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Abstract

We study the quasi-convergence equivalence classes of all locally homo-
geneous metrics for which the Ricci flow exists to infinity. We consider the
most general possible families of such metrics by using model geometries
(X,G) with G minimal.

1 Introduction

There are many Riemannian 3-manifolds (M3, g) for which the Ricci flow

0

—g=—-2Rc 1

ETe (1)
exists for all positive time, yet fails to converge. Many of these examples col-
lapse, hence are not explicitly studied in the classification [1] of non-singular
solutions. (We say a solution to the Ricci flow collapses if the maximum injec-
tivity radius of the corresponding solution to the normalized Ricci flow

o IR

goes to 0 as t — 00.) Hamilton has conjectured that the large-time behavior
of any collapsing solution will in some sense approach the evolution of a locally
homogeneous geometry. (Compare [2].) This idea can be developed by using the
concept of quasi-convergence, an equivalence relation which allows us to classify
the asymptotic behavior of the Ricci flow. Recall [3] that if g, h are evolving
Riemannian metrics on a manifold M", we say g quasi-converges to h and write
g € [h] if for any € > 0 there is a time ¢, such that

sup  |g— hl, <e. 3)
M™ X[te,00)
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Geometry | Isotropy | Realization (X, Q) Class [g]

S3 0(3) SU (2), SU(2) singularity at T < 0o
E? 0(3) R3, R3 0-dimensional

g 0(3) H3, I3 1-dimensional

S?% x E! 0(2) R x S2, Isom (R) x SO (3) | singularity at T < oo
E? 0(3) Isom (E2), Isom (E?) 2-dimensional

H x E! 0(2) R x H2, Isom (R) x T2 3-dimensional
SL(ZR) | 0(2) SL (2, R), SL (2, R) > 2-dimensional

nil 0(2) N3 N3 3-dimensional

solv trivial Isom (E}), Isom (E}) 4-dimensional

Table 1: Quasi-convergence in the model geometries

From the standpoint of geometry, this might seem like an unduly restrictive
definition, because it does not allow modification by diffeomorphisms. But from
the standpoint of analysis, it describes the large-time behavior of the Ricci flow
more precisely than if, say, we considered |¢}g; — hi| p, for sequences of metrics
gi, h; and arbitrary diffeomorphisms ¢;.

Hamilton—Isenberg [4] introduced the term ‘quasi-convergence’ in their study
of a particular class of metrics on solv-twisted torus bundles. The definition was
formulated in [3] as part of an effort to refine our understanding of the asymp-
totic behavior of metrics in that class. The intent of the current paper is to
broaden that investigation and to complement the work of Isenberg—Jackson [2]
by determining the quasi-convergence equivalence classes of all locally homoge-
neous metrics for which the Ricci flow exists for all time.

Since a locally homogeneous metric on a simply-connected manifold is ho-
mogeneous [5] and the Ricci flow commutes with covering projections, it suffices
to study model geometries. A model geometry [6][7] is a pair (X,G), where X
is a simply-connected smooth manifold and G is a group of diffeomorphisms
which acts transitively on X’ with compact point stabilizers G,. Given any G-
invariant scalar product on T, X for some (hence any) z € X, we obtain in a
natural way a complete homogeneous G-invariant metric on XX'. For the purpose
of describing canonical Riemannian metrics on the eight geometric structures of
the Thurston conjecture, it is desirable that G (hence G,) be as large as possible.
But for our purpose of classifying the asymptotic behavior of the Ricci flow, we
have chosen smaller transitive groups in order to study larger families of met-
rics. For each model that we study, we are able to consider a full 6-dimensional
family of metrics by finding a realization (X, G) with trivial stabilizers G,. We
shall say each such family has the geometry of the canonical metric it contains.
Five of Thurston’s eight models can be realized by the pair (G, G), where G is
a simply-connected unimodular Lie group. There are ew six such groups,
and they have been studied by Milnor. [8] (R® and Isom (E?) both have the
geometry of E3.) The three remaining models (H?, H? x E', and S? x E!) must
be treated separately.



Our results are summarized in Table 1. (Here, N® denotes the Heisenberg
group, H" denotes the upper half-space in R™, and Z" is a transitive subgroup
of Conf (H™) defined in §3.) Notice the inverse relationship between the size of
the isotropy group under which the canonical metric in each family is invariant
and the size of the quasi-convergence equivalence class of an arbitrary metric in
that family.

A comment is in order concerning our (lack of) results for SL(2,R). We
have heuristic arguments which suggest that [g] is 3-dimensional in this case,
but have encountered two obstacles to the proof of this fact. Our analysis of the
‘off-diagonal’ sub-family of these metrics, while straightforward in principle, is
computationally formidable, perhaps even intractable. A more serious obstacle,
holvg_v/er, has been our inability to find any conserved quantity for arbitrary

SL (2, R) metrics — in sharp contrast with the other geometries. Because of the
close relationship between quasi-convergence and conservation laws, this forced
us to rely on less effective qualitative analyses of their behavior.

2 The geometries modeled by a Lie group

Let G™ be a Lie group, and let g be the Lie algebra of all left-invariant vector
fields on G. Since a left-invariant metric on G is equivalent to a scalar product
on g, the set of all such metrics can be identified with the set S of symmetric
positive-definite n x n matrices. S; is an open convex subset of RM(n+1)/2 For
each left-invariant metric g on G, the Ricci flow may thus be regarded as a path
t—g(t) eSr.

Now consider a 3-dimensional unimodular simply-connected Lie group G,
and let g, h € S;' be arbitrary left-invariant metrics. It is impractical in general
to study the system of six ODE which results when we wish to compare the
evolution of g and h under the Ricci flow. Hence we analyze [g] in two steps:

2.0.1 The diagonal case

For any left-invariant metric g on G, there is by [8] a left-invariant orthogonal
frame field F = {F;} such that the structure constants c}; defined by

[Fi, Fy] = ¢l Fy (4)
all vanish except possibly when i # j # k. Indeed, if we define A\’ by
oA =cl,, 2=, 2N =4, (5)

we can arrange that A\! < A2 < \3 € {—1,0,1}. We call a frame field with these
properties a Milnor frame for g. The signature of ()\i) is characteristic of the
Lie algebra g (hence of the unique simply-connected Lie group G associated to
that algebra) according to Table 2.

If F is a Milnor frame for g, then Rc(F;, F;) = 0 whenever ¢ # j. This
follows easily from the observation that (R (F}, F;) F;, F,) = 0 for all k and



(+,+,+) | Gis SU(2).
(0,+,+) | G is Isom (E?).
(

——

(= —4) (= +,+) | Gis SL(2,R).

(=,0,0) (0,0,+) | G is the Heisenberg group.
(—,0,4) G is Isom (El).
(0,0,0) GisR&ORGR.

Table 2: Signatures of 3-dimensional unimodular simply-connected Lie groups

any 1 # 7. In a Milnor frame, therefore, we may regard g and Rc as diagonal
matrices and the Ricci flow as a system of three ODE.

Any Milnor frame F for g determines a 3-dimensional submanifold D C SF
consisting of all metrics for which it is a Milnor frame, that is to say, all metrics
diagonal with respect to F. This submanifold is not canonically associated to
g, as the example of Euclidean geometry clearly shows. Nonetheless, it will be
useful to begin our analysis of [¢g] by studying

(9] = [9] N D (6)

2.0.2 The general case

In general, there may not exist a frame F which is simultaneously a Milnor frame
for arbitrary metrics g,h € S;. We can, however, use basic linear algebra to
overcome this difficulty. We recall that gl (g) = gl (3, R) and begin with some
notational conventions.

e If B € gl(3,R) is regarded as a basis 8 = (F1, F, F3), then each V € g¢
defines coordinate functions Vs = (V) by V = Vs = F;Vj.

e If A € gl(3,R) is regarded as a change of basis by right multiplication
a = (A4, then V, = A=V,

o A linear transformation A € gl(g) defines a matrix Ag by AV = BAzV3;
under a change of basis, this becomes A, = A71AgA.

e A scalar product h defines a matrix hg € S§ by h(V,W) = V5 hgWp;
under a change of basis, this becomes h, = A" hgA.

e We may write the bracket relations in the form [3] = fog, where
[8] = ([F2, 3], [Fs, Fi], [F1, F)) (7)

and og is the matrix of structure constants

1 1 1
og = 033 Cgl Céz - (8)
C3 €31 Ci2

Under a change of basis, this becomes o, = (det A) - A" oz (4~1)"

- [9]



To complete our analysis, therefore, it is enough to know how to transform
Milnor bases in a given geometry:

2.1 Algorithm Let g = g (0), h = h (0) be two scalar products on a Lie algebra
g. By the Milnor construction, there is a basis § such that gg and os are
diagonal, and a basis « such that h, and o, are diagonal. Compute A depending
only on g and ¢ (0), h (0) such that a = BA, and let B = A~!. Then compute
the evolution of h, and compare gg(t) with hg(t) for any ¢ > 0 using the
identity

hg (t) = B™h, (t) B. (9)

2.1 The Lie group R?

The Ricci flow is trivial and [g] is 0-dimensional for any g in this 6-dimensional
family of metrics having the geometry of E2.

2.2 nil-geometry
2.2.1 The class [g], for a nil-geometry metric g

Consider (G, g), where G is the Heisenberg group, {F;} is a Milnor frame for g
with dual forms {w’}, and the metric is

g=Aw' @w + Buw? @ w? + Cw’® ® ud. (10)
We may take A\! = —1 and A2 = A3 = 0. Then the sectional curvatures are
A
K(FAF)=-3—, K(FAF)=— K(F _ A
(AFR)=-355 KEBAR)=55 KEAR)=55 (1)
and the Ricci tensor is
A? A A
Re=2——w'@w' —2Zw?®w’ -2 w? 0w 12
c 3o Y ®w oY Qw BY Qw (12)

Hence if we put Ag = A (0), By = B(0), and Cy = C (0), the Ricci flow is
equivalent to the system
d A? d A d A
ZA=—4_ —B=4=— —C =4—. 1
dt BC’ dt c’ #’=*B (13)
Noting that % (4B) = £ (B/C) = 0, we introduce positive constants ®, ¥
denoting the conserved quantities

B B
AB=® = AyBy, and = =0 =22

c=V=¢ (14)

We begin by computing and solving

d [ A A2
a(ﬁ)—‘m (ﬁ)



to get

A _ Co/Bo

B2 12t + BoCo /Ao
This lets us solve

%A =47 (%) A= —mz‘h
obtaining
A= A" By g (12t + BoCo/Ao) ™ (152)
B= % = A By/*Cy 1 (12t + BoCo/A0)'* (15b)
C= § = Ay/* By PR (12t + BoCo/A0)'° (15c)

Notice that any compact quotient of G becomes almost flat with |[Rm| ~ ¢~1,
Vol ~ t1/6 and diam ~ /6.
Now if
§=Au'ow' + B ®w? +Cuw?® @ w? (16)

is another metric in Dr, then

., (A—A\? (B-B\® [Cc-0C\°
o=l =(~—5—) +{~5—) +{~&) -

where
A-A_ EPBPC” (12t+BOCO/A0)1/3 _&LPBAG,”
A A§/3Bé/3cé/3 12¢ + Boéo/Ao A3/3Bé/303/3
B-B_ _APBSG” (12 Boco/Ao)”g _APBPG
B A(1)/3B§/3CO_1/3 12¢ + BoCo/Ao A(l)/3B§/300_1/3

c-C %B%”%W3Cm+3&w%)w _AB PG

A I .
173 n—1/3 ~2/3 1/3g-1/32/3
C Ay By P c3/® \12t+ BoCo/ Ao Ay B, ey

2.2 Lemma § € [g], iff for an arbitrary positive scaling parameter A,

A _ _
A = 70 Bo=ABy, Co=MC,.
Proof. Sufficiency is easily checked. To show necessity, choose Ay > 0 arbi-

trarily and define A by
\odo
-~ AO -
Then g € [g] 7 only if
A/A -1 = Boéo = /\23000



Solving these equations for By /Bo gives

XC, B, G2

Co By ACZ’

which implies Co/Co = X and hence By/Bo = CZ/ (A\CZ) =\. m

The intuition here is that letting A — oo corresponds to letting ¢t — oo
in the Ricci flow. In this sense, g represents g translated in time. This quasi-
convergence behavior is analogous to what was observed for solv-Gowdy metrics
in [3], and illustrates a general principle:

2.3 Remark Let (M™,g) be a solution to the Ricci flow for 0 < ¢ < 0o such
that |Rc| — 0 uniformly as ¢ — oo. For u > 0, let § denote the solution

Proof. For any P € M™ and any locally nonzero vector field V near P, consider

Re (V,V) (Pt +7)
gV, V)(Pt+T1)

0
Elogg(V,V) (Pit+71)=-2

For any £ > 0, there is t > 0 independent of P,V such that when ¢ > t., we
have

glogg(V, V) (P,t + 1)

5 <2[Re|[(Pt+7) <

9
u

and thus
|10gg(VaV)(P7t+U)—logg(V,V)(Pjt)|S/ % — .
0

This implies
e g (V\V)(Pt) <g(V,V) (Pt) <e“g(V,V) (1),
whence taking the supremum over all V such that g (V, V) (P,t) = 1 shows
lg—3l, (Pt) <C(ef —1),

where C is a constant depending only on the dimension n. m
Notice that it is easy to recover u from A using just the scalar curvature.
Indeed, setting R (P,t) = R (P,t) gives formally

A3 —1 ByCy
12 Ay

u(A) =

The fact that this formula admits solutions u < 0 illustrates that scaling by
A < 1 amounts to translating a solution backward in time. How far this can be
done is of course a function of the initial scalar curvature R (0) = —2Aq/ByCop.



2.2.2 The class [g] for a nil-geometry metric g

Let 8 = (F1, F», F5) and hg = (h;;) be given; we assume og = 0

If A induces the change of basis 8+ a = S84 and B = A~!, then

B%, B11Bs1 BBz
(det B) O = BO’ﬁBmr =-2 311321 B%l leB31
Bi11B31 B21Bs; BZ,

This is diagonal iff BuBgl = BHB31 = Bnggl =0. So (up to a permutation)
we may suppose that

e f g 1 ad—bc cg—df bf—ag
B= a b and A= ——— de —be
c d (ad —bc)e —ce ae

Imposing the requirement that h, be diagonal yields the underdetermined sys-
tem

0 = (cg — df) h11 + dehia — cehys

0= (bf —ag) h11 — behi2 + aehis

0 = e (2bdf — adg — bcg) hi2 + e (2acg — adf — bef) hys

+ €% (ad + be) has + (bf — ag) (cg — df) h11 — bde*han — ace?hss.
Recalling that
hi1 >0 and hyiihay — h%z >0

because h is positive definite, we observe that a solution is given by

1 hae hig
M bt hah
= 11123—N12N13
B = 1 Thiihe—hZ, . (17)
1

Notice that det B =1 and o, = og, where

1 —li2  hishag—highas
— Ri2R13—NR111723
A 1 plaa—fugpan | (18)
1

To simplify the notation, let H, > 0 denote the determinant of the upper left
n X n submatrix of hg:

Hy =hiy (19a)
Hy = hyyhos — B2, (19b)
HS : h11h22h33 + 2h12hl3h23 - h11h33 - h22h%3 - h33h%2' (190)



Then we can write

H; Ao
he = A%hgA = H,/H, = Bo , (20)
H;/H, Co
so that the solution h,, (t) corresponds to
A(t) = HPHY? (12t + Hy/HZ) ™'/ (21a)

B(t) = H P HH;Y? (12t + Hy/H2)? (21b)
C(t) = B2 H H2® (12t + Hy/H2)'® . (21¢)

This lets us write hg (t) = B" hy (t) B in the form

A hiz g his g
H1 Hl
hio his hi2hi3 hi1hoz—hiohi3
he= | 424 A+ B 2l 4 4 haihaszhizhi g

1
his hizhis hiihoz—hizhis his (h11has—h12h13)*
A 7E; A+ T B H%A-l- 03 B+C( |
22

2.4 Theorem The quasi-convergence class [g] of an arbitrary nil-metric g is
exactly a 3-parameter family.

Proof. Without loss of generality, we may assume that with respect to a Milnor
frame, g is represented by a diagonal matrix corresponding to the initial data
(Ao, Bo, Co). Then h € [¢] if and only if every term converges to 0 in the sum

o gp_ Am a2 (Far5-5)
g A B
. (Gaa+ —z—““h”;%zh”)zmc -c) +2(hH_j;)2
2 —ni12n1 2
+2(};{_j;4) +2(hH%3A+;;3H2h hsB)

To see that [g] is at least 3-dimensional, let A > 0 and y, v € R be given and
put
hin = Ao/, hia=p, hiz=v.

If

_ hizhys

h2
h/23 — 12

hazhs — hiihi,
hao = ABp+ —=, hszz =X
hy o e o+ o e Co + 9B, ;
then Hl = 140/)\7 H2 = AoBo, and H3 = )\AOBOCO~ Therefore h (0) is pOSitiVG
deﬁnite, and .A/A - 1, B/B — ]., and C/C — 1. Because h11h23 = h12h13, it
follows easily that [h — g[, — 0.



To see that [g] is at most 3-dimensional, suppose h € [g]. Then clearly
hi1hes = hiohi3, and we must have

1/3 r71/3 2/3p1/3,1/3
A HEY A3 L3

t—oo A A§/3Bé/303/3 - A§/3Bé/303/3

and
—-1/3 -1/3 1/342/3,—1/3
o B HDPHET AB e

t—oo B A(l)/3B§/30(;1/3 a A(1)/3B§/3c(;1/3

and
2/3 77— 2/3 1/34p—1/3,2/3
1= hm E: Hl/ H21H3/ — ‘AU/ BU /CO/ .
t—oo A(l)/3BO_1/3Cg/3 A(l,)/sBo_l/3C§/3

As in the diagonal case, it follows that A4gBy = AgBo and A¢Co = AgCp. Thus if
h11 and any two of hi2, h13, has are prescribed, the remaining h;; are determined.
[

—

2.3 The Lie group Isom (E?)
2.3.1 The class [g] for an Isom (E? )-metric g

Consider (G, g), where G = Isom (E?), {F;} is a Milnor frame with dual forms
{w*}, and the metric once again is written as

g=Aut@w + B ®w? + Cuw? ®w?. (23)
We may take A! = A2 = —1 and A% = 0. Then the sectional curvatures are
K (F, NF3) = % (24a)
K(F3AFy) = A+ By — 45 Zj C_ 4B (24b)
K(RAR) = %, (240)

and the Ricci flow is equivalent to the system

d B>- A% d A2-B*> d (A - B)?

—A=4——_——  —B=4——— —(C=4——"

dt BC ’ dt AC dtC AB
with Ay = A (0), By = B(0), and Cy = C (0). Clearly, the geometry is flat (and
the Ricci flow is trivial) iff A = B. Noting that 4 (AB) = & (C' (A + B)) =0,
we denote these conserved quantities by

(25)

10



We can get enough qualitative information to describe the class [g] by
setting p = B/A and considering the simplified system

d 1-—p? d (1-p)?
2= el /S
a’ =% a’ P

; (27)

where po = p(0) and Cy are positive.

2.5 Lemma Ast — 0o, p converges to 1 and C converges to some Cy, > 0.

Proof. Since every point on the ray p = 1, C > 0 is a fixed point, we may
assume that pg # 1, hence that p # 1 for all time by uniqueness of solutions
to ODE. Because dp/dt > 0if 0 < p < 1 and dp/dt < 0 if 1 < p, it follows
that p is bounded and monotone, hence approaches a limit po, satisfying either
Po < Poo <1lorl< py < po. Now since p is strictly monotone, we may regard
C as a function of p; then we have

d 11-p

dp B T op1 4y

which lets us conclude that lim;_,, C (t) exists, because

C(o(t p(t) 11— /Poo
log (P()):/ _—pdp—>log P — log \/,0_0 as t— 00.
Co b 201+p 1+ poo 1+ po

It follows that ps = 1: if not, there would be some € > 0 such that dC/dt > ¢
for all time, an evident contradiction. m
This observation proves that

lim A = lim B = V&
t—00

t—o0

. _GCo [ [Ao , [Bo
tllgloo_ 2 ( B0+ Ao)

2.6 Corollary If g is an Isom (E?) metric, then [g] 5 is exactly a 1-parameter
family.

and

Proof. Let (Ao, Bo,Co) be given and let g correspond to the initial data
(Ao, Bo,Co), noting that § € [g] iff A/A, B/B, and C/C all converge to

1. Choose Ag > 0 arbitrarily. Then A/A — 1 and B/B — 1 iff

_ P
By = —.
0 I

And C/C — 1iff

C—,O_\/Ao/Bo-i'\/Bo/AoC_Ao/\/g—i-Bo/\/a A+ By

_\/AO/BO‘*‘\/BO/AO _1‘710/\/64‘90/\/6 _AO+(I>/AOC.

11



In spite of the existence of nontrivial quasi-convergence classes, it is worth
noting that the Ricci flow of Isom (]E2) metrics actually does converge: the
metric becomes asymptotically flat, and the volume of any compact quotient
increases monotonically to a finite limit.

2.3.2 The class [g] for an Isom (E?)-metric g

-2
Let 8 = (F1, F», F3) and hg = (hij;) be given; we assume og = -2
0
If A induces the change of basis 8+ a = fA and B = A~!, then
det B B?, + B, BBy + B1aBay B B3 + BiaBss
—5 Ta = B11Bs1 + B12Bas B2, + B2, Bs1 B3y + B22 B3y
B11B31 + B1aBsy B B3 + By Bso B3, + B3,
So we seek matrices of the form
a b ¢ 1 a —=b bd-ac
B = -b a d and Azﬁ b a —ad-be
1 (a2 +b%) a® +b?
Asking that h, be diagonal gives the system
0=a (ah12 — bhn) +b (ahgg — bhlz)
0 = (ah11 + bhy2) (bd — ac) — (ahi2 + bhaz) (ad + be)
+ (ah13 + bhas) (CL2 + b2)
0= (ah12 — bhll) (bd — ac) — (ah22 — bhlg) (ad + bC)
+ (ah23 - bh13) (a2 + b2) .
Define
1 if hi1a =0
w= (28)

- v/ —ha2)2+4h2, .
h11—haa+ (hél ha2)*+4h7, if hyo ;é 0,
noting that we always have
hiso (w2 + (hzg — hn) W — h%z) =0.

(The fact that w may not be a continuous function of hjs will not be an issue.)
In case his # 0, let

. w —h1s
A = h12 w

12



and notice that the change of basis 8 + SA transforms hg = (h;;) into (fzij),
where

hit = whir + 2h3,0 + hiyhos > 0
oz = w?hay — 2h3yw + hiyhi > 0
his = whis + hizhas
has = whas — hiahys.

So in any case we can define

whig + highos

= w2hi1 + 2h2,w + hiyhao (29)
0 e e ()

and obtain a suitable change of basis by setting

( w  hia ¢ )

B = —hi2 w Y |. (30)

1

Indeed, we have o, = og and
PR N (P A (31)
w? + iy w? + h%z

Ao
and find there are Ag, By,Co > 0 such that h, = A"hgA = Bo ) .
Co

(It will not be necessary to display Ag, Bo, Co in the general case.) We compute
that hg (t) = B™ hy (t) B is given by

whiz (A= B)  R,A+w?B  hiad A+ wiB

w2A + h,sz Whlg (.A - B) quA - hlng
hg = (32)
quA - hlng h12¢./4 + W’(ﬁB ¢2.A + ¢2B +C

2.7 Theorem The quasi-convergence class [g] of an arbitrary Isom (E? )-metric
g is exactly 2-dimensional.

Proof. Without loss of generality, we may assume that with respect to a

frame field for which all structure constants vanish except c}; = c3; = —2, g is
represented by a diagonal matrix corresponding to the initial data (Ao, Bo, Co).

13



(MA+@¢-AV+U@A+MB—m2

2
($*A+ 2B +C—C)°
+ I
Lo Whia (A= B))? Lo lwoA- hi29B)° Lo (hi2d A+ wyB)?

AB AC BC

To see that [g] is at least 2-dimensional, let h1; > 0 and hio be arbitrary

and take
AOBO + h%g

h11 ’

noting that ¢ =1 = 0. Then compute

_ w2h11 + h%z (h22 + 2&)) By = w2h22 + hfz (hn - 2(4))
@ +h)" (@2 + 1)’

and set hgz = Co (Ao + Bo) / (Ao + Bo). Since lim; o0 A = lim; o0 B = v/ AoBo

and limy_,, C = 62—0 (, / “é—g + 4/ i—‘(’)), it follows from our analysis of the diagonal

case that h € [g] iff

hao = his =0, has =0,

Ao , Co = has,

2
(w2 + h’%2) .A()Bo = AoBo.
But since hy1hoy = AgBo + h2,, expanding and collecting terms shows that
(w2h11 + h%Q (h22 + ZW)) (w2h22 + h%g (hn - 2&)))
(w? + h3,)”
n h%Q (w2 + (h22 - hn) W — h%2)2
(w? + h%z)Q

To see that [g] is at most 2-dimensional, we first assert that h € [g] only if
his = haz = 0. Indeed, if h € [g], then ¢, satisfy the system

0=wo — hi2v), 0= hi2¢ + wi.
Because this has only the trivial solution hi3 = hog = 0 when h;o = 0, we may
assume hjio # 0. Then since
0=w (2o +w) — hiz (wh — ha2yp) = (W° + hiy) ¢,
we have ¢ = 0 and thus ¢ = 0. It follows that
w W w
his = h—mh23 = T

whence we get hy3 = 0 and then hss = 0, which proves the assertion. Then
the computations above show that hsz is determined by hjy1, hos, hia, and the
conservation law Co (Ag + By) = Co (Ag + Bp). Now if the remaining relation

(w2 + h%2)2 .A()Bo =

= A()Bo = AoBo‘

(w? + hﬁ)2 AoBy = AgBg imposed on hy1, haa, h1o were vacuous, the restriction
hi2 = 0 would make the diagonal equivalence class [g] » a 2-parameter family.
Since this is false, [g] is at most 2-dimensional. ®
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2.4 solv-geometry

2.4.1 The class [g], for a solv-geometry metric g

Consider (G, g), where G = Isom (! ) (the group of rigid motions of Minkowski
2-space), {F;} is a Milnor frame with dual forms {w'}, and the metric is

g=Aw' @w + Bw? @ w? + Cw’® ® WP, (33)
with A\l = —1, A2 = 0, and A\* = 1. The sectional curvatures are
_(A-0)* —44?
_(A+0)
K (Fy AR = s (34b)
_(A-0)* —4c?
K(Fl AN FQ) = ABC (34C)

If Ay = A(0), By = B(0), and Cy = C (0), then the Ricci flow is equivalent to
the system

2 22 2 2 _ 2
dy_,O=& dp (4+40) A2-c

dt BC dt AC AB

Observing that % (AC) = % (B (C — A)) =0, we denote these conserved quan-
tities by

d
. ZO=4 (35)

Now put p = A/C and consider the simplified system

d 1-p? d 14 p?
= YB=8+4
a’ =% B al =8+

> 16. (37)

If Ag = Cp, then ¥ =0, p = 1, and B grows linearly with time. If not, then
by arguing as in the previous section, we see that p is strictly monotone and
approaches a limit p, satisfying either py < poo <1 or 1 < po < po. Since
d 11
—logB = L *p
dp 2p1—p

the condition p, # 1 is incompatible with the observation that B — +o00. It
follows easily that A,C — v/®.

; (38)

2.8 Proposition [g] - is exactly a 2-parameter family.

Proof. Let § € Dy correspond to the initial data (Ao, By, Co). Choose Aq and
By arbitrarily. Then clearly, A/A — 1 and C/C — 1 iff & = &, namely iff
~ _ AoCo
Co=———.
0= 1

15



Then de I'Hopital shows that

B AC (A+0)?
limgzlimM—

— =1
tmoo B teco AC (A + C)°

[
It is perhaps worth relating this result to that obtained in [3].

2.9 Remark If g is a solv-Gowdy metric, the 1-parameter family of locally ho-
mogeneous solv-Gowdy metrics in its quasi-convergence equivalence class corre-
sponds to fixing Ay = v/® and letting By vary.

Proof. Suppose g is a homogeneous solv-Gowdy metric, written as
g=elddodd+e ™ Wdre@dr+ e Wdy @ dy (39)

in coordinates (6, ,y) on G ~ R3. A Milnor frame for g is then

F = e—W/? 9 —GW/2 9

ox y
4 ;0
=75
0 0
e w2 w9
3 e aw+€ 6y’

where Z = 0W/0s is positive and constant in space. Indeed, it is easy to check
that [FI,FQ] = 2F3, [FQ,Fg] = —2F‘17 [F3,F1] = 0, and

16
nger1®w1+ﬁw2®w2+26Fw3®w3.

So for homogeneous solv-Gowdy metrics, we have A = C and thus & = 4e2F
and ¥V =0. m

2.4.2 The class [g] for a solv-geometry metric g

Let g = (Fy, F5, F3) and hg = (h;;) be given; we assume og = 0

If A induces the change of basis 8+ a = fA and B = A~!, then

Bi; — B, B3B3 — B11B21 Bi3Bsz — B11Bs1
0o = | Bi3Bas — B11 By B2, — B3, By3B33 — By B3
B3B3z — B11B31  Ba3Bsz — B21 By B3; — B3,

det B

So we seek matrices of the form

a b c 1 dg cf—bg —cd
B = d and A= (a0 —cold ag — ce ,
e f g (ag — ce) —de be—af ad

16



subject to the constraints d # 0 and ag # ce but ae = cg. Imposing the
requirement that h, be diagonal yields the system
0=ae—cg
0 = (gh11 — ehi3) (c¢f — bg) + (gh1a — ehas) (ag — ce)
+ (gh13 — ehss) (be — af)
(ahiz — chi1) g + (chiz — ahsz) e
)
)

0
0 = (ah13 — chi1) (ef — bg) + (ahag — chi2) (ag — ce)
+ ((lh33 — Ch13 (be - af) .

Observe that

0< h(Fg —F,F3— Fl) = h11 + h3s — 2h13

and define

hi1 + hsz + 1/ (h11 + ha3)® — 4h2
w# 11 33 \/( 211 33) 137 (40)

noting that w solves w? — (h11 + h33) w + h?; = 0 and obeys the inequality

A=w?—hi;>0. (41)

. w his
A= 1 ,
h13 w

then the change of basis § — SA transforms hg = (hi;) into (fm), where

If

b1 = w?hyy — 2wh3s + hi3hss > 0
hss = w?hss — 2wh3; + hiship >0
’Al12 = (whiz — hizhes) A
il23 = (wha3 — hizhi2) A.

Hence we may define

. ilu (whm - h13h23) A

= - = 42
9= hi1 w?hi — 2whf3 + h%3h33 ( a)
W= @23 (Wh23 - h13h12) A (42b)

hss - w2h33 — Qwh% + h%3h11 )

Then a straightforward computation shows that taking

( w ¢ h13 )
B= 1 (43)
his ¢ w

17



gives a suitable change of basis

1 w  Yhiz—wd —hys
A= W? — 2, . (44)
—hiz3 phiz—wyp w

Ao
Indeed, 64 = 03 and h, = A" hpgA = ( Bo ) , where
Co

L w (h’%l — 2h%3 + h11h33) + h%3 (h33 — hll)

Ao = - (45a)
h2, — 2h2 hi1h h2, (h11 — h
Cy = w (h3, s+ 11A323) + his (h11 33)‘ (45b)

It is not useful to compute By explicitly. Indeed, our analysis of the diagonal
case proves that A (t) and C (t) converge to v/ AoCo > 0; in the special case
h13 = 0, we have vV .A()Co‘hls:o =V h11h33/w2. Since hﬁ (t) = Btr ha (t) B is

WA+ KC whA+hszyC  whiz (A+C)
hg = wpA+hizC ¢P*A+B+9?C hizgA+wyC |, (46)
whiz (A+C)  hizpA+wyC  higA+ w?C

this observation is enough to analyze its asymptotic behavior.

2.10 Theorem The quasi-convergence class [g] of an arbitrary solv-geometry
metric g is exactly a 4-parameter family.

Proof. Without loss of generality, we may assume that with respect to a frame
field for which all structure constants vanish except c3; = —2 and ¢}, = 2, g is
represented by a diagonal matrix corresponding to the initial data (Ao, B, Co).
Since

(WA +h2,C—A)*  ($2A+B+¢*C - B)’

2
lh—gl, = 42 + B2
(h2,A + w?C - C)° H WA+ hi39C)?
+ oz + AB
(whis (A+C))?  _(hisd A+ wiC)?
+2 s +2 e

and A,C — /ACy, it is clear that h € [g] only if hi3 = 0.
If h13 = 0, then w2 A and w?C both converge to v/hi1hs3 and

2
5 (sz _ A)2 ((hlz/h11)2 w2A + (h23/h33)2 w2C + B - B)
lh—gl, = A2 + B2
(w2C — 0)2 ((hlz/hu) wQA)2 ((hgg/h;gg) LOQC)Q
+ 2 +2 1B +2 BC .

18



Since B — oo and by de I’'Hopital,

B (wA+w)? AC
lim — = lim 3 =1
t—woo B t—oo (A+ C)” w2 Aw?C

?

it is easy to see that h € [g] if only if hy3 = 0 and hj1hss = AgCo. m

2.5 The geometry of SL (2,R)

——

2.5.1 The class [g], for an SL (2, R)-geometry metric g

——

Consider (G, g), where G = SL(2,R) , {F;} is a Milnor frame with dual forms
{w'}, and the metric is

g=Aw' ®@w + Bw?®w? + Cuw® ®wd. (47)
We may take \! = —1 and A2 = A3 = 1. Then the sectional curvatures are
. _(B-0C)’-A(3A+2B+20)
) _[A-(B-0C)-4B(B-0)
K(F3/\F1)— ABC (48b)
. _[A+(B-0)]?+4C(B-0)
K(Fl/\FQ) = ABC . (48C)

If we write Ao = A (0), Bo = B (0), and Cy = C (0), the Ricci flow is equivalent
to the system

%A - 4% (492)
%B _AF0) =5 i); s (49b)
%C _ArB - ig - (49¢)
If By = Cp, the flow preserves the equality B = C' and conserves the quantity

In this case, A’ = —4A?/B? < 0 and B’ = 8 + 44/B > 8, whence it follows
easily that A’ /0 and B'=C' (8 ast — 00. So B = C ~ 8t and

2 2
lim A(f) = lim STV TAB_ 500

t—00 t—00 2B

It would be very useful if there were a conserved quantity in the general
case. Qur inability to find any such quantity forces us to use alternate meth-

ods in analyzing the quasi-convergence behavior of SL (2, R) metrics. Define

19



Ot = {(a,b,c) eR*:a>0,b>0,c>0} and Ry ={a€ R:a>0}. Consider
a typical cube K C O, defined by

K (ax,a*, by, b*, ¢, c®) = {(a,b,c) € Oy 1a, <a<a*, b, <b< b, e <c< '},

where a* — a4, b* — by, and ¢* — ¢, are presumed small.

2.11 Lemma For any K C O4 and any initial data (Ao, By, Co) € int K, there
are t, > 0 and constants k, K > 0 depending only on K such that for all t > t,,

e A decreases monotonically to Ay, = Ao (Ag, By, Co) > 0;
e B and C grow asymptotically like 8t; and
¢ |[B-C| < Ke ™.

Proof. In considering the system (49a)—(49c), we say that a solution erists as
long as 0 < A, B,C < oo. Notice that 6 = A (B — C) satisfies §' = —165/A.
Since the solution § = 0 is unique, we may assume that By > Cy. (The argu-
ments for the case By < Cy are entirely analogous.) The proof comprises five
claims.

2.12 Claim A solution exists as long as 0 < A < oo; any such solution has the
property that

c*+8t§C§B§b*+(8+4a—)t.

Cx

Noting that B > C for as long as a solution exists, we have

2 2 _ 2
:4A +2AB+ B C S

!
c 1B >8

and

A\' C?—-BC - A%2—- AB
(5) =8 BC? <0,

which lets us estimate

2 2_ B2 ’
:4A +2AC+C°-B S8+4é38+4ﬁ§8+4a—. (51)

BI
AC c Co Cx

2.13 Claim A solution exists at least to some ty = to (K) > 0 with the property
that A < B+ C for all t > tq. Hence a solution exists as long as A > 0.

If Ay > By + Cp, then for as long as A > B + C, we have

B - ()% - A2

A7 = 4 5C < —16,
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so that A (t) < Ag — 16t < a* — 16t. And for the same times, we have

A+C)’-B? (A+B)’-0C?| _ 32
B oy | >~ (B
(B+0) AC T 4B 2B+,
so that B 4+ C > (b, + ¢.)e%?/". Clearly, the inequality A > B + C' cannot
persist, and a solution exists up to some tq = to (K) when A= B+ C > 0.

On the other hand, if A = B+ C at any t > 0, then A’ = —16 and
(B+C)" =32 at t, so immediately A < B+ C.

2.14 Claim A solution exists at least to some t; = t; (K) > tg with the prop-
erty that A > B — C for all t > t; such that A > 0.

If A(tp) < B(tg) — C(tg), then A’ > 0 as long as A < B — C, whence A
remains positive. But since B > C' as long as a solution exists and
i 4 2 2 —16
= — — B— — (B - -1
AmﬂA w+m]( C)< = (B-0) <16,
the inequality A < B — C cannot last. Hence a solution exists at least up to
some ty =t1(IC) >to when A=B—-C >0.
On the other hand, if A = B —C at any t > 0, we have A’ = 0 and
(B—C)" = —16 at t, so immediately A > B — C.

(B-C)

2.15 Claim For allt > t;, A is monotone decreasing to

2A (tl) (C* + 8t1)
A >
A(t1) + 2 (c. + 8t1)

Hence a solution exists for all time.

> 0.

For all t > t; such that a solution exists, we can estimate

_ 2_ g2 2 2
02A’:4w>_4"4—> A

BC =~ BCT  (c,+81)%
Integrating this inequality shows that
1 1 4(t1 — 1)

02 A(t) A= (co+8t)(ce +8)"

Because the RHS converges to —1/2 (¢, + 8¢1) as t — 0o, A decreases monoton-
ically to some A, such that

Aoo > 24 (tl) (C* + 8t1)
- A(tl) +2 (C* + 8t1)

> 0.

2.16 Claim B and C grow asymptotically like 8t, and there aret, = t, (K) > t;
and k = k (K) > 0 such that for t > t,,

(B—C) < (B(t,) — C (t.)) e .
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To prove the first statement, recall that ¢, + 8t < C' < B, whence it follows
from estimate (51) that for ¢t > ¢y,

SUD(4,,B,,C0)ck A (t1)
cy + 8t

B’§8+4g§8+4 —8 as t— oo.

To prove the second, recall that

A(t)) < (B+0C)(t) <2 (b* + <8+4Z—*) tl)

*

and C > ¢, +8t. So there is some t, = t, (K) > t; such that A < C at t.. Then
for all later times, we have
(A% - C?) — (B? +2BC) 12
B-(C0)<-——=<(B-0).
ABC B-C) <77y B0
So for such times, (B — C) < Ke**, where k, K depend only on K. (In fact, it
is easy to see that (B —C)' = =16 (B —C) /Ay ast — 00.) ®

(B-0C)' =4

2.17 Lemma The map Q : O — Ry defined by
Q: (Ag, By, Cp) — Ax (52)
is homogeneous of degree 1.
Proof. If A > 0 and we denote a solution to the system (49a)—(49c) by
t— (A(t), B(t), C(t) € Oy,

t t t
tes </\A (x) AB (X),)\C (X)) €0,
is also a solution. Hence it suffices to observe that

Q (Ao,Bo,Co) = tlir&A(t) = A(>07

then

while
Q (Mo, ABo, A\Co) = lim AA (f) — Ao,
t—o0 A

2.18 Corollary The set Q71 (1) intersects every ray from the origin in O,
exactly once.

Proof. Let p be an arbitrary ray, say from 0 € R® through (Ag, By, Cy) € O4.
Let w = Q (Ao, Bo, Cg) > 0. Then by the lemma,

1 1 1
Q <—A0, — By, —Co) =1.
w w w
So 071 (1) intersects p at least once. On the other hand, if Q (a,b,c) = 1 for

some (a,b,c) € Oy on p, then Q (Aa, Ab, A\c) = A # 1 for any positive A # 1. So
Q71 (1) intersects p at most once. m
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2.19 Corollary The class [g] for an SL (2, R) -geometry metric is a 2-parameter
family.

Proof. By Claim 2.16 and de 'Hépital, [g] » depends only on A,,. m

We will next show that [g] - is a smooth 2-parameter family. We shall use a
theorem of N.Levinson on asymptotically diagonal linear systems. An exami-
nation of the proof given in [10] allows us to state the result in a form adapted
to our purposes:

2.20 Theorem (The Levinson theorem) Let A and T' be continuous real-
valued matrix functions on a halflinety < t < oco. Suppose A = diag (A1,...,\,)
is diagonal, and T' obeys the integrability condition that | (¢)| < «y (t) for some
v € L* ([to,)). We say an eigenvalue \; satisfies the dichotomy condition if
there exist . < B* : [to,00) — R such that By < 0 and ft B*(s) ds = —o0 and
constants K1 and K, such that each \; (i =1,...,n) has one of the following
mutually exclusive properties:

(D1) [ (A 1-( ) = X; (1)) dt < Ky for all intervals [t1, ] C [to, 00) and
B (8) S Xi(t) = A (t) < B~ (¢) for all t € [to, 00);
(D2) f:f (Mi (8) = X; (1)) dt > K for all intervals [t1,ts] C [to, 00).

Then for each \; satisfying the dichotomy condition, there is t, € [tg,00) de-
pending only on v, K1, Ko, and n such that system

Vi) =AM +T ) V(1)

has a solution V; defined for t; <t < oo of the form
t
V(6) = (e + T (O) exp [ A, (s) ds.

t1

Heree; € R™ is the vector with components 0;;, and ¥ (t) € R™ has the property
that for every € > 0, there is T, > t, depending only on ¢, B, 8*, v, K1, Ks,
and n such that sup,>, |¥ (t)| < e.

—~—

Our main result on SL (2, R)-metrics is:

2.21 Theorem Q7! (a) is a 2-dimensional submanifold of O, for every a > 0.

Proof. The argument consists of three claims:

2.22 Claim (Q is continuous.

For each t > 0, define a map Q; : Oy — Ry by Q; : (4o, Bo, Co) — A (t).
Then for any cube X C O4 and any solution (A, B,C) with initial data in X,
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it follows from Lemma 2.11 that there is & > 0 depending only on X such that
for all t2 > t1 > t. (K),

2]
|Qtz_Qt1|: Al(t) dt‘
t1
O e S
< 4——— 1dt < Sdt="_2
_/tl o dt_/tl o=tk

Hence ©; — € locally uniformly in O, which proves the claim.

2.23 Claim (2 is continuously differentiable.

Consider a solution (A, B, C) with initial data (Ag, By, Co) € int K for some
K C O4. We shall prove that 0A/0Aq, 0A/0By, and 0A/ICy converge to finite
limits as t — oo uniformly with respect to K. Let E =B+ C and F =B - C

and define
0AJ0Ay 0A/OBy, 0A/0Cq
P(t)=| O0E/0Ay OE/0B, OE/0Cy
0F/0Ay OF/0By OF/0Cy
Then P satisfies the linear system

P'=QP

p(o):(

where it is a straightforward task to compute

(53)

Qu = —;—éﬂ
Qi = B%Q (B+0) (42— (B-0))
Qi3 =~ oy (B = C) (42 = (B +0))
and
Qo = A%;C’ (B+C) (4% +(B-0))
O = —%202 (B2+¢?) (42— (B~ 0)?)
Q23 = %202 (B2 - c?) (42— (B+0)")
and
Qs = g (B-0) (47 +(B+0)?)
Qs = —%202 (B2 - c?) (42 - (B-C))
Q33 = %202 (B2+C?) (42— (B+C)).
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Let t, = t. (K) be the time given by Lemma 2.11. Since A (¢.) is a continuous
function of (Ag, Bo,Co) € K, there are by Claim 2.15 constants ki,ks > 0
depending only on K such that

k1 <A<k

for all ¢t > t,. By Claim 2.12, there are k3, ..., ks > 0 depending only on K such
that

ks + kqt < B < ks + kgt and ks + kat < C < ks + kgt

for all t > 0. And by Claim 2.16, there are k7, kg > 0 depending only on K such
that
|B — C| < kre~Fst

for all ¢ > t,.. Hence there are ¢y,...,c4 > 0 depending only on K such that the
off-diagonal components of () obey the following estimates for all ¢ > t,:

1Qu2| < 2B~2C2(B + C) (A2 +(B- 0)2)
c

< 4 (k3 + kat) ™" (ks + kot) (k3 + kZe 2kst) < s

Q| <4A72BTICTH (B +C) (A2 + (B - O))
< 8k 2 (ks + kat) 2 (ks + kot) (K3 + k2e™2F1) < %
(Qus| <2B72C2|B = C| (42 + (B+C)) < ege™™
|Qa1| < 44A~2B~1C~1 (B — (| (A2 +(B+ 0)2) < czeCt
|Q23| < 2471B~20~2|B - C|(B+C) (A2 +(B+ 0)2) < cgecat

Q32| < 24-1B~20-2|B - C|(B +C) (A2 +(B- 0)2) < cze—cat,

We estimate the diagonal components of ) for ¢t > ¢, as follows:

8k 8k
_722 <Qu < _712
(k3 + kyt) (ks + ket)
Ak (ks + ket)” 4 (ks + ket)® k2e2kst

< Qa2 <

(ks + k4t)4 k1 (ks + k4t)4
16 (ks + ket)" < O < b2 (ks + ket)” 8

k1 (kg + k’4t)4 =0 = (kg + k’4t)4 ko ’

(The last inequality follows from the fact that (B2 + C?) (B +C)* > 4B2C?.)
Now put T = diag(1,1/¢,1) and W = T'P. Consider the system

W =(T'T'+TQT " )YW=A+T)W (54)
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defined for t > tg, where tg > t, is to be determined,

0
A(t)=diag<A1<t),A2<t>,A3(t)>#( Y Qu-pt ) (55)
Q33

and

0 Qi2t Qi3
F@)=| @/t 0 Qa/t |. (56)
Q31 Qs 0

Notice that A; behaves like a constant multiple of —1/t2, Ay behaves like —1/t,
and Az behaves like a negative constant. Choose to > k2/4 and make the
following four observations:

e " obeys the integrability condition of Theorem 2.20 uniformly with respect
to solutions whose initial values lie in K. Indeed, it follows from the
estimates obtained above for |Q;;| (i # j) that there exists a positive
continuous function v € L! ([t., 00)) depending only on K and n such that
T (8)] < v (t) for all t >t > t,.

e The eigenvalue \; of A obeys the dichotomy condition of Theorem 2.20
uniformly. Indeed, we deduce from the estimates for @);; that there are
constants ¢x, cg > 0 depending only on K such that

4ko (k5 + k’et)2 1

o—N>-—— 7
2 t= (k3 + k4t)4 t
4 2792 —2kgt 1 1
AQ _ )\1 S (k5 +k6t) k7€4 + 8k2 s — = S Cs - =
k1 (k3 =+ k4t) (k3 + k4t) t cgt+1 t
and
1 4
As— A > — 6 (ks + ket)

ky (ks + kat)*
< ko (ks + ket)® 8 N 8k, cs 8

Az — A < .
ST S ks 4 kat)t ke (ks tkat)’ o+ ke

Hence both Ay and A3 satisfy property (D1) if we set

oo

Ki=K=[ —2_dt<oo
tO 06 +t
3 (t) _4k2 (ks + k6t)2 B l . 16 (k5 + kﬁt)4
* (k3 + k4t)4 t k1 (kg + k4t)4
- Cy 1
t p—
U ce + 12 t



e The eigenvalue A2 obeys the dichotomy condition uniformly. Indeed, since

Cs 1
MDA >——B 4=
1mA 2o Ty

A1 satisfies property (D2) with Ko = —K. And because there is ¢; > 0
depending only on K such that

1 Yoy PRZem2kst 1
As— g > — 6 (ks + kﬁt)4 _ (ks + ket) k7e4 syl
k1 (ks + kat) k1 (ks + kat) t t
1 2 4
,\3—A2§—8k2(k5+k6? _8 1. L
(k3 + k4t) ko t cg+1t ko
As satisfies property (D1) with
- - 205 4
K, = 2K . (t) = —cr, () = -2
1 ) /8 (t) C7 /8 (t) Ce +t2 k2

o The eigenvalue A3 obeys the dichotomy condition uniformly. Indeed, since

Cs 8 205 4
L B d o do—dg>__26 2%
06+t2+k2 an 2 8= ce + t2 ko’

both A; and \s satisfy property (D2) with Ko = —2K.

M —A3>—

Recalling that A1, A2, and A3 are bounded uniformly with respect to /C, we
apply Theorem 2.20 to system (54), obtaining a time t; > to depending only on
K and vector solutions

1 ¢ exp [ i (s) ds
Vi(t) = 0 |+o0(1)]exp | M (s)ds— 0

0 t 0

0 t 0
Va (t) = 1 | +0(l)]exp | X(s)ds—| O

0 t 0

0 t 0
V3 (t) = 0 |+o(l)]exp | M(s)ds— | O

1 t 0

defined for ¢t > t;. Note that eftolo Ai(s) ds can be estimated by constants depend-
ing only on K and that everything in sight converges uniformly with respect to
K. Note also that the set {V; (¢), V2 (t), Vs (¢)} is linearly independent. Indeed,
suppose oV}, (t) = 0 for some constants a',a?,a®. Then as t — oo,

ol = 0(1) — 0 (0 (1)) efa P24 _ 53 (o (1)) efir Gam) 85,

By the estimates above for Ay — A\; and A3 — \;, this is possible only if a' = 0,
hence only if

Oé2 = 0(1) - OéS (0(]_)) ef:l (Az—A2) ds.
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By the estimate for A3 — A2, this is possible only if a? = 0, hence only if
o' = o = a® = 0. Therefore there are constants af; depending only on W (t;)
such that Wi; (t) = of;Vi (t) for all t > t;. Because all o; can be estimated
uniformly with respect to K, we conclude that 0A/0Aq, 0A/0Bg, and 0A/9Cy
converge to finite limits locally uniformly with respect to initial conditions.

2.24 Claim V is never degenerate.

The fact that Q (Aa, \b, A\¢) = AQ(a,b,c) for all (a,b,c) € Oy and A > 0
proves VQ|(,5.0) (a,b,¢) = Q(a,b,c) > 0. m

As we indicated in the introduction, the computations needed to determine
the class [g] are formidable. Moreover, we may not be able to apply them
without a more explicit understanding of the map 2. Hence we shall not pursue

——

our analysis of SL(2,R) metrics any further here.

3 The geometries not modeled by a Lie group
Denote the upper half-space in R* by H" = {(z,y) € R* : z € R*™!, y > 0},
and let Conf (H™) denote the group of all conformal diffeomorphisms of H™. Let

Z™ be the subgroup of Conf (H™) generated by {7, : v € R"~'} and {p, : v > 0},
where 7, is the translation

Tt (2,y) — (. +u,y) (57)
and p, is the radial dilation
pu: (2,y) = (va,vy) . (58)
For ug,us € R*™! and vy, vy > 0, we readily verify the relations
TurTus = Turduzs  PurPos = Porvas  PoTu = TouPus  (TuPv) ' = T_w/uP1/os
whence it follows that
T = {rupy : (u,0) € H"}. (59)

It is clear that Z" is a minimal transitive subgroup of Conf (H"), because the
isotropy subgroup

I(T;c,y) = A{7upy €I : (Tupo) (2,9) = (,9)}

contains only the identity 79p1 for all (z,y) € H". (The authors extend special
thanks to Fredric Ancel for suggesting the group Z™.)
Now let p be an arbitrary scalar product on R™ and define

V,W n n
g(Va W) (%y) = 1%7 (xay) eH", V,We T(ac,'y)H . (60)
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Note that g agrees with the usual hyperbolic metric when p is the standard
inner product, and has the property that each (7,p0,) is an isometry:

((Tupv)* g) (V,W) (z,y) = g (D (Tupy) V, D (Tupu) W) ((Tupy) (7,9))

’%w(um(w,y).

=v’g (V. W) (v +u,vy) =
If pgp = (pij),pﬁ’1 = (pY) in a basis # = (0/0z,...,8/02™) for T(, ,yH"
induced by any local coordinate system z!,..., 2" with dy/0z' = d;,, we can
write the Riemannian tensor of g as

¢ P ¢
Rijk = _y_2 (61pjk - 5jpik)

and its Ricci tensor as
Rjp = —(n—1)p""gji-

Notice that finding a minimal transitive subgroup of Conf (H™) has not yet
given us anything essentially new, because g has constant sectional curvature
K = —p™ < 0. (But as we noted in §1, quasi-convergence asks that two metrics
resemble one another without requiring one to be modified by diffeomorphisms.)

3.1 The geometry of H?

Consider H? with the homogeneous metric g defined above. We shall regard the
Ricci flow % g = —2 Rc as an evolution equation for p. We may suppose without
Ao
loss of generality that pg is diagonal to start, say pg (0) = By
Co
Then pg remains diagonal and evolves according to the system

d A d B d

with solution
Co CYO

Notice the conserved quantities

A Ao AB A0Bo
=9 = —_ =U = .
B "5, W @ e

Now suppose q is another scalar product and h is the homogeneous metric
on H? given by

h(V,W) (z,y) = %. (63)
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If g5 = (gs5), we set

1 —42 912923 —Qq13922
q11 q11422 —qu
A : 1 912913 —411923 (64)

q11422 _[I%g

and make the linear change of coordinates ( 21 22 23 )= (2! 2?2 y)A
(inducing the change of basis @ = SA in the tangent space) to obtain

Q1 Ao
Qo = Q2/Q1 = By )
Q3/Q2 Co

where (), > 0 is the determinant of the upper left n x n submatrix of (g;;).
(Compare §2.2.2, and notice that dy/d2* = §;, and (gz)"" = (¢2)"" = Q2/Qs.)
Then the evolution of A by the Ricci flow corresponds to

A Q1 + 49422

— Q Q3
B = & +aga-t ) (65)

c 9
% 4 at

Returning to the basis 3, we compute gz = (A_l)tr ga A~ to be

q12 Q13
A 2Ql'A Ql'A

q12 q 9124913 911923—3124913

@A —1ng+6 e A+ @ B . (66)
Q3 412913 411923 —q12q13 413 (911923 —q12913)

oA e AL mEGRRE GiA+ @ B+c

3.1 Theorem The quasi-convergence class [g] of an arbitrary metric g having
the geometry of H? is exactly a 1-parameter family.

Proof. In the notation adopted above, we have h € [g] if and only iff every
term in the sum

2 (A—A)2+(§%A+B—B)2

|h - glg = A2 B2
(ﬁfl-}- (q11q237q12q13)26+c _ 0)2 (MA)2
i Q7 Q3 +9 o)
C? AB
2 2
s (%A) s (qmq%m A+ q11q23Q2q12q13 B)
AC BC

=Ty + Ty + Ty + 2T + 2T + 2T,

converges to 0 as t — oo.
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To see that [g] is at least 1-dimensional, choose any A > 0 and verify that
|h — g|§ — 0 when

Mo/Co
qﬁ = )\Bo/CO
A

To see that [g] is at most 1-dimensional, suppose |h — g|§ — 0. Since

_ (t)’ o < C2Q3 )

AB N2\ 4,2
and

2
A
T — @ _ 2. [Co@5
5 AC q13 AOQ% 9

we have q12 = q13 = 0. Then since

- (e5%2)" | (%Q%)

Te— N %2/ Z0%k2
6 BC — 423 BOQ%

we have ¢g23 = 0 and can thus compute

Co qu1 2 Co q22 2
st (12 (1 Gm)’
| o Ao g33 By q33
So any choice of a single diagonal element g;; determines the remaining two. m

3.2 The geometry of H? x E!

Let
X=RxH>={(w,z,y) weR, (z,9) € H} (67)

and
G = Isom (R) XIQZ{(UsaTupv) :s €R, (u,v) EHQ}’ (68)

where o is the translation o, (w) = w + s. Then G acts transitively on X by

(05, Tupv) : (W, 2,y) = (05 (W), (Tupw) (2,9)) = (W + 5,02 + u,vy) .

To define the 6-parameter family of homogeneous metrics having the geometry
of H? x E', it is easiest to use local coordinates. Let 3 = (9/0z%,8/022,0/023)
be a basis for T{y,;,,)A induced by coordinates z*, 22, 2. Let p be an arbitrary
scalar product on R®, say pg = (pi;), p;* = (p"), and define g at the point
(w,z,y) by
pu p12/y  pi3/y
9= P12/Yy ng/y2 1023/?/2 . (69)
ps/y D23y’ pssfy’

31



Since

D (o5, Tupy) = v ,
v

it is easily checked that each element of G is an isometry. Assuming as before
that 0y/0z* = d;3, we find that the sectional curvatures of g are

(0 0 P%Q p33
(azl 022 ) 4 pups — p%z ( )
(0 0 P%Q p22
(azl 353) 4 pupss — p%3 ( )
0 0 p? p'! P22
K(@ a_>:T S ——. (700)
D22P33 — P33 P22P33 — Pas

and its Ricci tensor at the point (w, z,y) is

p22p33 — (p23)2 (p13p23 _p12p33) Jy (p12p23 _p13p22) Jy

2 2
Re — % (p13p23 _p12p33) Jy (p11p33 _ (p13) ) Jy? (p12p13 _p11p23) Jy?
2
(p12p23 _p13p22) Jy (p12p13 _p11p23) Jy? (pnpzz _ (p12) ) Jy?
D22 0
+ B2 —p3 p23 ) (71)
Y p —p22

Notice that for this model, taking a minimal subgroup G < Isom (R) x Conf (#?)
has allowed us to study more than just the usual product metrics.

Now suppose ¢ is another scalar product, say gz = (g;;) , q'gl = (¢%), and
h is the homogeneous metric defined at (w,z,y) by

q11 CI12/y Q13/y
h=1| q2/y @2/v* @3/v* |. (72)
413/y €]23/y2 Q33/3/2

As before, we shall study [g] by letting p and g evolve by the Ricci flow; we
may assume without loss of generality that pg is diagonal at t = 0, say pg (0) =
Ao

By . Then pg remains diagonal and evolves by the system
Co
d d B d
—A= —B=2— —C=2
th 0, dtB c’ dtC (73)

with solution

A=Ay, B=By+222t, C=0Co+2t (74)



Trivially, we have the conserved quantities

B By
A=A d —=0=——
0 an C " Co
Let A be given by equation (64) and make a linear change of coordinates to
induce the change of basis @ = SA in T(y 5,,)X. Then gg becomes

Q1 Ao
o = Q2/Q1 = Bo )
Qs3/Q- Co

where @, > 0 is the determinant of the upper left n x n submatrix of gz = (g;;).
Hence the evolution of h by the Ricci flow corresponds to

A Q1

_ Q Q3
B = Q—j + 2Q153t . (75)

Q
¢ @ 4ot

Returning to the basis 3, we calculate that gz = (A*I)'“r ga A1 is the matrix
given in (66).

3.2 Theorem The quasi-convergence class [g] of an arbitrary metric g having
the geometry of H? x E! is exactly a 3-parameter family.

Proof. Note that h € [g] if and only iff every term in the sum
|h— g2 = Ty + To + Ts + 2Ty + 2T + 2T

converges to 0 as t — oo, where T7,...,Tg are defined in Theorem 3.1.
To see that [g] is at most 3-dimensional, suppose h € [g] and note that T3, T},

2
and T5 all converge to 0 for any choice of initial data. Since T; — <‘%; — 1) ,
we must have

q11 = Ao. (a)
2
Then since Tp — ( Af]%’?%s - 1) , we get the relation
CO 2
= ——0Q;5. b
Qs = o0 (b)

. 2
And since Ts = (Aogas — q12413) Aog—ng’ we have

o3 = q12913 (c)
23 AO .

Thus ¢11 is determined by (a), gs3 is determined by (c) once ¢12 and ¢i3 are
known, and then ¢33 is determined by (b) once g2z is known.

33



To see that [g] is at least 3-dimensional, let A > 0 and yu, v € R be given and
take (gs5) to be

Ao v
Atp? uv
K 0 Ao
b ACo v
v Ao AoBo + Ao

Then Q1 = Ap, Q2 = ), and Q3 = )\2A51B51C’0, so (gi;) is positive definite.
And the calculations above show clearly that |h — g|§ —0. =
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