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Abstract

We study a collection of Riemannian metrics which collapse under the
Ricci flow, and show that the quasi-convergence equivalence class of an
arbitrary metric in this collection contains a 1-parameter family of locally
homogeneous metrics.

1 Introduction and statement of main theorem

In [1], Hamilton and Isenberg studied the Ricci flow of a family of solv-geometry
metrics on twisted torus bundles. This family contains no Einstein metrics, so
the (normalized) Ricci flow cannot converge. Hamilton—Isenberg introduced the
concept of quasi-convergence to describe its behavior, writing

“..the Ricci flow of all metrics in this family asymptotically ap-
proaches the flow of a sub-family of locally homogeneous metrics...”

The intent of this paper is to make that statement more precise. In so doing,
we answer a question of Hamilton, who asked whether an arbitrary metric in
this class would converge to a unique locally homogeneous limit or would exhibit
a more nuanced behavior.

1.1 Definition If g, h are evolving Riemannian metrics on a manifold M™, we
say g quasi-converges to h if for any ¢ > 0 there is a time ¢. such that

sup |g—h|, <e.
M™ X [te,00)

Quasi-convergence is an equivalence relation. Indeed, the standard fact that
U (V,V)| < |UJ, |V|i for any symmetric 2-tensor U and vector field V' implies
that g quasi-converges to h if and only if for all ¢ > ¢.,

1-e)h(V,\V)<g(V, V)< (1+4¢) h(V,V).

We now state our result, using notation defined in [1] and to be reviewed in
§2 below.
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1.2 Theorem If g is any solv-Gowdy metric on a twisted torus bundle M3,
there is a locally homogeneous metric h in its quasi-convergence equivalence
class [g]. Moreover, if h corresponds to the data (a(6), Q, F), the locally
homogeneous metrics in [g] are exactly those with data ({ + « (0), 2, F), L € R.

1.3 Remark Similar quasi-convergence of the Ricci flow to a 1-parameter fam-
ily was conjectured for a class of 72 metrics studied in [2].

The paper is organized as follows. §2 describes the bundles 72 - M3 — S!
and the solv-Gowdy metrics under study. It turns out that at large times, an
arbitrary solv-Gowdy metric g behaves much like locally homogeneous metrics.
83 quantifies this observation and explicitly constructs a family h. of locally
homogeneous metrics existing for all ¢ > 0 which approximate ¢ for times ¢t > ¢..
In §4, we show that this family enjoys a certain compactness property which
allows us to prove the existence part of the main theorem. The heuristic here
is that g resembles a single locally homogeneous metric closely enough that the
metrics h. are not too far apart at ¢ = 0. §5 completes the main theorem
by explaining the very special sort of non-uniqueness which can occur: distinct
locally homogeneous metrics define distinct equivalence classes unless they differ
only by a dilation of the base circle.

1.4 Acknowledgement I wish to thank Richard Hamilton for his helpful and
encouraging comments.

2 Review of solv-Gowdy geometries

We begin by briefly recalling some notation and results of [1]. Readers familiar
with that paper may skip this section.

To construct an arbitrary solv-Gowdy metric g, take A € SL(2,Z) with
eigenvalues Ay > 1 > A_. In coordinates ,x,y on R?, chosen so that the z,y
axes coincide with the eigenvectors of A, define

g=e*do®db + "W dx @ dx + eV dy ® dy, (1)

where F' is constant and A, W depend only on 6. Clearly, g descends to a
metric on the product of the line and the torus 72. Let A act on R x 72 by
@,z,y) = @+ 21, Az, A\yy). If

A6 +21) = A(8) 2)

and
W (0 +2r) =W (6) +2log Ay, (3)

then A is an isometry, and g becomes a well defined metric on the mapping
torus M3, regarded as a twisted 72 bundle over S'. Notice that A governs



the length of the base circle, while F' and W respectively describe the scale and
skew of the fibers. We denote arc length by

9
s(0)$/ e du (4)
0
and set
z=2w 5)
T 9s

Then we can write the Ricci tensor as

1 949 1 pyw0Z 1 p_woZ
= —Ze?g - 9z - 9z (6
Re 5¢ df @ db 5¢ s dr @ dx + 5¢ s dy ® dy (6)

The locally homogeneous solv-Gowdy metrics are easily characterized.

2.1 Lemma A solv-Gowdy metric g is locally homogeneous if and only if W
depends linearly on arc length.

Proof. If g is locally homogeneous, then R = —%Z 2 is constant in space. Since
Z is continuous, it follows that §2W/ds? = 0.

If Z is constant in space, let Py = (6o, 0, y0), P1 = (61,21,y1) be points in
M3. Tt will suffice to construct a diffeomorphism @ : Uy — Uy, where Uo, Uy
are neighborhoods of Py, P; respectively, such that ® (Py) = P, and ®*g = g.
If ® is given in coordinates (6, x,y) by

®0,z,y) = (7(0,2,9),£(0,2,9),n(0,7,9)),

the pullback condition ®*¢g = g is equivalent to the system

ar\? oe\” on\?
Q2A(0) — (8_;) P2AG) (8_5) SFHW() (a_z) - W () (7a)

2 2 2
SFHW(6) _ (?) 2A(M) 4 <3_) SFHW(r) (%) F-W(r) (7h)
X

ox
2 2 2
SF-W(O) — (g_;) Q2A(T) | (%) (FHW(T) | (g_z) oF-W(r). (7)

Note that s () is invertible, because ds/30 = e*(®) > 0, and define
T (9,.’13, y) = 371 (S (0) +s (01) - S (90))
£(H7x,y) =1 + e—%(s(al)—s(ﬂo)) (.’IJ _ 170)
1(8,2,y) = y1 +e2 OO (y _y).

Clearly, ® : Py — P;. Equation (7a) is satisfied, because

Or _ 06\ 95 v _Am)+A®)
96 = 957 25 @) =e¢ :



To see that (7b) is satisfied, let w denote W regarded as a linear function of arc
length, so that W () = w (s (6)). Then we can write

log ((%) eW‘”) = —Z-(s(602) = 5 (60) +w (5 (6) + 5 (61) — 5 (b))
=w(s(0) =W ().
Equation (7c) is verified in a similar fashion. =

2.2 Remark When studying a single locally homogeneous solv-Gowdy metric,
one can always make A constant in space by a reparameterization of S'; but it
will not be convenient for us to do so.

If an arbitrary solv-Gowdy metric g evolves by the Ricci flow

0
ot
we shall abuse notation and allow the quantities introduced above to depend

also on time. We find that g remains a solv-Gowdy metric and that (8) is
equivalent to the system

9= —2Re, (8)

aA = §Z2 (ga‘)
0 0
%F =0, (9¢c)

whose solution exists for all ¢ > 0. It is most convenient to study Z and recover
A and W by integration. Z evolves by

) 92 1

where the operator 9?/9s? plays the role of the Laplacian and evolves according
to the commutator 5 . 5
i 11
[Eﬂ’ 83] 27 0Os (11)
For all t > 0, we identify S' with the circle 2 = 0, y = 0 and denote its length
by

2m
L(t)= / ds = / eA00 dp. (12)
St 0

Notice that (3) implies the important integral condition

/ Z ds =2log A4, (13)
St
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which is preserved by the flow.
If an evolving solv-Gowdy metric is locally homogeneous at ¢ = 0, it remains
so under the Ricci flow. For such metrics, Z is the function of time alone

1
A (t) = 7,m7 (14)

where ( = Z(0) is positive by (13). The sub-family of locally homogeneous
solv-Gowdy metrics can thus be indexed by (« (0), Q, F), where

o (8) = A(6,0) (15a)
Q=W (0,0). (15b)

We now summarize the estimates we shall use from [1]. Let g be a solution to
the Ricci flow whose initial data g (-,0) is a C? solv-Gowdy metric. Hamilton—
Isenberg organize the proof of their main theorem into four steps. In Step 1,
they show there is C' > 0 depending on Z (-,0) such that for all ¢ > 0,

1 1

By Step 2, there is a time 7' > 0 and constants m = Zyin (T'), M = Znax (T)
depending on L (0), Z (-,0) and satisfying 0 < m < M < 1/+/T such that for

allt > T,
1 1

N S = s yivel

By Step 1 again, there are C,C’" > 0 depending on L (0), Z (-,0) such that for

(17)

allt > T +1,
CVt—-T<L({t)<CVt-T. (18)
By Step 4, there is C > 0 depending on L (0), Z (-,0) such that for all ¢ > T,
0 C

%Z("t)‘ < R (t—T))Q' (19)

3 Construction of approximating metrics

As a first step in proving the existence part (Theorem 4.1) of our main theorem,
we find times t. and construct locally homogeneous metrics h. with the following
properties: h. is in a sense the average of g at t.; h. remains e-close to g for all
times t > t.; and most importantly, h. exists for all ¢ > 0.

3.1 Proposition For any ¢ > 0, there is a time t. > 0 and a locally homo-
geneous solv-Gowdy metric he evolving by the Ricci flow for 0 < t < oo such
that

sup |9 — hel,,, <e.
M3 X[te,00)



Before proving this, we collect some technical observations.

3.2 Lemma For any € > 0, there is t. > 0 such that Z satisfies the pinching

estimate c
7 — i < — 2
max (t) min (t) L (t) b) ( 0)

and the decay estimate
1 1

NSy <Z(ht) < Vi L i (21)
for all t > t., where m., M. are defined by
0 <Me = Znin (te) < Zmax (te) = Me < 00 (22)
and satisfy
m. <M. <m.+¢ and M2 < (1+e)m?. (23)

Moreover, we can choose t. so that

>0z
—_— <e.
/tg s dt <e

Proof. Let T, m, M be as in (17) and let C be the constant in (19). Let
t. =max{T + C/ (m*), T + 1} and suppose ¢ > t,. Then (19) implies

oo Z oo
/ 971 < / ¢ 5 dt = — ¢
t. |0s o mi(t+t, —T) mA (t, — T)
and (18) implies there is C’ > 0 such that

Lit)<C'Vt-T.

<eg,

Hence for such times

Vi—T
(1+m2(t-T))>

Choose t. > t, large enough that (20) holds for ¢ > t., and that (23) holds for
me, M. defined by (22). This is possible, because

(me(t))2 ct=T+1m’

Zmax (t) - Zmin (t) S / aZ
S1

ds < cCcC’

S

<1+

Zmin(t)) —t—-T+1/M? — m2(t—-T)
Then since 27 = g—;Z — 173, we observe that
d 1 d 1
—Znin > — =23, d = Zmax < —27Z3,..
dt - 2 min an dt ax = 2 max

A routine use of the maximum principle (proved in [3]) now establishes (21) for
allt>t.. m



3.3 Remark The proof shows that for t > T + 1,
Zmax - Zmin =0 (t - T)73/2 )
a result which also follows directly from (17).

3.4 Lemma Let € > 0 be given and let t., m., M, be as in Lemma 3.2. Then
there is a locally homogeneous solv-Gowdy metric

he =e*edf @ df + et We dz @ do + e~ We dy @ dy

evolving by the Ricci flow for 0 < t < oo so that for t > t.,
1 1

< Z (t) £ ———,
Vit —te +1]m?2 Vit —te +1/M?2

where 7, = % = e A %. Moreover, h. is constructed so that for all§ € S!,
Ac (0,t.) = A(0,t:) and [W (0,t.) — W (0,t.)| < ¢ .

Proof. Define )

VEFA/E—t)

G = /Slst/ s ds, (25)

with the RHS evaluated at t.. Observe that Z. is well defined for all ¢ > 0,
because |Z (t)| < 1/+/t by (16), whence

Z (t) =

(24)

where

1/ —te > 1/Z2, (t:) —t- > 0.

Now recall that locally homogeneous solv-Gowdy metrics form a 3-parameter
family and define

0. (6) = A(8,1.) %/t 72 dt (26a)
0

Q. =W (0,t.) (26b)

F=F (26¢)

Notice that h. is well defined; indeed, the identities

210g)\+=/ st:@s/ ds = gEeAedaz/ Z. ds,.
St St St St

show that the integral condition (13) is satisfied at t., hence for all time.
The first assertion of the lemma is verified by the elementary observation

me = Zmin (ts) S CE S Zrnax (tE) = ME’



which follows from (25). The second assertion is trivial; to prove the third,
simply notice that

HV(&tQ——M@(&tQ|SIA;|Z——Q|dsg(me;—me)@g~L(n)§e;

]
Proof of Proposition 3.1. Without loss of generality, assume 0 < & < 1/6.
Let t > t. and observe that

(A= 4)@0] = 5

/tt (Z2 - Zf) 0,7) dr

<1/t 1 1 J
a - T
~ 2/, T—te+1/M2 71—t +1/m?

1+ M2 (t—t.)
=log/ ———.
T+m2(t—t.)

Then since |e* — 1| < eV — 1 when |u| < U, we have
. M2 —m?
eZ(A—AE) 1‘ < €2A5 € e

2
mg

|(€2A _ e2A5) (e’t)‘ — e2A€

and hence )
(1)) (900 = (he)gy)? < 2.

Because W, is constant in time, we have

|(W - WE) (0,t)| < |W (evt) -Ww (eats)l + |W (eats) - WE (07t6)|
toz
" ng

< Zg,

<

+¢€

whence substituting 6 = 2 < 1/3 in the crude estimate ¢’ < 1+ 3+ £42 (which
holds for 0 < 0 < 1) gives

|(€F+W _ er+Ws) (G,t)‘ — eF£+W5

e(W_We) — 1‘ S 356F5+W5

and thus \ ;
((hE)mz) (gzz - (hf)zx) < 9¢e2.

2
The estimate for ((he)"?)? (gyy — (he) yy) is entirely analogous. We have

shown that

|g - hE'ig = (hs)ac (hs)bd (gab - (hs)ab) (gcd - (hs)cd) S 1952

for t > t., which is clearly equivalent to the desired result. m



4 Existence

We have seen that for any € > 0, there is a natural choice h. of locally homoge-
neous metric approximating g for times ¢ > t.. In view of our non-uniqueness
result (Theorem 5.1), it is remarkable that these choices are close enough to one
another that we can prove the existence of a locally homogeneous metric in [g].

4.1 Theorem There is a locally homogeneous solv-Gowdy metric hoo evolving
by the Ricci flow for 0 < t < oo such that for any € > 0 there is a time t. > 0
with
sup |9 = hool, <e.
M3 X [te,00)

Again, we first obtain some preliminary results.

4.2 Lemma Let {¢;} be a sequence with ¢; N\, 0. For each j, let h; denote
the metric h.; given by Proposition 3.1. Then there is a subsequence j;, and a
locally homogeneous metric hy, with data (aeo (0), Qeo, Fuoo) such that

(ajk- (0) ’ ij? ij) - (aOO (0)7 Q007 FOO)

uniformly in 6. (Here, and throughout the proof, a subscript such as j denotes
quantities corresponding to the metric h; = h,;.)

Proof. The argument is constructed from four claims, as follows: Claim
4.3 bounds %A(-Jﬂ, hence %A]- (-,t;) by construction, hence %Aj (+,0) by
(27) and the local homogeneity of h;. Combining this with Claim 4.4 proves
{A4; (-,0)} is bounded and equicontinuous. Since Claim 4.5 bounds %Wj (-,0),
this lets us bound ZW); (-,0). Combining this with Claim 4.6 then proves
{W; (-,0)} is bounded and equicontinuous. Because F; = F by construction,
this lets us extract a subsequence of the h; whose initial data converge uniformly
to the data of a locally homogeneous metric hy existing for all ¢ > 0.
Notice that if j < k, we may (and shall) assume t; < ¢j.

4.3 Claim There is C' < oo such that

0A
su — | < C.
Mﬁx[g,oo) ‘ 59‘
Compute
0 (0A\ 0 (1 _,\ 4,07

Since by (17),
0 1 1

A -
ot =2 t—T+1/M2
for t > T, there is C’ > 0 such that

A(,t) <logC'+log\/t—T +1/M?



for t > T. Then by (19), we have

"
2 (9 <ovimTpE O
ot \ 00 Vi—T+1/M?2 1+m2(t—-1T))
CICII

T 14+ mt(t-T)

for all ¢ > T'. Since there is B > 0 depending only on the initial data such that
—B < 0A/00 < B att=T, the claim follows.

4.4 Claim The sequence {a; (8)} is bounded for each 6 € S*.

Let # € S' be arbitrary. For j < k, consider

1 (% 1 [t
aj(a)—ak(a)zA(G,tj)—§/0 Z;dt—A(a,tk)+§A Zfdt

1t 2 2 1Y 2 2
:§/t (Zk—Z)dt+§/0 (Z; - Z3) dt.

3J

Since 1/(} —t), > 1/M; —t;, we obtain a familiar estimate for the first integral:

1

b A + M2 (t, — t;)
72— 7%) dt| <logy| ——L-" 2 <log\/1+¢,.
z/t (7 = 77) —Og\/1+m§(tk—t slogvite

i

Write the second integral as

Ly L/G - tj + (/G — t)
> /0 (2 - 8\ 1/ 4, /¢

= log v/ Pjk,
where :
24
. 2
P s (1- G )( e )>0 8)
Since ) )
ti +1/M?2 — 7 +1/m
and
tj+1/m2—T t; tj+1/M2—
—FF— <1+ < )
1/m2-T l/Cg—tk 1/M?2-T
we conclude that /M2 /
1 1/m* —
<P <
1/m? I =T1/M2

4.5 Claim There are 0 < Z, < Z* < oo such that Z; (0) € [Z,, Z*] for all j.

10



Note how

1/Z3 (0) =1/ —t; > 1/Z;

m

ax (tj) —t; > 1/M> =T >0
by (16) and (17), and similarly
1/Z3(0) = 1/¢; —t; <1/Z35, (t;) —t; <1/m* = T < co.
4.6 Claim There are 0, < Q* such that Q; € [Q,,Q*] for all 5.
Suppose j < k. Then since ; = W (0,t;), we have

0z

Js dt S Ej.

" |ow e
IQk—le=|W(0,tk)—W(o,tj)|g/t_ a dt:/t.

4.7 Lemma If hy, is a locally homogeneous metric with data (o (6) , Qoo, F)
and {h;} is a sequence of locally homogeneous metrics with data (a; (0) , Q;, F')
converging to (qeo (), Qoo, F) uniformly in 6, then for any € > 0 there is J,
such that for each j > J.

sup  |hj — hool, <e.
M3 x[0,00) =~

Proof. The integral condition
/ ZOO (0) eaoo (9) d9 = 210g )\_;’_ = / Z] (0) eaj(o) d0
st st

shows that Z; (0) - Z (0). For 6 > 0 to be determined, choose J. large
enough that

Z2 (0)
sup |as (0) —a; (0)| <6 and 0 —-1/<$

for all j > J., and consider

(oo = 4) 0,1) = (0~ ) @O+ 5 [ (72~ 7).

For any A, u > 0 we have the now-familiar inequality

= Al /t 1 1 = Al
log (1= =AY« [ _ 1 ) g <iog (14 #=2)
°g< ) S e Trep) dstee Ty

1t , oy g, 17 1 1
5/0 (Zw_Zf)dt_ifo <t+1/zgo(0)_t+1/z;(0)> dt

11

Since




and

11/22 (0) - 1/22, (0)|
O

we get our first estimate:

(Ao — Aj) (6,)] < 5 +log V1 0.

Next observe that when 0 < 6§ < log2 we have e® < 14 2§ and thus obtain our
second estimate:

|(Woo = W;) (6,8)] = [Weo (6,0) — W; (6,0)]

0 0
/ Zoo (0) - e@= Wy — / Z; (0) - e (W dy
0 0

]_ — eaj (u)_aoo (u) du

9
S/ Zoo (0).eaoo(u)
0

Z (0)
Zoy 1

J

0
+/ Z;(0) - e du
0

<35 (2log Ay ).

As in the proof of Theorem 3.1, it follows that we can make |hoo — hyl,  as
small as desired by choosing § = § (¢) appropriately. m

Proof of Theorem 4.1. Note that |g — hoo|;,  will be small if both |g — hj|hj

and |hj — heo|, are. So take the subsequence of metrics hj, and times t;, given
by Lemma 4.2 and pass to a further subsequence according to Lemma 4.7. m

5 Uniqueness

Distinct locally homogeneous solv-Gowdy metrics belong to the same equiva-
lence class if and only if they differ merely by a dilation of arc length. In that
case, we shall see that they approach one another at the rate C/t, where the
constant depends on the initial difference in length of the base circle.

5.1 Theorem Let h and h, be locally homogeneous metrics corresponding to

the data (a (0), Q, F) and (a, (0), Q., F\) respectively. If for some constant ¢
we have a, = a+/{ and Q, = Q and F, = F, then h and h. quasi-converge with

1
\h — R, = O (E)

In all other cases, there are § > 0 and § € S' such that
|h* - h|h (aat) > d

for allt > 0, so h and h, do not quasi-converge.

12



Proof. We consider three cases.
5.2 Case a,=a+¥¢ Q. =Q, F,=F.
Writing
1 1

Z(t) = \/TW and Z, (t) = \/Tw,

we observe that £ = log (¢/(.), since by the integral condition (13) we have

s Odb (29)
o e eoa

It follows that the function

w(0) = / ' (Goem) = ¢eat)) du (30)
0

is identically zero. So for all # € S and t > 0 we have
W =W)(0,t) = (W, - W) (6,0) = Q2 - Q+w () =0.

Now notice that

(A, — A) (6,t) = (ayx — ) (9)+1/0 (Z2(1) = Z% (1)) dr =L+ ¢ (1),

2
where ) e
+ (2t
=1 ol 1
6() % log 1 iy (31)

It is clear by (29) that A, — A — 0 uniformly in 6 as ¢ — oo. In fact, this
identifies the critical rate at which distinct locally homogeneous metrics h, h.
approach each other, because

(P4 — *4) (8, ) = 240D (62(4+¢(t)) _ 1)

and hence

_ -1

|hs — hl, = ‘hag (hs — h)aa‘ = ‘62(z+¢(t)) - 1‘ t+1/¢

5.3 Case a,=a+4{, Q. =0, F, # F.

Notice that W,—W = 0 and A,—A — 0 as above. Without loss of generality,
suppose F, — F =6 > 0. Then for all § € S* and t > 0 we have

Pt We _ oFHW — oF+W ((FamF _ 1) 5 s +W

and hence
|hs — h|,, > |h*® (hy = )| >0 > 0.

13



5.4 Case Either ., Z a+ £ or Q. # Q.
Observe that we can always find 6 with
(W, =W)(6,0)=0,—-Q+w(f) #0,

since w cannot be identically zero if a. #Z a + ¢. Without loss of generality,
assume (W, — W) (0,0) =6 > 0. Then if F, > F, we have

eFrAWa(0,t) _ JFHW(0,8) — F+W(8,1) (eF*—Feé _ 1) > FHW(0.0) (66 _ 1)
for all ¢ > 0 and hence
|he — ), (8,t) > |R®" (he — h),,| (0,t) > 6 > 0.

On the other hand, if F' > F, we obtain

el Wa(0,8) _ JF—W(0,t) — F—W(0,t) (eF*fFefé _ 1) < eF-W(0,0) (675 -~ 1)

for all t > 0 and thus

b — hl, (6,8) > ‘hw (hs — h)yy‘ 0,6) > —— >o0.
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