean-value representation
formulae for more general parabolic operators. For example, see Fabes�Garofalo
[10] and Garofalo�Lanconelli [14]. (Also see Corollaries 23 and 26, below.)

Example 6. Surface integrals over heatballs �rst appear in the work of Fulks [13],
who proves that a continuous function ' on Rn � (a; b) satis�es

'(y; s) =
1

rn

Z
@Er

'(x; t)
jy � xj2p

4jy � xj2(s� t)2 + [jy � xj2 � 2n(s� t)]2
d�

for all su¢ ciently small r > 0 if and only if ' is a solution of the heat equation.
(Compare to Corollary 25 below.)

Example 7. Previous results of the �rst author [5] localize Example 2 for mean
curvature �ow. On Rn+1 � (�1; 0), de�ne 	(x; t) := (�4�t)�n=2ejxj2=4t. Sub-
stitute 	�1( @@t + � + trgh)	 = �jr? + H�j2 and trgh = �H2 into (1.10) and
(1.11). If the space-time track M =

S
t<0Mn

t of a solution to mean curvature
�ow is well de�ned in the cylinder B(0;

p
2n�r2=�) � (��r2=4�; 0), then [5] proves

that formula (1.11), with the integrals taken over Er \ M, holds in the distri-
butional sense for any r 2 (0; �r) and any ' for which all integral expressions
are �nite. In particular, P1;	(r)=rn is monotone increasing in r. The density
�MCFO := limt%0

R
Mn

t
	(x; t) d� of the limit point O = (0; 0) can thus be calculated

locally by

�MCFO = lim
r&0

P1;	(r)

rn
:
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(Compare to Corollary 18 below.) Related work of the �rst author for other non-
linear di¤usions is found in [7].

Example 8. Perelman�s scaled entropy W and the forward reduced volume �+
are localized by the third author [25, Propositions 5.2, 5.3, 5.4]. Although only
stated there for Kähler�Ricci �ow, these localizations remain valid for Ricci �ow
in general. They are motivated by the �rst author�s work on mean curvature �ow
[6] and arise from (1.2) by taking ' to be a suitable cuto¤ function de�ned with
respect to �` and �`+, respectively.

The remainder of this paper is organized as follows. In Section 2, we rigor-
ously derive Theorem 7: the general local monotonicity formula motivated by for-
mula (1.11) above. In Section 3, we derive a local gradient estimate for solutions
of the conjugate heat equation. In Sections 4�5, we apply this machinery to ob-
tain new results in some special cases where our assumptions can be checked and
in which (1.11) simpli�es and becomes more familiar. The Appendix (Section 7)
reviews some relevant properties of Perelman�s reduced distance and volume.

Acknowledgments. K.E. was partially supported by SFB 647. D.K. was partially
supported by NSF grants DMS-0511184, DMS-0505920, and a University of Texas
Summer Research Assignment. L.N. was partially supported by NSF grants and an
Alfred P. Sloan Fellowship. P.T. was partially supported by an EPSRC Advanced
Research Fellowship.
L.N. thanks both Professor Bennett Chow and Professor Peter Ebenfelt for bring-

ing Watson�s mean-value equality to his attention. This motivated him to study
heatball constructions and in particular [10] and [5]. He also thanks Professor Peter
Li for many helpful discussions.

2. The rigorous derivation

Let �1 < a < b <1, and let (Mn; g(t)) be a smooth one-parameter family of
complete Riemannian manifolds evolving by (1.1) for t 2 [a; b]. As noted above, the
formal conjugate of the heat operator @

@t �� on (Mn; g(t)) is �( @@t + � + trgh).
For � 2 R, we adopt the standard notation [�]+ := maxf�; 0g.
Let 	 be a given positive function onMn�[a; b). As in Section 1, it is convenient

to work with

(2.1)  := log	

and the function de�ned for each r > 0 by

(2.2)  (r) :=  + n log r:

For r > 0, we de�ne the space-time super-level set (�heatball�)

Er = f(x; t) 2Mn � [a; b) : 	 > r�ng(2.3a)

= f(x; t) 2Mn � [a; b) :  (r) > 0g:(2.3b)

We would like to allow 	 to blow up as we approach time t = b; in particular, we
have in mind various functions which have a singularity that agrees asymptotically
with a (backwards) heat kernel centered at some point in Mn at time t = b.
(See Sections 6�5.) In this context, we make, for the moment, the following three
assumptions about 	.
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Assumption 1. The function 	 is locally Lipschitz onMn�[a; s] for any s 2 (a; b).

Assumption 2. There exists a compact subset 
 � Mn such that 	 is bounded
outside 
� [a; b).

Assumption 3. There exists �r > 0 such that

lim
s%b

 Z
E�r\(Mn�fsg)

j j d�
!
= 0

and Z
E�r

jr j2 d� dt <1:

Remark 4. By the continuity of 	 from Assumption 1 and its boundedness from
Assumption 2, we can be sure, after reducing �r > 0 if necessary, that 	 � �r�n

outside some compact subset of Mn � (a; b]. In particular, we then know that the
super-level sets Er lie inside this compact subset for r 2 (0; �r].

Remark 5. By Assumption 3 and compactness of E�r, one has
R
E�r
j j d� dt <1.

Remark 6. We make no direct assumptions about the regularity of the sets Er
themselves.

Let ' be an arbitrary smooth function on Mn � (a; b]. By Assumption 3, the
quantity

(2.4) P';	(r) :=

Z
Er

[jr j2 �  (r)(trgh)]'d�dt

is �nite for r 2 (0; �r]. Our main result is as follows:

Theorem 7. Suppose that (Mn; g(t)) is a smooth one-parameter family of complete
Riemannian manifolds evolving by (1.1) for t 2 [a; b], that 	 :Mn� [a; b)! (0;1)
satis�es Assumptions 1�3, that �r > 0 is chosen according to Assumption 3 and
Remark 4, and that 0 < r0 < r1 � �r.
If 	 is smooth and the function

( @@t +�+ trgh)	

	
� @ 

@t
+� + jr j2 + trgh

belongs to L1(E�r), then

P';	(r1)

rn1
� P';	(r0)

rn0
=

(2.5)

Z r1

r0

n

rn+1

Z
Er

[�(@ 
@t
+� + jr j2 + trgh)'� ( + n log r)(

@'

@t
��')] d� dt dr:

If, instead, 	 is merely locally Lipschitz in the sense of Assumption 1, and the
inequality

( @@t +�+ trgh)	

	
� 0

holds in the distributional sense, and ' � 0, then

(2.6)
P';	(r1)

rn1
� P';	(r0)

rn0
� �

Z r1

r0

n

rn+1

Z
Er

( + n log r)(
@'

@t
��') d� dt dr:
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Remark 8. If ' solves the heat equation and 	 solves the conjugate heat equation,
then (2.5) implies that P';	(r)=rn is independent of r. See Example 5 (above) and
Corollary 23 (below).

Proof of Theorem 7. We begin by assuming that 	 is smooth. In the proof, we
write P (�) � P';	(�). For most of the proof, we will work with a modi�ed function,
namely

(2.7) P (r; s) :=

Z
Er\(Mn�[a;s])

[jr j2 �  (r)(trgh)]'d�dt;

arising from restriction to the time interval [a; s], for some s 2 (a; b). As a result,
we will only be working on domains on which 	 and its derivatives are bounded,
and the convergence of integrals will not be in doubt. A limit s% b will be taken
at the end.
Let � : R ! [0; 1] be a smooth function with the properties that �(y) = 0 for

y � 0 and � 0(y) � 0. Let Z : R ! [0;1) denote the primitive of � de�ned by
Z(y) =

R y
�1 �(x) dx. One should keep in mind that � can be made very close to

the Heaviside function, in which case Z(y) will lie a little below [y]+.
For r 2 (0; �r] and s 2 (a; b), we de�ne

(2.8) Q(r; s) :=

Z
Mn�[a;s]

[jr j2�( (r))� Z( (r))(trgh)]'d�dt;

which should be regarded as a perturbation of P (r; s), and will relieve us of some
technical problems arising from the fact that we have no control on the regularity of
Er. Note that �( (r)) and Z( (r)) have support in Er. Therefore, the convergence
of the integrals is guaranteed.
In the following computations, we suppress the dependence of Q on s and assume

that each integral is over the space-time regionMn� [a; s] unless otherwise stated.
One has

rn+1

n

d

dr

�
Q(r)

rn

�
=
r

n
Q0(r)�Q(r)(2.9)

=

Z
[jr j2� 0( (r))� Z 0( (r))(trgh)]'d�dt�Q(r)

=

Z
[jr j2� 0( (r))]'d�dt�

Z
[�( (r))(trgh)]'d�dt

�
Z
[jr j2�( (r))]'d�dt+

Z
[Z( (r))(trgh)]'d�dt:

The �rst integral and the last integral in the last equality on the right-hand side
require further attention.
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For the �rst of these, we keep in mind that r = r (r) and computeZ
[jr j2� 0( (r))]'d�dt(2.10)

=

Z 

r ;r(�( (r)))

�
'd�dt

= �
Z
[(� )�( (r))'+



r (r);r'

�
�( (r))] d� dt

=

Z
[�(� )�( (r))'+ (�') (r)�( (r)) + hr ;r'i (r)� 0( (r))] d� dt;

the calculation being valid on each time slice.
For the fourth integral, we compute that at each time t 2 (a; b), one has

d

dt

Z
Mn�ftg

Z( (r))'d� =

Z
Mn�ftg

[Z 0( (r))
@ 

@t
'+Z( (r))

@'

@t
+Z( (r))'(trgh)] d�;

the �nal term coming from di¤erentiation of the volume form. Integrating over the
time interval [a; s] and using the facts that Z 0 = � and that Z( (r)) = 0 at t = a
(which holds because  (r) � 0 at t = a by Remark 4), we �nd thatZ

Z( (r))(trgh)'d�dt = �
Z
[�( (r))

@ 

@t
'+ Z( (r))

@'

@t
] d� dt(2.11)

+

Z
Mn�fsg

Z( (r))'d�;

where the integrals are still overMn � [a; s] unless otherwise indicated.
We now combine (2.9) with (2.10) and (2.11) to obtain

rn+1

n

d

dr

�
Q(r)

rn

�
= �

Z
(
@ 

@t
+� + jr j2 + trgh)�( (r))'d�dt(2.12)

+

Z
(�') (r)�( (r)) d� dt�

Z
@'

@t
Z( (r)) d� dt

+

Z
hr ;r'i (r)� 0( (r)) d� dt+

Z
Mn�fsg

Z( (r))'d�:

The entire identity may now be multiplied by n=rn+1 and integrated with respect
to r between r0 and r1, where 0 < r0 < r1 � �r, to get an identity for the quantity
Q(r1; s)=r

n
1 �Q(r0; s)=rn0 .

We may simplify the resulting expression by picking an appropriate sequence of
valid functions � and passing to the limit. Precisely, we pick a smooth �1 : R! [0; 1]
with the properties that �1(y) = 0 for y � 1=2, �1(y) = 1 for y � 1, and � 01(y) � 0.
Then we de�ne a sequence �k : R ! [0; 1] by �k(y) = �1(2

k�1y). As k increases,
this sequence increases pointwise to the characteristic function of (0;1). The
corresponding Zk converge uniformly to the function y 7! [y]+. Crucially, we also
can make use of the facts that �k( (r)) converges to the characteristic function of
Er in L1(Mn � [a; b]) and that  (r)� 0k( (r)) is a bounded sequence of functions on
Mn � [a; b) with disjoint supports for each k. Indeed, the support of � 0k lies within
the interval (2�k; 21�k).
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For each r 2 (0; �r], we have Q(r; s) ! P (r; s) as k ! 1. Using the dominated
convergence theorem, our expression becomes

P (r1; s)

rn1
� P (r0; s)

rn0

(2.13)

= �
Z r1

r0

n

rn+1

Z
Er\(Mn�[a;s])

(
@ 

@t
+� + jr j2 + trgh)'d�dt dr

�
Z r1

r0

n

rn+1

Z
Er\(Mn�[a;s])

 (r)(
@'

@t
��') d� dt dr

+

Z r1

r0

n

rn+1

Z
Mn�fsg

[ (r)]+'d�dr:

Now we may take the limit as s % b. By Assumption 3, the �nal term converges
to zero, and we end up with (2.5) as desired.

Next we turn to the case that  is merely Lipschitz, in the sense of Assumption 1.
Given s 2 (a; b) and functions � and Z as above, there exists a sequence of smooth
functions  j on Mn � [a; b] such that  j !  in both W 1;2 and C0 on the set
E�r \ (Mn � [a; s]). By hypothesis on our Lipschitz  , we have

I :=

Z
Mn�[a;s]

�(@ 
@t
+� + jr j2 + trgh)�( (r))'d�dt � 0;

where we make sense of the Laplacian term via integration by parts, namelyZ
�(� )�( (r))'d�dt :=

Z
[hr ;r'i �( (r)) + jr j2� 0( (r))'] d� dt:

By de�nition of  j , we have

lim
j!1

Z
Mn�[a;s]

�(@ j
@t

+� j + jr j j2 + trgh)�(( j)(r))'d�dt = I � 0;

uniformly in r 2 (0; �r]. Consequently, we may carry out the same calculations
that we did in the �rst part of the proof to obtain an inequality for the quantity
Q(r1; s)=r

n
1 �Q(r0; s)=rn0 , with  j in place of  . We then pass to the limit as j !1

to obtain the inequality

Q(r1; s)

rn1
� Q(r0; s)

rn0
�
Z r1

r0

n

rn+1

Z
Mn�[a;s]

(�') (r)�( (r)) d� dt dr(2.14)

�
Z r1

r0

n

rn+1

Z
Mn�[a;s]

@'

@t
Z( (r)) d� dt dr

+

Z r1

r0

n

rn+1

Z
Mn�[a;s]

hr ;r'i (r)� 0( (r)) d� dt dr

+

Z r1

r0

n

rn+1

Z
Mn�fsg

Z( (r))'d�dr

for our Lipschitz  . Finally, we replace � with the same sequence of cut-o¤ functions
�k that we used before (thus approximating the Heaviside function), take the limit
as k !1, and then take the limit as s% b. This gives the inequality (2.6). �
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The argument above may be compared to proofs of earlier results, especially the
proof [5] of the local monotonicity formula for mean curvature �ow.

There is an alternative formula for (2.4) that we �nd useful in the sequel:

Lemma 9. Suppose that (Mn; g(t)) is a smooth one-parameter family of complete
Riemannian manifolds evolving by (1.1) for t 2 [a; b], that 	 :Mn� [a; b)! (0;1)
satis�es Assumptions 1�3, that �r > 0 is determined by Assumption 3 and Remark 4,
and that 0 < r0 < r1 � �r.
If ' � 1 and @ 

@t + jr j
2 2 L1(E�r), then for all r 2 (0; �r], one has

P';	(r) =

Z
Er

(
@ 

@t
+ jr j2) d� dt:

Proof. In the case that ' � 1, substituting formula (2.11) into formula (2.8) yields

Q(r; s) =

Z
Mn�[a;s]

(
@ 

@t
+ jr j2)�( (r)) d� dt�

Z
Mn�fsg

Z( (r)) d�:

Although (2.11) was derived assuming smoothness of  , one can verify that it holds
for locally Lipschitz 	 satisfying Assumption 1 by approximating  by a sequence
of smooth  j (as in the proof of Theorem 7) and then passing to the limit as j !1.
Then if @ @t + jr j

2 2 L1(E�r), one may (again as in the proof of Theorem 7) choose
a sequence �k along which Q(r; s)! P (r; s) as k !1 and then let s% b to obtain
the stated formula. �

3. A local gradient estimate

In order to apply Theorem 7 to a fundamental solution of the heat equation of
an evolving manifold in Section 5, we need a local gradient estimate. One approach
would be to adapt existing theory of local heat kernel asymptotics. Instead, we
prove a more general result which may be of independent interest. Compare [17],
[22], [24], the recent [33], [34], and [36, 37].

Let (Mn; g(t)) be a smooth one-parameter family of complete Riemannian man-
ifolds evolving by (1.1) for t 2 [0; �t]. We shall abuse notation by writing g(�) to
mean g(�(t)), where

�(t) := �t� t:
In the remainder of this section, we state our results solely in terms of � . In
particular, g(�) satis�es @

@� g = �2h onM
n � [0; �t].

Given �x 2Mn and � > 0, de�ne

(3.1) 
(�) :=
[

0����t

�
Bg(�)(�x; �)� f�g

�
�Mn � [0; �t]:

We now prove a local a priori estimate for bounded positive solutions of the con-
jugate heat equation

(3.2) (
@

@�
��� trgh)v = 0:

We will apply this in Section 5.
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Theorem 10. Let (Mn; g(�)) be a smooth one-parameter family of complete Rie-
mannian manifolds evolving by @

@� g = �2h for 0 � � � �t. Assume there exist
k1; k2; k3 � 0 such that

h � k1g; Rc � �k2g; and jr(trgh)j � k3

in the space-time region 
(2�) given by (3.1). Assume further that v(�) solves (3.2)
and satis�es 0 < v � A in 
(2�).
Then there exist a constant C1 depending only on n and an absolute constant C2

such that at all (x; �) 2 
(�), one has
jrvj2
v2

� (1 + log A
v
)2
�
1

�
+ C1k1 + 2k2 + k3 +

p
k3 +

C1
p
k2� coth(

p
k2�) + C2

�2

�
:

Proof. By scaling, we may assume that A = 1. We de�ne 6

f := log v and w := jr log(1� f)j2;
computing that

(
@

@�
��)f = jrf j2 + (trgh):

Then using Bochner�Weitzenböck, we calculate that

(
@

@�
��)jrf j2 = 2h(rf;rf)�2Rc(rf;rf)�2jrrf j2+2



r(trgh+ jrf j2);rf

�
and

(
@

@�
��)w = 1

(1� f)2 [2h(rf;rf)� 2Rc(rf;rf) + 2 hr(trgh);rfi]

� 2

(1� f)2

"
jrrf j2 +



rjrf j2;rf

�
1� f +

jrf j4
(1� f)2

#

� 4 jrf j4
(1� f)4 + 2

(trgh)jrf j2 + jrf j4
(1� f)3 � 2f



rjrf j2;rf

�
(1� f)3 :

By rewriting the last term above as

�2f


rjrf j2;rf

�
(1� f)3 = �2 f

1� f hrw;rfi+ 4
jrf j4
(1� f)4 � 4

jrf j4
(1� f)3

and cancelling terms, we obtain

(
@

@�
��)w = 1

(1� f)2 [2h(rf;rf)� 2Rc(rf;rf) + 2 hr(trgh);rfi]

� 2

(1� f)2

"
jrrf j2 +



rjrf j2;rf

�
1� f +

jrf j4
(1� f)2

#

+ 2
(trgh)jrf j2 � jrf j4

(1� f)3 + 2
�f
1� f hrw;rfi :

Now let �(s) be a smooth nonnegative cuto¤ function such that �(s) = 1 when
s � 1 and �(s) = 0 when s � 2, with �0 � 0, j�0j � C2, (�0)2 � C2�, and �00 � �C2.
De�ne

u(x; �) := �

�
dg(�)(�x; x)

�

�
:

6Note that w is used by Souplet�Zhang [33, Theorem 1.1] in generalizing Hamilton�s result
[17]. A similar function is employed by Yau [36]. Also see related work of the third author [26].
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Observe that at each �xed � , u is smooth in space o¤ of the g(�) cut locus of �x.
However, for our purposes of applying the maximum principle, Calabi�s trick allows
us to proceed as though u were smooth everywhere. Thus, we calculate that

jruj2
u

� C2
�2

and
@u

@�
� C2k1

and

��u � C1
p
k2� coth(

p
k2�) + C2

�2
:

Now let G := uw and compute that

(
@

@�
��)(�G) = G+ �u

�
(
@

@�
��)w

�
+ �w

�
(
@

@�
��)u

�
� 2� hru;rwi :

For any �1 > 0, consider �G onMn� [0; �1]. At any point (x0; �0) where �G attains
its maximum onMn � [0; �1], we have 0 � ( @@� ��)(�G) and

(
@

@�
��)(�G) � G� 2� hru;rwi

+ 2�u

�
h(rf;rf)� Rc(rf;rf) + hr(trgh);rfi

(1� f)2 +
(trgh)jrf j2
(1� f)3

�
+ 2�u

�
�f
1� f hrw;rfi �

jrf j4
(1� f)3

�
+ �w

�
C2k1 +

C1
p
k2� coth(

p
k2�) + C2

�2

�
:

Using the fact that rG(x0; t0) = 0, we can replace urw by �wru above. Then
multiplying both sides of the inequality by u 2 [0; 1] and using 1=(1 � f) � 1, we
obtain

0 � G+ 2�
n
[(n+ 1)k1 + k2]G+ k3

p
G
o

+ 2�Gjrujjrf j
�
�f
1� f

�
� 2�(1� f)G2

+ �G

�
C2k1 +

C1
p
k2� coth(

p
k2�) + C2

�2

�
:

Noticing that 2k3
p
G � k3(G+ 1) and that

2�Gjrujjrf j
�
�f
1� f

�
� �G

�
jrf j2
1� f u+

jruj2
u

f2

1� f

�
� �(1� f)G2 + �GC2

�2
f2

1� f ;

we estimate at (x0; t0) that

0 � �k3 +G

�
1 + �

�
C1k1 + 2k2 + k3 +

C1
p
k2� coth(

p
k2�) + C2

�2

��
+ �G

C2
�2

f2

1� f � �(1� f)G
2:
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Dividing both sides by �(1�f) while noting that 1=(1�f) � 1 and �f=(1�f) � 1,
we get

0 � k3 +G

�
1

�
+ C1k1 + 2k2 + k3 +

C1
p
k2� coth(

p
k2�) + C2

�2

�
�G2;

from which we can conclude that

G � 1

�
+ C1k1 + 2k2 + k3 +

p
k3 +

C1
p
k2� coth(

p
k2�) + C2

�2

at (x0; �0). Hence W (�1) := �1 supx2Bg(�)(�x;�)
w(x; �1) may be estimated by

W (�1) � �0G(x0; �0)

� 1 + �0
�
C1k1 + 2k2 + k3 +

p
k3 +

C1
p
k2� coth(

p
k2�) + C2

�2

�
� 1 + �1

�
C1k1 + 2k2 + k3 +

p
k3 +

C1
p
k2� coth(

p
k2�) + C2

�2

�
:

Since �1 > 0 was arbitrary, the result follows. �

Remark 11. In the special case that h � 0, we have
jrvj2
v2

� (1 + log A
v
)2
�
1

�
+ 2k2 +

C1
p
k2� coth(

p
k2�) + C2

�2

�
at (x; �), for all times � 2 [0; �t] and points x 2 Bg(�)(�x; �), which slightly improves
a result of [33].

4. Reduced volume for Ricci flow

Our �rst application of Theorem 7 is to Ricci �ow. Let (Mn; g(t)) be a complete
solution of Ricci �ow that remains smooth for 0 � t � �t. This corresponds to
h = �Rc and trgh = �R in (1.1).

4.1. Localizing Perelman�s reduced volume. Perelman [31, §7] has discovered
a remarkable quantity that may be regarded as a kind of parabolic distance for Ricci
�ow. De�ne �(t) := �t�t, noting that g(�(t)) then satis�es @

@� g = 2Rc for 0 � � � �t.
Fix �x 2 Mn and regard (�x; 0) (in (x; �) coordinates) as a space-time origin. The
space-time action of a smooth path  with (0) = (�x; 0) and (�) = (x; �) is

L() :=
Z �

0

p
�

�
jd
d�
j2 +R

�
d�(4.1a)

=

Z p
�

0

�
1

2
jd
ds
j2 + 2s2R

�
ds (s =

p
�):(4.1b)

Taking the in�mum over all such paths, Perelman de�nes the reduced distance from
(�x; 0) to (x; �) as

(4.2) `(x; �) = `(�x;0)(x; �) :=
1

2
p
�
inf

L();

and observes that

(4.3) v(x; �) = v(�x;0)(x; �) :=
1

(4��)n=2
e�`(x;�)
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is a subsolution of the conjugate heat equation u� = �u�Ru in the barrier sense
[31], hence in the distributional sense.7 It follows that the reduced volume (essen-
tially a Gaussian weighted volume)

(4.4) ~V (t) = ~V(�x;0)(t) :=

Z
Mn

v(x; �) d�

is a monotonically increasing function of t which is constant precisely on shrinking
gradient solitons. (Compare to Example 4 above.)
The interpretations of ` as parabolic distance and ~V as Gaussian weighted volume

are elucidated by the following examples.

Example 9. Let (Mn; g) be a Riemannian manifold of nonnegative Ricci curva-
ture, and let q be any smooth superharmonic function (�q � 0). In their seminal
paper [22], Li and Yau de�ne

�(x; �) = inf

�
1

4�

Z 1

0

jd
d�
j2 d� + �

Z 1

0

q((�)) d�

�
;

where the in�mum is taken over all smooth paths from an origin (�x; 0). As a
special case of their more general results [22, Theorem 4.3], they observe that
(4��)�n=2e��(x;�) is a distributional subsolution of the linear parabolic equation
( @@� ��+ q)u = 0.
Example 10. Let (Rn; g) denote Euclidean space with its standard �at metric.
Given � 2 R, de�ne X = grad(�4 jxj

2). Then one has 0 = Rc = �g � LXg. Hence
there is a Ricci soliton structure (i.e. an in�nitesimal Ricci soliton) on Euclidean
space, called the Gaussian soliton. It is nontrivial whenever � 6= 0.
Take � = 1 to give (Rn; g) the structure of a gradient shrinking soliton. Then

(�) =
p
�=� x is an L-geodesic from (0; 0) to (x; �). Thus the reduced distance is

`(0;0)(x; �) = jxj2=4� and the reduced volume integrand is exactly the heat kernel
v(0;0)(x; �) = (4��)

�n=2e�jxj
2=4� . Hence ~V(0;0)(t) � 1. (Compare [21, §15].)

Example 11. Let Snr(�) denote the round sphere of radius r(�) =
p
2(n� 1)� . This

is a positive Einstein manifold, hence a homothetically shrinking (in t) solution of
Ricci �ow. Along any sequence (xk; �k) of smooth origins approaching the singular-
ity O at � = 0, one gets a smooth function `O(x; �) := limk!1 `(xk;�k)(x; �) � n=2

measuring the reduced distance from O. Hence ~VO(t) � [(n� 1)=(2�e)]n=2Vol(Sn1 )
for all t < 0. (See [4, §7.1].)

Our �rst application of Theorem 7 is where 	 is Perelman�s reduced-volume
density v (4.3). Let ` denote the reduced distance (4.2) from a smooth origin (�x; �t)
and assume there exists k 2 (0;1) such that Rc � �kg on Mn � [0; �t]. In what
follows, we will freely use results from the Appendix (Section 7, below).
Lemma 39 guarantees that ` is locally Lipschitz, hence that Assumption 1 is

satis�ed. (Also see [38] or [4].) The estimate in Part (1) of Lemma 28 ensures
that Assumption 2 is satis�ed. Assumption 3 follows from combining that es-
timate, Corollary 32, and Lemma 40. Here we may take any �r > 0 satisfying
�r2 < minf�t=c; 4�g, where c = e4k�t=3=(4�). So for r 2 (0; �r], consider

P';v(r) :=

Z
Er

[jr`j2 +R(n log rp
4��

� `)]'d�dt:

7See [38] for a direct proof of the distributional inequality.
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Notice that jr`j2 replaces the term jx��xj2
4�2 in the heatball formulas for Euclidean

space and solutions of mean curvature �ow. See Examples 5 and 7, respectively.

Remark 12. For r 2 (0; �r], one may write P1;v(r) in either alternative form

P1;v(r) =

Z
Er

(
n

2�
+ `� + jr`j2) d� dt(4.5a)

=

Z
Er

(
n

2�
� 1
2
��3=2K) d� dt:(4.5b)

Here K(x; �) =
R �
0
�3=2H(d=d�) d� is computed along a minimizing L-geodesic ,

where H(X) = 2Rc(X;X)�(R�+2 hrR;Xi+R=�) is Hamilton�s traced di¤erential
Harnack expression.
If R � 0 and ' � 0 on E�r, then for all r 2 (0; �r], one has

(4.6) P';v(r) =

Z
Er

[jr`j2 +R (r)]'d�dt �
Z
Er

jr`j2'd�dt � 0:

If (Mn; g(0)) has nonnegative curvature operator and �r2 < 4��t(1 � 1=C) for
some C > 1, then for all r 2 (0; �r],

(4.7) P1;v(r) �
Z
Er

n=2 + C`

�
d� dt:

Proof. By Part (2) of Lemma 39, the arguments of Lemma 40 apply to show that
 t + jr j2 = n

2� + `� + jr`j2 2 L1(E�r). Hence Lemma 9 and identities (7.5) and
(7.6) of [31] imply formulae (4.5).
Since  (r) > 0 in Er, the inequalities in (4.6) are clear.
If (Mn; g(0)) has nonnegative curvature operator, Hamilton�s traced di¤erential

Harnack inequality [18] implies that

H(d
d�
) � �R( 1

�
+

1
�t� � ) = �

�t
�t� �

R

�

along a minimizing L-geodesic . Hence

�1
2
��3=2K �

�t
�t� �

��3=2

2

Z �

0

p
�(R+ jd

d�
j2) d� =

�t
�t� �

`

�
:

By Lemma 31, one has � < r2=4�, which gives estimate (4.7). �

Our main result in this section is as follows. Recall that  (r) := n log( rp
4��
)� `.

Corollary 13. Let (Mn; g(t)) be a complete solution of Ricci �ow that remains
smooth for 0 � t � �t and satis�es Rc � �kg. Let ' be any smooth nonnega-
tive function of (x; t) and let c = e4k�t=3=(4�). Then whenever 0 < r0 < r1 <

minf
p
�t=c; 2

p
�g, one has

(4.8)
P';v(r1)

rn1
� P';v(r0)

rn0
� �

Z r1

r0

n

rn+1

Z
Er

 (r)(
@'

@t
��') d� dt dr:

Furthermore,

(4.9) '(�x; �t) = lim
r&0

P';v(r)

rn
:
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In particular,

(4.10) '(�x; �t) � P';v(r1)

rn1
+

Z r1

0

n

rn+1

Z
Er

 (r)[(
@

@t
��)'] d� dt dr:

Proof. The quantity 	 = v satis�es @v
@t + �v � Rv � 0 as a distribution. (This

is implied by Perelman�s barrier inequality [31, (7.13)]; see [38, Lemma 1.12] for a
direct proof.) Hence we may apply Theorem 7 in the form (2.6) to obtain (4.8).
Formula (7.6) of Perelman [31] implies that

P';v(r) =

Z
Er

[
`

�
+R (r) �R� ��3=2K]'d�dt:

By Corollary 32, there is a precompact neighborhood U of �x with Er � U � [0; cr2]
for all r > 0 under consideration. By Lemma 35, there exists a precompact set
V such that the images of all minimizing L-geodesics from (�x; 0) to points in U �
[0; cr2] are contained in the set V � [0; cr2], in which one has uniform bounds on all

curvatures and their derivatives. So by Lemma 28, one has `
� =

d20(�x;x)
4�2 +O( 1� ) and

R (r) = R(n log rp
4��

� `) = O( 1� ) as � & 0. By Corollary 37, ��3=2K is also O( 1� )
as � & 0. Adapting the arguments in the proof of Lemma 40, one concludes that

lim
r&0

P';v(r)

rn
= lim
r&0

�
1

rn

Z
Er

d20(�x; x)

4�2
'd�dt

�
= '(�x; �t);

exactly as in the calculation for Euclidean space. (Also see Corollary 23, below.) �
An example of how this result may be applied is the following local Harnack

inequality, which follows directly from (4.10).

Remark 14. Assume the hypotheses of Corollary 13 hold. If R � 0 on Er1 , then

R(�x; �t) � 1

rn1

Z
Er1

[jr`j2 +R (r)]Rd�dt+
Z r1

0

2n

rn+1

Z
Er

 (r) jRcj2 d� dt dr:

The inequality (4.8) is sharp in the following sense.

Corollary 15. Let (Mn; g(t)) be a complete solution of Ricci �ow that is smooth
for 0 � t � �t, with Rc � �kg. If equality holds in (4.8) for ' � 1, then (Er; g(t))
is isometric to a shrinking gradient soliton for all r < minf

p
�t=c; 2

p
�g.

Proof. From the proof of Theorem 7, it is easy to see that

d

dr

�
P1;v(r)

rn

�
= � n

rn+1

Z
Er

( @@t +�+ trgh)v

v
d� dt

for almost all r < minf
p
�t=c; 2

p
�g. Therefore, equality in (4.8) implies that v is a

distributional solution of the parabolic equation

(
@

@�
��+R)v = 0

in Er for almost all small r. By parabolic regularity, v is actually smooth. This
implies that one has equality in the chain of inequalities

�`� jr`j2 +R� n

2�
� `� = �(�R+

n

2�
� 1
2
��3=2K) + n� 2`

2�
� ��`+ n� 2`

2�

that follow from equations (7.13), (7.5), and (7.10) of [31]. Hence one has

u := �(2�`� jr`j2 +R) + `� n = 0:
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By equation (9.1) of [31] (where the roles of u and v are reversed), this implies that

0 = (
@

@�
��+R)(uv) = �2� jRc+rr`� 1

2�
gj2v:

This is possible only if (Er; g(t)) has the structure of a shrinking gradient soliton
with potential function `. �

Remark 16. For applications of Corollary 15 to regularity theorems for Ricci �ow,
see [27] by the third author.

4.2. Comparing global and local quantities. Corollaries 13 and 15 suggest a
natural question: how does the purely local monotone quantity P1;v(r)=rn compare
to Perelman�s global monotone quantity ~V (t) =

R
Mn v d�? A path to a partial

answer begins with an observation that generalizes Example 11 above.
Cao, Hamilton, and Ilmanen [1] prove that any complete gradient shrinking

soliton (Mn; g(t)) that exists up to a maximal time T < 1 and satis�es certain
noncollapsing and curvature decay hypotheses converges as t% T to an incomplete
(possibly empty) metric cone (C; d), which is smooth except at the parabolic vertex
O. The convergence is smooth except on a compact set (possibly all ofMn) that
vanishes into the vertex. 8 Furthermore, they prove that along a sequence (xk; �k)
approaching O, a limit `O(x; �) := lim `(xk;�k)(x; �) exists for all x 2 Mn and
�(t) > 0. They show that the central density function

�RFO (t) := ~VO(t) = lim
k!1

~V(xk;�k)(t)

of the parabolic vertex O is independent of time and satis�es �RFO (t) � e� , where
� is the constant entropy of the soliton (Mn; g(�)).
On a compact soliton, there is a pointwise version of the Cao�Hamilton�Ilmanen

result, due to Bennett Chow and the third author:

Lemma 17. If (Mn; g(�)) is a compact shrinking (necessarily gradient) soliton,
then the limit `O(x; �) exists for all x 2 Mn and �(t) > 0. This limit agrees up to
a constant with the soliton potential function f(x; �).

See [4] for a proof.

Recall that the entropy of a compact Riemannian manifold (Mn; g) is

�(Mn; g) := inf

�
W (g; f; �) : f 2 C10 ; � > 0;

Z
Mn

(4��)�n=2e�f d� = 1

�
;

where

(4.11) W (g; f; �) : =

Z
Mn

�
�(jrf j2 +R) + f � n

�
(4��)�n=2e�f d�:

(Compare to Example 3.) Under the coupled system

@

@t
g = �2Rc(4.12a)

(
@

@t
+�)f = jrf j2 �R+ n

2�
(4.12b)

d�

dt
= �1;(4.12c)

8See [11] for examples where (C; d) = lim�&0(Mn; g(�)) is nonempty.
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the functional W(g(t); f(t); �(t)) is monotone increasing in time and is constant
precisely on a compact shrinking gradient soliton with potential function f , where
(after possible normalization) one has

(4.13) Rc+rrf � 1

2�
g $ 0:

Here and in the remainder of this section, the symbol $ denotes an identity that
holds on a shrinking gradient soliton.
We are now ready to answer the question we posed above regarding the relation-

ship between P1;v(r)=rn and ~V (t). (Compare to Example 7.)

Corollary 18. Let (Mn; g(t)) be a compact shrinking Ricci soliton that vanishes
into a parabolic vertex O at time T . Then for all t < T and r > 0, one has

�RFO (t) := ~VO(t) =
P1;v(r)

rn
;

where P1;v(r) =
R
Er
[jr`j2 +R(n log rp

4��
� `)] d� dt is computed with ` = `O.

Proof. It will be easiest to regard everything as a function of �(t) := T � t > 0.
Because (Mn; g(�)) is a compact shrinking soliton, there exist a time-independent
metric �g and function �f on Mn such that Rc(�g) + �r �r �f � 1

2 �g = 0. The solution
of Ricci �ow is then g(�) = ���� (�g), where f��g�>0 is a one-parameter family of
di¤eomorphisms such that �1 = id and @

@� �� (x) = ���1 grad�g �f(x). The soliton
potential function satis�es f(x; �) = ���

�f(x) and f� = � jrf j2. (Notice that (4.13)
implies that system (4.12) holds.)
Let 	 = (4��)�n=2e�`(x;�), where ` is the reduced distance from the parabolic

vertex O. By Lemma 17, ` = f + C. So Assumptions 1 and 2 are clearly satis�ed.
BecauseZ

Mn�f�g
j j d� = O[�n=2 log(��n=2)] and

Z
Mn�f�g

jr j2 d� = O(�n=2�1)

as � & 0, Assumption 3 is satis�ed as well. Because @
@�  = jrf j

2 � n
2� , Lemma 9

implies that

P1;v(r) =

Z
Er

(
n

2�
+ `� + jr`j2) d� dt $

Z
Er

n

2�
d� dt:

(Compare Remark 12.) Computing ~V (�) = ~VO(�), one �nds that

~V (1) =

Z
Mn

(4�)�n=2e�`(x;1) d�(g(1))

=

Z 1

0

Volg(1)fx : (4�)�n=2 e�`(x;1) � zg dz

$
Z 1

0

n

2�
Volg(�)

h
��1� fx : (4��)�n=2e�`(x;1) � 1g

i
d� (z = �n=2)

=

Z 1

0

n

2�
Volg(�)fy : `(y; �) < n log

1p
4��

g d�

=

Z
E1

n

2�
d� dt

$ P1;v(1):
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But on a shrinking gradient soliton, P1;v(r)=rn is independent of r > 0, while
~V (�) is independent of � > 0. Since they agree at r = 1 and � = 1, they agree
everywhere. �

Since the reduced distance and reduced volume are invariant under parabolic
rescaling, similar considerations apply to solutions whose rescaled limits are shrink-
ing gradient solitons.

4.3. Localizing forward reduced volume. In [12], Feldman, Ilmanen, and the
third author introduce a forward reduced distance

`+(x; t) := inf


1

2
p
t

Z t

0

p
s

�
jd
ds
j2 +R

�
ds:

Here the in�mum is taken over smooth paths  from an origin (�x; 0) to (x; t). De�ne

u(x; t) = (4�t)�n=2e�`+(x;t)

and  = log u. In [25], it is proved that ( @@t���R)u � 0 holds in the distributional
sense if (Mn; g(t)) is a complete solution of Ricci �ow with bounded nonnegative
curvature operator for 0 � t � T . Following the same arguments as in the proof of
Corollary 13 then leads to the following result for

P';u(r) =

Z
Er

[jr`+j2 �R(n log
rp
4�t

� `+)]'d�dt:

Corollary 19. Let (Mn; g(t)) be a complete solution of Ricci �ow with bounded
nonnegative curvature operator for 0 � t � T . Let ' be any smooth nonnegative
function. Then whenever 0 < r0 < r1 <

p
4�T , one has

(4.14)
P';u(r1)

rn1
� P';u(r0)

rn0
�
Z r1

r0

n

rn+1

Z
Er

( + n log r)(
@'

@t
+�') d� dt dr:

In direct analogy with Corollary 15, one also has the following.

Corollary 20. Let (Mn; g(t)) be a complete solution of Ricci �ow with bounded
nonnegative curvature operator for 0 � t � T . If equality holds in (4.14) with ' � 1,
then (Er; g(t)) is isometric to an expanding gradient soliton for all r <

p
4�T .

5. Mean-value theorems for heat kernels

In this section, we apply Theorem 7 to heat kernels of evolving Riemannian mani-
folds, especially those evolving by Ricci �ow, with stationary (i.e. time-independent)
manifolds appearing as an interesting special case.

Let (Mn; g(t)) be a smooth family of Riemannian manifolds evolving by (1.1)
for t 2 [0; �t]. We will again abuse notation by regarding certain evolving quantities,
where convenient, as functions of x 2Mn and �(t) := �t� t.
A smooth function 	 : (Mn�[0; �t])n(�x; 0)! R+ is called a fundamental solution

of the conjugate heat equation

(5.1) (
@

@�
��� trgh)	 = 0

with singularity at (�x; 0) if 	 satis�es (5.1) at all (x; �) 2 Mn � (0; �t], with
lim�&0	(�; �) = ��x in the sense of distributions. We call a minimal fundamen-
tal solution of (5.1) a heat kernel.
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For any smooth family (Mn; g(t)) of complete Riemannian manifolds, it is well
known that a heat kernel 	 always exists and is unique. Moreover, 	 is bounded
outside any compact space-time set containing (�x; 0) in its interior.9 If 	 is the
conjugate heat kernel for (Mn; g(t)), then (2.4) takes the form

P';	(r) =

Z
Er

[jr log	j2 � log(rn	)(trgh)]'d�dt:

It is clear that Assumptions 1 and 2 are always satis�ed. In particular, E�r is
compact for �r > 0 su¢ ciently small. We shall prove that Assumption 3 is also valid
for such �r. For this, we need a purely local observation about 	 near (�x; 0).

Lemma 21. For t 2 [0; �t], let (Nn; g(t)) be a smooth family of (possibly incomplete)
Riemannian manifolds. Suppose that 	 is any fundamental solution of (5.1) with
singularity at (�x; 0). For any " > 0, there exist a precompact neighborhood � of �x,
a time �� 2 (0; �t], and a smooth function � : �� [0; �� ]! R+ with �(�x; 0) = 1 such
that for all (x; �) 2 (�� [0; �� ])n(�x; 0), one has

(5.2)

�����	(x; �)� �(x; �) � 1

(4��)n=2
exp

 
�
d2g(�)(�x; x)

4�

!����� � ":

Proof. One begins with Garofalo and Lanconelli�s asymptotics [15, Theorem 2.1]
for a fundamental solution with respect to a Riemannian metric on Rn which is
Euclidean outside of an arbitrarily large compact neighborhood of the origin. The
�rst step is a straightforward adaptation of their proof to the case h 6= 0. The second
step is to glue a large ball centered at �x 2 Nn into Euclidean space, obtaining a
manifold (Rn; ~g(t)) which is identical to (Nn; g(t)) on a large neighborhood of �x and
to which the re�ned asymptotics apply. The di¤erence of the fundamental solutions
	 and ~	 for (Nn; g(t)) and (Rn; ~g(t)), respectively, starts at zero as a distribution.
By the comparison principle, it stays uniformly small for a short time. �

We now consider Assumption 3. Let �r > 0 be given. Apply Lemma 21 with
" = �r�n=2. By shrinking � and �� if necessary, we may assume without loss of
generality that 1=2 � � � 2 in � � [0; �� ]. Because 	(�; �) ! ��x as � & 0, we
may also assume �� > 0 is small enough that E�r(�) � � for all � 2 (0; �� ], where
E�r(�) := E�r \ (Mn � f�g). Then in

S
�2(0;�� ]E�r(�), one has

(5.3)
1

(4��)n=2
exp

 
�
d2g(�)(�x; x)

4�

!
� 	(x; �)� "

�(x; �)
� 1

4�rn
;

which implies that d2g(�)(�x; �) � 4� [
n
2 log

1
� +log 4�

n
2 log(4�)+log �r

n] there. Reduce

�� > 0 if necessary so that �� � 4(n�2)=n��r�2. Then one has

(5.4) d2g(�)(�x; �) � 4n� log
1

�

in E�r(�) for all � 2 (0; �� ]. Since 	 > �r�n = 2" in E�r, one also has

(5.5)
	

2
� 	� " � �(x; �)

(4��)n=2
� 2

(4��)n=2
:

9There are several standard constructions, all of which utilize local properties that the manifold
inherits from Rn. See the �ne survey [16] and references therein.
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If necessary, reduce �� > 0 further so �� � �r�1 and �� � 4(n�2)=n�. Then  := log	
satis�es

j j � n log
1

�

in E�r(�) for all � 2 (0; �� ]. By (5.4), this proves that lim�&0

R
E�r(�)

j j d� = 0.
If �� � �r2, then 	 � �r�n � ���n=2 outside E�r. So by (5.5), there exists c = c(n)

such that 	(�; �) � ec��n=2 for all � 2 (0; �� ]. By (5.4), E�r(�) � Bg(�)(�x; �) for
� :=

p
5n=e. Since 	 > �r�n in E�r, Theorem 10 yields C independent of x and �

in
S
0<���� Bg(�) (�x; 2�) such that for any � 2 (0; �� ], one has

(5.6) jr j2 � ( 1
�
+ C)(1 + c+ n log �r � n

2
log

�

2
)2

in E�r \ (Mn � [�=2; � ]). If �r > 0 is small enough that E�r is compact, this estimate
and (5.4) prove that

R
E�r
jr j2 d� dt <1, which establishes Assumption 3.

Remark 22. Assumption 3 is valid for all �r > 0 in any manifold (Mn; g(t))t<�t
for which the kernel 	 vanishes at in�nity in space-time, i.e. if for every " > 0,
there exists a compact set K �Mn � (�1; �t] such that 	 � " outside K.

Our main result in this section is the following consequence of Theorem 7. The
reader is invited to compare it with Corollary 13 (above) for Perelman�s reduced
volume density. Recall that  (r) := log(rn	).

Corollary 23. Suppose that (Mn; g(t)) is a smooth family of complete Riemannian
manifolds evolving by (1.1) for t 2 [0; �t]. Let 	 : (Mn � [0; �t])n(�x; 0) ! R+ be the
kernel of the conjugate heat equation (5.1) with singularity at (x; �) = (�x; 0). Let '
be any smooth function of (x; t). Then there is �r > 0 such that if 0 < r0 < r1 < �r,
then

P';	(r1)

rn1
� P';	(r0)

rn0
= �

Z r1

r0

n

rn+1

Z
Er

 (r)(
@'

@t
��') d� dt dr:

Furthermore, one has

'(�x; �t) = lim
r&0

P';	(r)

rn
;

and thus

'(�x; �t) =
P';	(r1)

rn1
+

Z r1

0

n

rn+1

Z
Er

 (r)(
@'

@t
��') d� dt dr:

Proof. Now that we have veri�ed Assumptions 1�3, everything follows directly from
Theorem 7 except for the representation formula '(�x; �t) = limr&0[P';	(r)=r

n],
which we will prove by a blow-up argument. Without loss of generality, we may
assume that '(�x; �t) = 1. Here is the set-up. Identify Rn with T�xMn, and let
y 2 Mn denote the image of ~y 2 Rn under the exponential map exp�x(�) for g at
� = 0. For r > 0, de�ne 'r(~y; �) := '(ry; r2�), 	r(~y; �) := rn	(ry; r2�), and
	0(~y; �) := (4��)�n=2e�j~yj

2=4� . Let d�r(�; �) denote the pullback of r�nd�(�; r2�)
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under the map ~y 7! exp�x(r~y). For � � 0, consider the �truncations�de�ned by

E�r := Er \ (Mn � (�r2; �t ]);
Ê�r := f(~y; �) : � > � and 	r(~y; �) > 1g;
Ê�0 := f(~y; �) : � > � and 	0(~y; �) > 1g;

P �r :=

Z
E�
r

[jr log	j2 � (trgh) log(rn	)]'d�d�

P �0 :=

Z
Ê�
0

jr log	0j2 d~y d�:

The proof consists of two claims, which together imply the result.
The �rst claim is that if 0 < � � 1, then limr&0[P

�
r =r

n] = P �0 . Pulling back,
one computes P �r = rn

R
Ê�
r
[jr log	rj2 � r2(trgh) log	

r]'r d�r d� . By Lemma 21,

	r ! 	0 as r & 0 uniformly on any 
 �� Rn � [�; �t]. By parabolic regularity,
�(Ê�r ) ! �(Ê�0) in L

1(Rn) as r & 0. Since d�r ! d~y and '(�x; �t) = 1, the claim
follows.
The second claim is that for any � > 0, there exists some � 2 (0; 1=100) such that

0 � [P';	(r) � P �r ]=r
n < � for all small r > 0. By Lemma 21, if r � 1 is so small

that 1=2 � � � 2 in Er \ (�� [0; �� ]), then (4��)�n=2 exp
�
�d2g(�)(�x; x)=4�

�
� 1

4rn

there. (Compare (5.3).) Furthermore, d2g(�)(�x; �) � 4�(
n
2 log

r2

� +log 4) � 4�n log
r2

�

in ErnE�r , since r2

� � 4. Because � � 1 in Er for all small r > 0, Theorem 10 gives

C such that jr log	j2 � C
� (log

r2

� )
2 in ErnE�r . (Here we used r�n � 	 � ec��n=2;

compare (5.6).) Therefore,

Z
ErnE�

r

jr log	j2 d� � C 0
Z �r2

0

�
n�2
2

�
log

r2

�

�n+4
2

d� � C 00rn�n=2
�
log

1

�

�n+4
2

:

The second claim, hence the theorem, follows readily. �

Remark 24. In the special case that L(�; t) is a divergence-form, uniformly elliptic
operator on Euclidean space Rn and 	 is the kernel of its adjoint L�, the results of
Corollary 23 appear in [10, Theorems 1 and 2] for ' solving ( @@t �L)' = 0, and in
[14, Theorem 1.5] for arbitrary smooth '.

We conclude this section with two results for the special case of the conjugate
heat kernel 	 of a �xed Riemannian manifold (Mn; g).

Our �rst observation is that one can adapt the argument of [10] to obtain a
mean-value representation theorem in terms of an integral on �heat spheres�. This
approach is naturally related to the interpretation of equation (1.4) as a space-time
Green�s formula. To give the argument, we introduce some additional notation.
Consider the space-time manifold fMn+1 = Mn � R equipped with the metric
~g(x; t) = g(x)+dt2, where t is the global R-coordinate. Applying Green�s formula to
a bounded space-time domainD in fMn+1 with the vector �eld '	 @

@t�	r'+'r	,
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we get Z
D

(
@'

@t
��')	 d� dt =

Z
D

[(
@'

@t
��')	 + '(@	

@t
+�	)] d� dt(5.7)

=

Z
D

div~g('	
@

@t
�	r'+ 'r	) d� dt

=

Z
@D

�
'	

@

@t
�	r'+ 'r	; ~�

�
~g

d ~A;

where ~� is the unit outward normal and d ~A the area element of @D, both taken
with respect to ~g. For s � 0, we follow [10] in de�ning

Ds
r = f(x; �) 2 Er : � > sg

and two portions of its space-time boundary,

P s1 = f(x; �) : 	 = r�n; � > sg and P s2 = f(x; �) 2 �Ds
r : � = sg:

Applying (5.7) to Ds
r yields

0 =

Z
Ds
r

(
@'

@t
��')	 d� dt

=

Z
P s
2

'	 d�+

Z
P s
1

�
'	

@

@t
�	r'+ 'r	; ~�

�
~g

d ~A

=

Z
P s
2

'	 d�+
1

rn

Z
P s
1

�
'
@

@t
�r'; ~�

�
~g

d ~A+

Z
P s
1

' hr	; ~�i~g d ~A:

Letting s& 0, we obtain

'(�x; 0) = lim
s&0

Z
P s
2

'	 d�

= � 1

rn

Z
P 0
1

�
'
@

@t
�r'; ~�

�
~g

d ~A�
Z
P 0
1

' hr	; ~�i~g d ~A

= � 1

rn

Z
D0
r

(
@

@t
��)'d�dt+

Z
P 0
1

'
jr	j2p

j	tj2 + jr	j2
d ~A:

Summing together and noticing that P 01 = @Er, we get the following mean-value
theorem, which is naturally related to Corollary 23 by the coarea formula.

Theorem 25. Let (Mn; g) be a complete �xed manifold. Let 	 denote the conjugate
heat kernel with singularity at (x; �) = (�x; 0). If a smooth function ' of (x; t) solves
the heat equation, then

'(�x; �t) =

Z
@Er

jr	j2p
j	tj2 + jr	j2

'd ~A:

For the "-regularity theorems for Ricci �ow derived by the third author [27],
we need a mean-value inequality for nonnegative supersolutions. For this pur-
pose, assume that the Ricci curvature of (Mn; g) satis�es Rc � (n � 1)kg for
some k 2 f�1; 0; 1g. Let (Mn

k ; ~g) denote the simply connected space form of
constant sectional curvature k, and let 	k denote its conjugate heat kernel cen-
tered at ~x 2 Mn

k . Then there exists ~	k : [0;1) � (0;1) ! (0;1) such that
	k(x; �) = ~	k(dk(~x; x); �), where dk denotes the distance function of (Mn

k ; ~g).
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Fix an origin (�x; ��) 2 Mn � R. Again let � := �t � t, and let ~	 denote the
transplant of 	k to (Mn; g), i.e.

(5.8) ~	(x; �) := ~	k(dg(�x; x); �):

As above, let ~ (r) = log(rn ~	) and ~Er = f(x; �) 2Mn�R : ~ (r)(x; �) > 0g. De�ne

(5.9) ~I(�x;0)(r) :=
1

rn

Z
~Er

jr log ~	j2 d� dt:

Then the following mean-value inequality follows from Theorem 7.

Corollary 26. Let (Mn; g) be a complete Riemannian manifold such that Rc �
(n� 1)kg for some k 2 f�1; 0; 1g. Let ~	 be de�ned by (5.8), and let ' � 0 be any
smooth supersolution of the heat equation, i.e. ( @@t ��)' � 0. Then

'(�x; �t) � 1

rn

Z
~Er

jr log ~	j2'd�dt:

In particular, ~I(�x;0)(r) � 1 holds for all r > 0, and d
dr
~I(�x;0)(r) � 0 holds in the

sense of distributions.
If equality holds for ' � 1, then the largest metric ball in ~Er is isometric to the

corresponding ball in the simply-connected space form of constant sectional curva-
ture k.

Proof. The inequalities follow from Theorem 7 by the results of Cheeger�Yau [3]
that ( @@� � �)~	(x; �) � 0 and ~	(x; �) � 	(x; �), where 	 is the conjugate heat
kernel of (Mn; g). The implication of equality is a consequence of the rigidity
derived from equality in the Bishop volume comparison theorem. (See [2].) �

6. Average energy for Ricci flow

Again assume (Mn; g(t)) is a smooth complete solution of Ricci �ow for t 2 [0; �t].
Let 	 denote a fundamental solution to the conjugate heat equation

(6.1) (
@

@t
+��R)	 = 0

centered at (�x; �t). The traditional notation in this case is 	 = e�f , i.e. f := � .
Perelman [31] has discovered that the average energy

F(t) =
Z
Mn�ftg

(�f +R)e�f d� =

Z
Mn�ftg

(jrf j2 +R)e�f d�

is a monotonically (weakly) increasing function of t. Our result in this situation
gives a quantity which is not just monotonic, but constant in its parameter.

Corollary 27. Suppose that (Mn; g(t)) is a smooth, compact solution of Ricci
�ow for t 2 [0; �t], with �t < 1. Suppose further that 	 :Mn � [0; �t] ! (0;1) is a
fundamental solution of (6.1) with singularity at (�x; �t). De�ne f := � log	.
Then for all �f 2 R below some threshold value, we haveZ

ff< �fg
(�f +R)e�

�f d� dt = 1;

where
ff < �fg := f(x; t) 2Mn � [a; b) : f(x; t) < �fg:
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Proof. The arguments in Section 5 (above) verify that the hypotheses of Lemma 9
are satis�ed. Since

@ 

@t
+ jr j2 = �� +R;

one then has

P1;	(r) =

Z
Er

(�� +R) d� dt =
Z
Er

(�f +R) d� dt:

At this point, we change variables from r to �f := n log r. We then get

P1;	(r)

rn
=

Z
ff< �fg

(�f +R)e�
�f d� dt;

whence the conclusion follows from Corollary 23 in Section 5. �

7. Appendix: simple estimates for reduced geometry

For the convenience of the reader, we provide certain elementary estimates in-
volving reduced geometry in a form adapted to this paper. The reader should note
that most of the estimates solely for reduced distance are essentially contained in
Ye�s notes [38], though not always in the form stated here. (Also see [4].)

Notation. Assume that (Mn; g(�)) is a smooth one-parameter family of complete
(possibly noncompact) manifolds satisfying @

@� g = 2Rc for 0 � � � �� . Unless
otherwise noted, all Riemannian quantities are measured with respect to g(�). All
quantities in reduced geometry are calculated with respect to a �xed origin O =
(�x; 0). We denote the metric distance from x to y with respect to g(�) by d� (x; y)
and write d� (x) = d� (�x; x). We de�ne B� (x; r) = fy 2 Mn : d� (x; y) < rg and
write B� (r) = B� (�x; r). Perelman�s space-time action L, reduced distance `, and
reduced volume density v are de�ned above in (4.1), (4.2), and (4.3), respectively.
We will also use the space-time distance L(x; �) := inffL() : (0) = (�x; 0); (�) =
(x; �)g.

7.1. Bounds for reduced distance. Given k � 0 and K � 0, de�ne

(7.1) `(x; �) = e�2k�
d20(x)

4�
� nk

3
�

and

(7.2) `(x; �) = e2K�
d20(x)

4�
+
nK

3
�:

Our �rst observation directly follows Ye [38].

Lemma 28. The reduced distance `(x; �) has the following properties.

(1) If there is k � 0 such that Rc � �kg onMn� [0; �� ], then `(x; �) � `(x; �).
(2) If there is K � 0 such that Rc � Kg onMn� [0; �� ], then `(x; �) � `(x; �).

Proof.
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(1) Observe that g(�) � e�2k�g(0). By (4.1), the L-action of an arbitrary path
 from (�x; 0) to (x; �) is

L() =
Z p

�

0

�
1

2
jd
ds
j2 + 2s2R

�
ds

� 1

2
e�2k�

Z p
�

0

jd
ds
j20 ds� 2nk

Z p
�

0

s2 ds

� e�2k�
d20(x)

2
p
�
� 2nk

3
�3=2:

Since  was arbitrary, one has `(x; �) = 1
2
p
�
inf L() � `(x; �).

(2) Observe that g(�) � e2K�g(0). Let � be a path from (�x; 0) to (x; �) that is
minimal and of constant speed with respect to g(0). Then as above,

L(�) � e2K�
d20(x)

2
p
�
+
2nK

3
�3=2:

Hence `(x; �) � 1
2
p
�
L(�) � `(x; �).

�

Remark 29. If Rc � �kg on Mn � [0; �� ], it follows from Part (1) of Lemma 28
(by standard arguments) that minimizing L-geodesics exist and are smooth.

7.2. Bounds for reduced-volume heatballs. Recall that the reduced-volume
density is v(x; �) = (4��)�n=2e�`(x;�). For r > 0, de�ne the reduced-volume heat-
ball

Er = f(x; �) 2Mn � (0; �� ] : v(x; �) > r�ng(7.3)

= f(x; �) 2Mn � (0; �� ] : `(x; �) < n log
rp
4��

g(7.4)

and de�ne c(k; ��) by

(7.5) c =
e4k��=3

4�
:

Given r > 0, k � 0, � > 0, de�ne

(7.6) �(r; k; �) = ek�
r
(2n� log

r2

4��
+
4

3
nk�2)+:

Note that �(r; 0; �) agrees with Rr(�) in [9]. It is easy to see that for each r > 0
and k � 0, one has �(r; k; �) > 0 for all su¢ ciently small � > 0.

Remark 30. If Rc � �kg onMn� [0; �� ], then Part (1) of Lemma 28 implies that
(x; �) 2 Er only if x 2 B0(�(r; k; �)).

Lemma 31. Assume 0 < r2 � minf��=c; 4�g. If cr2 � � � �� , then �(r; k; �) = 0.

Proof. When � = cr2, one has

k

3
� +

1

2
log

r2

4��
� k��

3
+
1

2
log

1

4�c
= �k��

3
� 0;
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while for cr2 � � � �� , one has
@

@�
(
k

3
�2 +

1

2
� log

r2

4��
) =

2k

3
� +

1

2
log

r2

4��
� 1
2

� 2k

3
�� +

1

2
log

1

4�c
� 1
2
� �1

2
:

�

Corollary 32. Assume that Rc � �kg on Mn � [0; �� ] for some k � 0 and that
0 < r2 � minf��=c; 4�g. Then

Er �
[

0<�<cr2

B0(�(r; k; �))� f�g:

7.3. Gradient estimates for reduced distance. Local gradient estimates for
curvatures evolving by Ricci �ow originated in [32, §7]. Recall the following version.

Proposition 33 (Hamilton [19, §13]). Suppose g(�) solves backward Ricci �ow
for �0 � � � �1 on an open set U of Mn with �B�1(x; 2�) � U . There exists Cn
depending only on n such that if jRm j �M on U � [�0; �1], then

jrRm j � CnM

r
1

�2
+

1

�1 � �
+M

on B�1(x; �)� [�0; �1).

If there is a global bound on curvature, the situation is quite simple:

Remark 34. If jRm j � M on Mn � [0; �� ], then for every �� < �� there exists
A = A(n;M; ��) such that jrRj � A onMn � [0; ��].

More generally, the following �localization lemma�often provides adequate local
bounds.

Lemma 35. Assume Rc � �kg on Mn � [0; �� ]. Then for every � > 0 and
�� 2 (0; ��), there exists �� such that the image of any minimizing L-geodesic from
(�x; 0) to any (x; �) 2 B0(�) � (0; ��] is contained in B0(��). In particular, there
exist constants C;C 0 depending only on jRm j in a space-time cylinder 
(�; ��; ��)
such that Rc < Cg and jrRj � C 0 on B0(��)� [0; ��].

Proof. By smoothness, there exists K such that Rc � Kg on B0(�) � [0; ��]. Ap-
plying Part (2) of Lemma 28 along radial geodesics from �x shows that

sup
(x;�)2B0(�)�[0;��]

[�`(x; �)] � e2K�
� �2

4
+
nK

3
(��)2:

De�ne

�� = 2ek�
�

r
e2K��

�2

4
+
n

3
(k +K)(��)2:

Let (x; �) 2 B0(�) � (0; ��] be arbitrary and let  be any minimizing L-geodesic
from (�x; 0) to (x; �). Then for every � 2 [0; � ], one obtains

d0((�)) � 2ek�
r
�`(x; �) +

nk

3
�2 < ��

by following the proof of Part (1) of Lemma 28. This proves that the image of  is
contained in B0(��).
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Now de�ne � 0 = ��+ 1
2 (����

�) and choose �0 large enough that B0(��) � B� 0(�
0).

By smoothness, there exists M such that jRm j � M on B� 0(3�0) � [0; � 0]. So by
Proposition 33, there exists C 0 such that jrRj � C 0 on B� 0(�0) � [0; ��]. Clearly,
Rc � Cg on B� 0(�0)� [0; ��] as well. �
Lemma 36. Assume that there exists an open set U � Mn and 0 � �0 � �1 � ��
such that jrRj � A on U � [�0; �1]. Let  : [0; �1] ! U be an L-geodesic and let
�(�0) = lim�&�0(

p
� jdd� j), which is well de�ned for all �0 � 0.

(1) If Rc � �kg on U � [�0; �1], then for all � 2 [�0; �1], one has

jd
d�
j � 1

2
p
�

�
(2�(�0) +

A

k

p
�1)e

k(���0) � A

k

p
�1

�
(k > 0)

� 1

2
p
�
[2�(�0) +A

p
�1(� � �0)] (k = 0)

(2) If Rc � Kg on U � [�0; �1], then for all � 2 [�0; �1], one has

jd
d�
j � 1

2
p
�

�
(2�(�0) +

A

K

p
�1)e

K(�0��) � A

K

p
�1

�
(K > 0)

� 1

2
p
�
[2�(�0) +A

p
�1(�0 � �)] (K = 0):

Proof. It will be more convenient to regard  as a function of s =
p
� . Let _ = d

d�

and 0 = d
ds = 2s _. The Euler�Lagrange equation satis�ed by  is

r _ _ =
1

2
rR� 2Rc( _)� 1

2�
_:

In terms of s, this becomes

r00 = 2s2rR� 4sRc(0);
which is nonsingular at s = 0. The computation

d

ds
j0j2 = d�

ds

@

@�
g(0; 0) + 2g(r00; 0)

= 4s2 hrR; 0i � 4sRc(0; 0)
shows that j0j satis�es the di¤erential inequalities

(7.7)
d

ds
j0j � 2ksj0j+ 2As2

and

(7.8)
d

ds
j0j � �2Ksj0j � 2As2:

Let s0 =
p
�0 and s1 =

p
�1. De�ne

 (s) =

�
j0(s0)j+

As1
k

�
ek(s

2�s20) � As1
k

and

 (s) =

�
j0(s0)j+

As1
K

�
eK(s

2
0�s

2) � As1
K

;

replacing these by their limits if either k or K is zero. Note that  (s0) = j0(s0)j =
 (s0). It is readily veri�ed that  is a supersolution of (7.7) and that  is a
subsolution of (7.8). So one has  (s) � jdds j �  (s) for s0 � s � s1, as claimed. �
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Corollary 37. Assume that Rc � �kg on Mn � [0; �� ]. Then for any � > 0 and
�� 2 (0; ��), there exist positive constants � and C such that for any minimizing
L-geodesic  from (�x; 0) to (x; �) 2 B0(�)� (0; ��], one has

min
[0;� ]

�p
�jd
d�
j
�
� �max

[0;� ]

�p
�jd
d�
j
�
� C:

Furthermore, for all � 2 (0; � ], one has

jd
d�
j2 � 2

�2

�
`((�); �) + C2

�
+
nk

3

�
:

Proof. By Lemma 35, there exists a neighborhood U containing the image of  such
that Rc � Kg and jrRj � A in U � [0; ��]. Using this, the �rst statement is easy
to verify.
To prove the second statement, let x = (�), so that L(x; �) = L(). Then as in

Lemma 28, one has

L(x; �) +
2nk

3
�3=2 �

Z �̂

0

p
�jd
d�
j2 d�

for any �̂ 2 (0; � ]. Let  = min[0;� ](
p
�j dd� j) and 	 = max[0;� ](

p
�j dd� j). Then for

any � 2 (0; �̂) one has

L(x; �) +
2nk

3
�3=2 � 2

p
�̂ 2

� 2
p
�̂(
�2

2
	2 � C2)

� �2

2

p
�̂p

�̂ �
p
�̂ � �

Z �̂

�̂��

p
�jd
d�
j2 d� � 2C2

p
�̂ :

Consequently, one obtains

(7.9)
Z �̂

�̂��

p
�jd
d�
j2 d� � �

�2�̂

�
L(x; �) + 2C2

p
�̂ +

2nk

3
�3=2

�
;

whence the second statement follows. �

Lemma 38. Assume Rc � �kg onMn � [0; �� ]. Let � > 0 and �� < �� be given.

(1) There exists C such that for all x 2 B0(�) and � 2 (0; ��], one has

jL(x; � � �)� L(x; �)j � C(
1p
�
+
p
�)�

whenever � 2 (0; �=3) and � � � 2 [0; ��].
(2) There exists C such that for all x 2 B0(�) and � 2 (0; ��], one has

jL(x; � � �)� L(x; �)j � C

�
L

�
+

1p
�
+
p
�

�
�

whenever � 2 (0; �=3) and � � � 2 [0; ��].

Proof. Let � be a minimizing L-geodesic from (0; �x) to (x; �). By Lemma 35, we
may assume that Rc < Kg and jrRj � A in U � [0; ��], where U is a neighborhood
of the image of �.
To bound L at a later time in terms of L at an earlier time, let � denote the

constant path �(�) = x for � � � � � + �. Because � is minimizing and L is
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additive, one has L(x; �) = L(�) and L(x; � + �) � L(�)+L(�). Hence there exists
Cn depending only on n such that

L(x; � + �)� L(x; �) � L(�) =
Z �+�

�

p
�Rd� � [Cn(k +K)

p
� ]�:

To bound L at an earlier time in terms of L at a later time, de�ne a path  from
(�x; 0) to (x; � � �) by

(�) = �(�) 0 � � � � � 2�

(�) = �(2� � (� � 2�)) � � 2� < � � � � �:
Observe that the image of  lies in U and that

L() � L(�)�
Z �

��2�

p
�R(�(�)) d�

+ 4

Z ���

��2�

p
�jd�
d�
j2 d� +

Z ���

��2�

p
�R((�)) d�

By Part (1) of Lemma 36, there exists C 0 such that jd�d� j
2 � C 0=� for � � � � 2� �

�=3. Since L(�) = L(x; �), it follows that

L(x; � � �)� L(x; �) � L()� L(�) � Cn

�
C 0p
�
+ (k +K)

p
�

�
�:

This proves the �rst statement.
To prove the second statement, use (7.9) to estimate

R ���
��2�

p
�jd�d� j

2 d�. �

Lemma 39. If Rc � �kg onMn � [0; �� ], then ` :Mn � (0; ��) is locally Lipschitz.
(1) For any � > 0 and �� < �� , there exists C such that

j`� +
`

2�
j � C(

1

�
+ 1)

everywhere in B0(�) and almost everywhere in (0; ��], and such that

jr`j � C(
1

�
+ 1)

everywhere in (0; ��] and almost everywhere in B0(�).
(2) There exists C such that

j`� j � C

�
`+ 1

�
+ 1

�
everywhere inMn and almost everywhere in (0; ��], and such that

jr`j2 � C

�
`+ 1

�
+ 1

�
everywhere in (0; ��] and almost everywhere inMn.

Proof. We again apply Lemma 35 to get bounds Rc � Kg and jrRj � A on
B0(2�

�)� [0; ��], where B0(��) is a neighborhood of any minimizing geodesic from
(�x; 0) to a point (x; �) 2 B0(�)� (0; ��].
Wherever it is smooth, ` satis�es `� + `

2� = 1
2
p
�
L� . Thus local Lipschitz

continuity in time and the estimates for `� follow directly from Lemma 38 and
Rademacher�s Theorem.
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To show local Lipschitz continuity in space, let x; y 2 B0(�) and � 2 (0; ��] be
given. We may assume that d� (x; y) 2 (0; �=3). Let � be a minimizing L-geodesic
from (�x; 0) to (x; �) and let � be a unit-speed g(�)-geodesic from x to y. Let
� = d� (x; y) and de�ne a path  from (�x; 0) to (y; �) by

(�) = �(�) 0 � � � � � 2�

(�) = �(2� � (� � 2�)) � � 2� < � � � � �

(�) = �(� � (� � �)) � � � < � � �:

Observe that the image of  belongs to B0(2�
�). Exactly as in the proof of

Lemma 38, one �nds there exist Cn and C 0 such that

L() � L(�)�
Z �

��2�

p
�R(�(�)) d�

+ 4

Z ���

��2�

p
�jd�
d�
j2 d� +

Z �

���

p
�jd�
d�
j2 d� +

Z �

��2�

p
�R((�)) d�

� L(�) + Cn
�
C 0p
�
+ (k +K + ek�

�
)
p
�

�
�:

Since � is minimizing, this implies that

L(y; �)� L(x; �) � C(
1p
�
+
p
�)d� (x; y):

Reversing the roles of x and y gives the same inequality for L(x; �)� L(y; �). The
�rst gradient estimate then follows by Rademacher�s Theorem.
To prove the second gradient estimate, observe that local Lipschitz continuity of

L implies that the L-geodesic cut locus is a set of measure zero. If (x; �) is not in the
cut locus, then the �rst variation formula [31, (7.1)] implies thatrL(x; �) = 2

p
� d�d� .

The second gradient formula now follows from Corollary 37. �

7.4. Integration over reduced-volume heatballs. If v is the reduced-volume
density and ' : Mn � (0; ��) ! R is a given function, then the function P';v(r)
de�ned in (2.4) may be written as

P';v(r) =

Z
Er

F'd�dt;

where
F = jr`j2 +R(n log rp

4��
� `):

Lemma 40. Assume that Rc � �kg on Mn � [0; �� ]. Then for any �� 2 (0; ��),
there exists C independent of ' such that

jP';v(r)j
rn

� C sup
Mn�(0;cr2)

j'j

whenever 0 < r2 � minf��=c; 4�g, where c = e4k��=3=(4�).

Proof. For 0 < � � ��, Part (2) of Lemma 39 implies that

jr`j2 � C`+ C 0

�
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almost everywhere in a precompact neighborhood U of �x. Here and in the rest of
the proof, C;C 0; C 00 denote positive constants that may change from line to line.
By Corollary 32, we may assume that U � [0; ��] contains Er for all r > 0 under
consideration. Lemma 28 implies that

jr`j2 � C
d20(x)

�2
+
C 0

�

almost everywhere in U . Let � = e�k��(r; k; �)=(2
p
n), where �(r; k; �) is de�ned

by (7.6). Together, Lemmata 28 and 31 show that

0 < n log
rp
4��

� ` � n

�
�2 � C

�
(1 + �2)

everywhere in Er. Hence

jF j � jr`j2 + n(k +K)(n log rp
4��

� `) � C
d20(x)

�2
+
C 0

�

almost everywhere in Er. Since the volume forms d�(�) are all comparable on
B0(C�)� [0; ��], it follows from the de�nition (7.6) of �(r; k; �) = 2

p
nek�� thatZ

B0(C�)

jF j d� � C 0
�n+2

�2
+ C 00

�n

�

� C 0
�
�n + �

n
2�1(log

r2

4��
)
n
2+1

�
+ C 00

�
�n�1 + �

n
2�1(log

r2

4��
)
n
2

�
:

For r > 0 and n � 2, the substitution z = �=r2 shows thatZ cr2

0

�
n
2�1(log

r2

4��
)
n+1�1

2 d� = rn
Z c

0

z
n
2�1(log

1

4�z
)
n+1�1

2 dz � Crn:

Hence by Corollary 32, one hasZ
Er

jF j d� dt �
Z cr2

0

 Z
B0(C�)

jF j d�
!
d� � C 0rn

whenever 0 < r2 � minf��=c; 4�g. The result follows. �
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