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Abstract. Kröncke has shown that the Fubini–Study metric is an unstable generalized sta-
tionary solution of Ricci flow [Krö20]. In this paper, we carry out numerical simulations which
indicate that Ricci flow solutions originating at unstable perturbations of the Fubini–Study
metric develop local singularities modeled by the blowdown soliton discovered in [FIK03].

Contents

1. Introduction 1
2. An unstable conformal perturbation 3
3. Cohomogeneity-one metrics 4
4. Initial data 5
5. Ricci–DeTurck flow 6
6. A system better suited to simulation 7
7. The blowdown soliton 9
8. Results of simulations 10
9. Directions for future work 13
References 13

1. Introduction

In studying dynamical systems, it is always important to identify and classify fixed points.
For Ricci flow, regarded as a dynamical system on the infinite-dimensional space of Riemannian
metrics, one must consider generalized fixed points. These are the Ricci solitons, specified by
the data

(
Mn, g, λ,X

)
for which

−2 Rc[g] = 2λg + LXg,

where Rc[g] is the Ricci curvature of the metric g, λ ∈ R, and LXg is the Lie derivative of g
with respect to the vector field X.
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A prominent example of a Ricci soliton is the Fubini–Study metric on complex projective
space, an Einstein metric corresponding to

(
CPN , GFS,−2(N + 1), 0

)
.1 In §10 of [Ham95],

Hamilton conjectures that it is a stable fixed point. We refer the reader to Section 4 for an
explicit description of the Fubini–Study metric. In Example 2.3 of [CHI04], Cao, Hamilton,
and Ilmanen note that the Fubini–Study metric is neutrally linearly stable with respect to the
second variation of Perelman’s shrinker entropy, crediting this observation to unpublished work of
Goldschmidt. However, in his dissertation, Kröncke computes the third variation of Perelman’s
entropy to prove the surprising result that Fubini–Study is in fact unstable. This calculation has
appeared as [Krö20] and has been independently verified in [KŠ19]. The instability is conformal
and hence not Kähler.

The instability of the Fubini–Study raises an interesting question. What happens to Ricci
flow solutions that start at arbitrarily small but unstable perturbations of GFS? According to
the conjectural hierarchy of 4-dimensional solutions given in [CHI04], one expects the Ricci flow
of unstable perturbations of

(
CP2, GFS

)
to develop local singularities modeled by the blowdown

gradient shrinking soliton L2
−1 discovered in [FIK03]. These solutions would start arbitrarily

close to (but not in) the subset of Kähler metrics and, in finite time, develop local singularities
that are asymptotically Kähler (but with the complex structure reversed — see the analysis of
Figure 2 in Section 8). A closely related type of singularity formation, an asymptotic approach
to the space of Kähler metrics in the blowup limit, has been partially investigated in [IKŠ19].
It should be noted that, while the blowdown soliton has been shown to occur as a model of sin-
gularity formation on compact manifolds by Máximo [Máx14], the solutions considered in that
work are Kähler, whereas the unstable perturbations studied here all lie outside the space of
Kähler initial data. On the other hand, the blowdown soliton is a smooth, complete, asymptoti-
cally conical, gradient shrinking Ricci soliton, and therefore arises as a Type-I singularity model
of a non-Kähler Ricci flow on some closed manifold by recent work of Stolarski [Sto22]. The
numerical findings in this paper suggest that the blowdown soliton models a Type-I singularity
in the Ricci flow starting from an unstable perturbation of

(
CP2, GFS

)
, which is consistent with

Stolarski’s result.
In this paper, we describe numerical simulations that provide evidence in favor of the conjec-

ture that there exists an unstable Ricci flow “orbit” starting arbitrarily close to
(
CP2, GFS

)
and

ending at the blowdown soliton L2
−1 in real dimension n = 4. This is not a true orbit, because

convergence to the blowdown soliton happens only locally and after parabolic dilation of the
developing singularity. Nonetheless, it provides evidence in favor of the hierarchy of shrinking
Ricci solitons outlined in [CHI04, Section 4]. In particular, the monotonicity of shrinker en-
tropy ν under Ricci flow implies that if the Ricci flow starting from an unstable perturbation
of (CP2, GFS) were to develop a different singularity, then this singularity would have higher
density Θ than (CP2, GFS) [CHI04]. Since the blowdown soliton L2

−1 is known to be unique
among Kähler solitons [FIK03], our results have not detected any non-Kähler gradient shrinking
soliton with the topology of C2 blown up at a point, at least none with a density value above
that of

(
CP2, GFS

)
.

Because unperturbed
(
CP2, GFS

)
is a positively-curved Einstein manifold, under Ricci flow it

vanishes in a point. In particular, the area of the distinguished CP1 goes to zero at the same

1N is the complex dimension, so that the real dimension is n = 2N .
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time that the diameter of the manifold goes to zero. In each of our numerical simulations,
we begin with initial data that are small non-Kähler conformal perturbations

(
CP2, G̃

)
. The

conformal factor lies in the nullspace of the second variation of Perelman’s shrinker entropy ν
and is constructed in Section 2. Our numerics indicate that evolution of this initial data by
Ricci–DeTurck flow crushes the CP1 fiber before the remainder of the manifold vanishes, that
is, before the diameter goes to zero. Performing a parabolic rescaling of the solution fixes the
area of the CP1 fiber. Our numerics indicate that the developing singularity is Type-I, see the
analysis of Figure 1 in Section 8; that is, it develops at the natural parabolic rate. Because
of this, one expects by [EMT11] to see local convergence of the parabolic blowups to a nonflat
gradient shrinking soliton. How do we recognize the soliton numerically? We do so in two ways.

First, using a measure of local closeness to Kähler derived in Section 7 below, we find that the
blowups are becoming asymptotically Kähler near the distinguished fiber, but with the opposite
orientation of the complex structure on unperturbed

(
CP2, GFS

)
. This is significant because we

know by [FIK03] that the blowdown soliton is the unique gradient shrinking Kähler soliton with
the topology of C2 blown up at the origin, which corresponds in the original solution to the
distinguished CP1.

Second, we use the fact that the blowdown soliton is asymptotically conical. By [KW15], there
is at most one shrinking gradient soliton asymptotic to any cone. So, as further verification,
we determine that the parabolic blowup is converging numerically to the correct cone near the
CP1, in a neighborhood suitable to the rescaling. Thus, while numerical simulations cannot
provide proof, we regard these two observations as compelling evidence in favor of the formation
of the [FIK03] soliton in solutions emerging from unstable perturbations of the Fubini–Study
metric.

2. An unstable conformal perturbation

We seek a conformal factor ψ so that (1 + δψ)GFS is an unstable perturbation of the Fubini–
Study metric for small δ > 0.

As shown in [KŠ19], the function ψ must satisfy three conditions:(
∆ +

1

τ

)
ψ = 0,

∫
CP2

ψ dV = 0,

∫
CP2

ψ3 dV > 0.

These are, respectively: the condition that ψ lie in the nullspace of the second variation of
Perelman’s entropy ν, a normalization necessary for that functional, and a sufficient condition
for the perturbation generated by ψ to be unstable. Here, 1/(2τ) is the Einstein constant of the
metric, which in our case is 2(N + 1) = 6.

Because Rc(GFS) = 6GFS and the Laplacian of a rotationally-symmetric function ψ is

∆ψ = ψθθ +
{

3 cot(θ)− tan(θ)
}
ψθ,

to specify rotationally symmetric unstable perturbations of the Fubini–Study metric, we seek
solutions ψ of the second-order linear ode

0 = (∆ + 12)ψ(θ)

= ψ′′(θ) +
{

3 cot(θ)− tan(θ)
}
ψ′(θ) + 12ψ(θ).
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Only one fundamental solution of this ode is smooth for θ ∈ [0, π/2]. Up to an arbitrary
multiplicative constant, it is

ψ = csc2(θ)
{

2− 8 cos(2θ) + 6 cos(4θ)
}

= 1 + 3 cos(2θ).

Using det(GFS) = sin6(θ) cos2(θ), one readily verifies that this solution satisfies∫
CP2

ψ dV =

∫ π/2

0

{
1 + 3 cos(2θ)

}
sin3(θ) cos(θ) dθ = 0,∫

CP2
ψ3 dV =

∫ π/2

0

{
1 + 3 cos(2θ)

}3
sin3(θ) cos(θ) dθ =

2

5
.

Hence, given δ > 0, we consider Ricci flow starting from (1 + δψ)GFS. After taking a suitable
parabolic dilation of the flow, it suffices to consider initial data

G̃ =
1 + δψ

1 + δ
GFS =

(
1 + 3

δ

1 + δ
cos(2θ)

)
GFS = hGFS,

where h is defined in equation (7) below, with ε = δ
1+δ .

3. Cohomogeneity-one metrics

On [0, π/2]× SU(2), we consider cohomogeneity-one metrics of the form

(1) G = ρ2 dθ2 +
3∑
i=1

f2i ω
i ⊗ ωi,

where {ωi ⊗ ωi}3i=1 is a Milnor coframe for SU(2). The cohomogeneity-one condition means
that the fiber over a generic θ is diffeomorphic to S3, except for θ ∈ {0, π/2}. We are interested
in initial data that are unstable conformal perturbations of the Fubini–Study metric on CP2.
Accordingly, we impose an Ansatz of U(2) symmetry in the form

(2) f1 = f and f2 = f3 = g.

From the viewpoint of analysis, it is convenient to fix a gauge and let s(θ, t) represent arclength
with respect to G. Then s and θ satisfy the infinitesimal spatial relation

ds = ρ dθ.

In this gauge, the metric takes the form

G = ds2 +
3∑
i=1

f2i ω
i ⊗ ωi.

Then the sectional curvatures of G are convex linear combinations of

κ12 = κ31 =
f2

g4
− fsgs

fg
,(3a)

κ23 =
4g2 − 3f2

g4
− g2s
g2
,(3b)

κ01 = −fss
f
,(3c)
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κ02 = κ03 = −gss
g
,(3d)

where e0 = d
ds and (e1, e2, e3) is a Milnor frame for SU(2).

The variables (s, t) do not commute, but this approach yields a strictly parabolic system for
Ricci flow on these geometries,

ft = fss + 2
gs
g
fs − 2

f3

g4
,(4a)

gt = gss +

(
fs
f

+
gs
g

)
gs + 2

f2 − 2g2

g3
,(4b)

where all time derivatives on the lhs are taken at fixed θ. This system has been studied
in [IKŠ19]. One can recover the behavior of ρ under Ricci flow using its evolution equation

ρt =

(
fss
f

+ 2
gss
g

)
ρ.

From the viewpoint of numerical simulation, on the other hand, it is preferable to use fixed
commuting variables. Using the fact that any smooth ζ(s) must satisfy

ζs =
ζθ
ρ

and ζss =
ζθθ
ρ2
− ρθζθ

ρ3
,

we rewrite system (4) in terms of the fixed commuting variables (θ, t) as

ρt =
fθθ
ρf
− ρθfθ
ρ2f

+ 2
gθθ
ρg
− 2

ρθgθ
ρ2g

,(5a)

ft =
fθθ
ρ2
− ρθfθ

ρ3
+ 2

fθgθ
ρ2g
− 2

f3

g4
,(5b)

gt =
gθθ
ρ2
− ρθgθ

ρ3
+

(
fθ
f

+
gθ
g

)
gθ
ρ2

+ 2
f2 − 2g2

g3
.(5c)

The evolution equation (5a) for ρ prevents this system from being parabolic. To remedy this,
we implement DeTurck’s trick below.

4. Initial data

Our reference (unperturbed) Fubini–Study metric GFS is determined by three functions
ρFS, fFS, gFS : [0, π/2]→ R, given by

ρFS(θ) = 1, fFS(θ) =
1

2
sin(2θ) = sin(θ) cos(θ), and gFS(θ) = sin(θ).

That is, using (1), we have

GFS = dθ2 + sin2(θ) cos2(θ)ω1 ⊗ ω1 + sin2(θ)ω2 ⊗ ω2 + sin2(θ)ω3 ⊗ ω3.

It is readily verified that these choices have the correct boundary behavior to induce a smooth
metric on CP2, with the geometry of an asymptotically round 4-ball near θ = 0 and with a
distinguished CP1 fiber at θ = π/2. Furthermore, it follows easily from (3) that Rc[GFS] = 6GFS.
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For use in specifying a Ricci-DeTurck flow below, which shadows the Ricci flow and is par-
abolic, unlike the Ricci flow itself, we note that the Fubini–Study connection is determined
by

(6) (ΓFS)000 = 0, (ΓFS)011 = −1

4
sin(4θ), (ΓFS)022 = (ΓFS)033 = −1

2
sin(2θ).

Given any ε > 0, we recall that the conformal factor determining an unstable perturbation of
the Fubini–Study metric is given by

(7) h(θ) :=
(
1 + 3ε cos(2θ)

)
,

as shown in Section 2. As initial data for our perturbed Ricci flow, we take G(0) = G̃ = hGFS,
for which (ρ, f, g) = (hρFS, hfFS, hgFS), namely

ρ(θ) =
(

1 + 3ε cos(2θ)
)
,

f(θ) =
1

4

(
2 sin(2θ) + 3ε sin(4θ)

)
,

g(θ) = sin(θ)
(

1 + 3ε cos(2θ)
)

at time t = 0. The Levi–Civita connection of G(0) is determined by

Γ0
00 = − 6ε sin(2θ)

1 + 3ε cos(2θ)
,

Γ0
11 = −

sin(2θ)
(

cos(2θ) + 3ε cos(4θ)
)

2
(

1 + 3ε cos(2θ)
) ,

Γ0
22 = Γ0

33 = −
sin(θ) cos(θ)

(
1− 6ε+ 9ε cos(2θ)

)
1 + 3ε cos(2θ)

,

with the unlisted Levi-Civita coefficients vanishing.

5. Ricci–DeTurck flow

The formulas below that suppress time apply at all t ≥ 0 such that a solution exists.

We consider the pde system

(8) ∂tG = −2 Rc[G] + LVG

with initial data G(0) = hGFS, where our DeTurck vector field V is defined by

(9a) V β = Gαα
(

Γβαα − (ΓFS)βαα

)
,

in which the implicit summation ranges over α ∈ {0, 1, 2, 3}. For the metrics under consideration,
this reduces to V = V 0 d

dθ , where

(9b) V 0 = Gαα
(

Γ0
αα − (ΓFS)0αα

)
.
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Remark. We note that at t = 0, one has

V 0(θ, 0) =
12ε sin(2θ)(

1 + 3ε cos(2θ)
)3 ,

which is smooth for all sufficiently small values of ε ≥ 0.

In working with the DeTurck vector field V = V 0 d
dθ and the 1-form V [ = V0 dθ, where

V0 = ρ2V 0, it is convenient to relabel V 0 as the function v(θ, t) defined by

(10) v =
ρθ
ρ3

+
1
4ρ

2 sin(4θ)− ffθ
ρ2f2

+
ρ2 sin(2θ)− 2ggθ

ρ2g2
.

One finds that (LVG)αα = 2∇αVα, where the only nonzero components are

∇0V0 = ρ2vθ + v ρρθ = ρ(ρv)θ,

∇1V1 = v ffθ,

∇2V2 = ∇3V3 = v ggθ.

Thus from system (5) above, we obtain a manifestly parabolic system corresponding to the
Ricci-DeTurck flow,

ρt =
ρθθ
ρ2
− 3

ρ2θ
ρ3

+
( fθ
ρ2f

+ 2
gθ
ρ2g

+ v
)
ρθ(11a)

+

([sin(4θ)

4f2

]
θ

+
[sin(2θ)

g2

]
θ

)
ρ+

f2θ
ρf2

+ 2
g2θ
ρg2

,

ft =
fθθ
ρ2

+
(
v − ρθ

ρ3

)
fθ + 2

fθgθ
ρ2g
− 2

f3

g4
,(11b)

gt =
gθθ
ρ2

+
(
v − ρθ

ρ3

)
gθ +

(
fθ
f

+
gθ
g

)
gθ
ρ2

+ 2
f2 − 2g2

g3
.(11c)

Below, we convert this into an equivalent form for which suitable boundary behaviors as θ ↘ 0
and θ ↗ π/2 can be robustly enforced in numerical simulations.

6. A system better suited to simulation

Here, we convert system (11) into an equivalent one appropriate for numerical simulation of
the evolution. The issue we must address is this: for the evolving functions (ρ, f, g) to induce
smooth metrics on CP2 at each time requires that we enforce the identities

f = 0, fs = 1, and g = 0, gs = 1 at θ = 0,

and the identities

f = 0, fs = −1, and g > 0, gs = 0 at θ =
π

2
.

However, we may impose only one Dirichlet or Neumann condition at each boundary for the
functions that we evolve numerically. We proceed to resolve this issue in two steps, as follows:

We begin by defining

ρ̃ := log ρ, f̃ := log f, g̃ := log g,
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and

Q := ρ2 sin(θ) cos(θ)

(
cos(2θ)

f2
+

2

g2

)
.

Then using (11) and diligently doing some algebra, we obtain the system:

ρ2 ρ̃t = ρ̃θθ −Qρ̃θ − ρ̃2θ + f̃2θ + 2g̃2θ +Qθ,(12a)

ρ2 f̃t = f̃θθ +Qf̃θ − 2
ρ2

g4
f2,(12b)

ρ2 g̃t = g̃θθ +Qg̃θ +
ρ2

g4
(
2f2 − 4g2

)
.(12c)

Next we define A, Y, Z via the relations

ρ =: eA+Y+Z , f =: eY cos(θ) g, g =: eA sin(θ),

noting that

Q = 2e2Z
(
cot(2θ) + e2Y cot(θ)

)
.

Then we obtain this system:

ρ2At = Aθθ +QAθ + csc2(θ)
(
2e4Y+2Z cos2(θ)− 4e2Y+2Z − 1

)
(13a)

+ 2e2Z cot(θ)
(
cot(2θ) + e2Y cot(θ)

)
,

ρ2 Yt = Yθθ +QYθ − 2e2Z tan(θ) cot(2θ)− 2e2Y+2Z − sec2(θ)(13b)

+ 4e2Y+2Z csc2(θ)
(
1− e2Y cos2(θ)

)
,

ρ2 Zt = Zθθ −Q(2Aθ + 2Yθ + Zθ) +Qθ − (Aθ + Yθ + Zθ)
2 + 3

(
Aθ + cot(θ)

)2
(13c)

+
(
Yθ − tan(θ)

)2
+ 2
(
Aθ + cot(θ)

)(
Yθ − tan(θ)

)
+ 2e2Y+2Z

+ 2e2Y+2Z cot2(θ)(e2Y − 1) + sec2(θ) + csc2(θ) + 2e2Z cot(2θ)
(

tan(θ)− cot(θ)
)
.

Now consider what boundary conditions we need to impose smoothness. We need Aθ = 0 at
θ = 0 and θ = π/2. We need Y = 0 and Yθ = 0 at θ = 0 and Yθ = 0 at θ = π/2. We need Z = 0
and Zθ = 0 at both θ = 0 and θ = π/2. Thus, A is the sort of variable we need, but Y and Z
are not. However, defining B and C by

Y =: Bsin2(θ), Z =: Csin2(2θ),

we see that the conditions needed for smoothness can be imposed as long as Bθ = Cθ = 0 at
θ = π/2.

After some tedious algebra we find that equation (13b) yields

∂tB = ρ−2
[
Bθθ + (Q+ 4 cot(θ))Bθ +B

(
2 + 2e2Z − 4e2Y+2Z

sin2(θ)

)
(14)

− 4B(1 + e2Z + e2Y+2Z) + e2Z
(
−2− 2e2Y + 4e4Y

sin2(θ)

)
+ 4

(
e2Z − 1

sin2(2θ)

)
+ 4e2Y+2Z

(
1 + 2Y − e2Y

sin4(θ)

)]
.
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Similarly some tedious algebra applied to equation (13c) yields the following:

∂tC = ρ−2
[
Cθθ + (Q+ 8 cot(2θ))Cθ − 8C(2 + e2Z + e2Y+2Z)(15)

+

(
1− e2Y+2Z

sin2(θ)

)(
2Aθ

sin(2θ)
− 4C

)
+

(
1− e2Z

sin2(2θ)

)
(−8C + 4 cot(2θ)Aθ + 2 cos(2θ) (tan(θ)Bθ + 2B)− 6)

+ e2Y+2Z

(
cosh(2Y )− 1

sin4(θ)

)
+ 8

(
1 + cos2(θ)

)(1 + 2Z − e2Z

sin4(2θ)

)
+ 2

(
Aθ

sin(2θ)

)2

− (sin(2θ)Cθ + 4 cos(2θ)C)

(
sin(2θ)Cθ + 4 cos(2θ)C + tan(θ)Bθ + 2B +

2Aθ
sin(2θ)

)]
.

In summary, we evolve the variables A, B and C, and their evolution equations are equations
(13a), (14), and (15), respectively. The Neumann boundary conditions are that Aθ, Bθ and Cθ
vanish at θ = 0 and θ = π/2.

7. The blowdown soliton

We first derive a necessary and sufficient condition for a metric of the form (1) to be Kähler,
under the symmetry assumptions f1 = f and f2 = f3 = g. Calabi observed [Cal82] that any
U(2)-invariant Kähler metric on C2\(0, 0) may be written in complex form as

(16) GC =
{
e−rϕ δαβ + e−2r(ϕr − ϕ) z̄αzβ

}
dzα ⊗ dz̄β,

with respect to his coordinate r := log(|z1|2 + |z2|2). Written in real coordinates, the same
metric becomes

(17) GR = ϕr

(1

4
dr ⊗ dr + ω1 ⊗ ω1

)
+ ϕ

(
ω2 ⊗ ω2 + ω3 ⊗ ω3

)
,

which shows that ϕ > 0 and ϕr > 0 are necessary conditions for this to be a Kähler metric.
A comparison of equations (1) and (17) shows that a coordinate transformation is needed to

write a Kähler metric with respect to arclength s, where ds = ρdθ. To see this, we observe that
if s and r are related by the ode

dr

ds
=

2

f
,

then equation (1) takes the form

(18) G = f2
(1

4
dr ⊗ dr + ω1 ⊗ ω1

)
+ g2

(
ω2 ⊗ ω2 + ω3 ⊗ ω3

)
,

which matches (17) if and only if f2 = ϕr and g2 = ϕ are related by

(19) f = ggs.

It follows that a cohomogeneity-one metric with the U(2) symmetries we have imposed is Kähler
if and only if condition (19) holds. So, we may use the ratio f/(ggs) to provide a local measure-
ment of the closeness of a metric to the Kähler subspace.
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Now, it follows from Lemma 6.1 and equation (27) of [FIK03] with λ = −1, µ =
√

2, and
ν = 0, that the metric on the blowdown soliton L2

−1 is determined by a function φ(r) that solves
the separable first-order ode

(20) φr =
1√
2
φ− (

√
2− 1)−

(
1− 1√

2

)
φ−1.

One can solve (20) implicitly up to an arbitrary constant η, obtaining

(21) er+η =
φ− 1(

φ+
√

2− 1
)√2−1 .

As shown in [FIK03], the L2
−1 soliton is complete and exists for all r ∈ R. Using this fact and

the positivity of φ and φr, it is not difficult to see from (20) and (21) that φ ↗ ∞ as r ↗ ∞
and that the metric is asymptotically conical in the precise sense that

(22)
φr
φ
→ 1√

2
as φ↗∞.

Specifically, if we define γ := 2−1/4, then the asymptotic cone of the blowdown soliton corre-
sponds to

(23) f = γ2s and g = γs ⇒ f2

g2
= γ2 =

1√
2
.

All sectional curvatures of the cone vanish except κ23 = 4(
√
2−1)
s2

.

8. Results of simulations

The simulations are performed using standard numerical methods for parabolic equations:
centered differences for spatial derivatives and Euler’s method for time evolution. We describe
the method here in more detail.

Any function F (t, θ) is represented by the values F ki that the function takes at points θi
equally spaced with spacing ∆θ and with times tk equally spaced with spacing ∆t. We use
standard centered finite differences, so that Fθ and Fθθ are approximated by

(24) Fθ =
F ki+1 − F ki−1

2∆θ
and

(25) Fθθ =
F ki+1 + F ki−1 − 2F ki

(∆θ)2
,

respectively.
Time evolution is carried out using the Euler method, so that

(26) F k+1
i = F ki + ∆t∂tF,

where ∂tF is the finite difference version of the right hand side of equation (13a), (14) or (15)
with the spatial derivatives evaluated using equations (24) and (25). The standard von Neumann
stability analysis of equation (26) reveals that the time step must satisfy the Courant condition

(27) ∆t < 1
2(ρmin∆θ)2.
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where ρmin is the minimum value of ρ.
We now show the results of a simulation with ε = 0.1 in equation (7). To get an idea of

how the evolution proceeds we plot 1/κ23 at θ = π/2 as a function of time. This curve goes
to zero (i.e. κ23 → ∞) at the final time. We note that the graph is linear near the final time,
which suggests that the developing singularity is Type-I. Thus 1/κ23 is a good proxy (up to
some overall scale) for time remaining until the singularity.
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Figure 1. 1/κ23 plotted vs. time

We now want to examine the extent to which the metric becomes Kähler as the singularity is
approached. Recall that a Kähler metric has f = ggs. We define the quantity K by K = ggs/f .
Then a metric is Kähler if K = 1, but it is also Kähler (but with the opposite orientation of s)
if K = −1. In Figure 2, we plot K vs. θ at a time near the final time. Note that near θ = π/2
the quantity K is approaching −1, thus indicating that the metric in this region is becoming
Kähler.



12 DAVID GARFINKLE, JAMES ISENBERG, DAN KNOPF, AND HAOTIAN WU*

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

K

θ

Figure 2. K = ggs/f plotted vs. θ near the final time

We would now like to know the form of the Kähler metric that is being approached. Here we
take a small region near θ = π/2 and examine the behavior of the cone angle γ2 = f2/g2. In
Figure 3, we plot γ2 = f2/g2 vs. the length from π/2 for three times near the final time. We see
that γ2 approaches 0.707 ≈ 1/

√
2 numerically, indicating local convergence of the metric cone

angle γ2 to that of the blowdown soliton; cf. equation (23). What is perhaps surprising is how
close one needs to get to the singularity to obtain this asymptotic behavior. In figure (3) the
bottom curve corresponds to 1/κ23 = 4.7×10−8 and has an asymptotic value for f2/g2 of 0.666.
The middle curve has 1/κ23 = 9.4× 10−9 and has an asymptotic value for f2/g2 of 0.700. The
top curve has 1/κ23 = 1.9× 10−9 and has an asymptotic value for f2/g2 of 0.707.
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Figure 3. γ2 = f2/g2 plotted vs. length near the final time

9. Directions for future work

Our results here provide evidence in favor of the conjecture that unstable perturbations of the
Fubini–Study Einstein metric — perturbations which are conformal and not Kähler — develop
finite-time local singularities modeled by the Kähler blowdown soliton L2

−1 discovered in [FIK03],
but with the opposite complex structure.

Short of proving the full conjecture, a useful next step would be to derive formal matched
asymptotics that describe how parabolic dilations at these singularities approach L2

−1, analogous
to the matched asymptotics formally derived in [AIK11] for solutions that approach the Bryant
soliton. However, because L2

−1 is only known in the implicit form (21), a somewhat more
approachable next step would be to develop formal matched asymptotics for parabolic dilations
that approach its asymptotic cone (f, g) = (γ2s, γs), where γ = 2−1/4, as described in (23).
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